Construction and Verification

of Software
2014 - 2015

Luis Caires
lcaires@fct.unl.pt

Mestrado Integrado em Engenharia Informatica
FCT UNL

Departamento de Informatica FCT UNL (uso reserva do©)

this Is a course about ...

techniques and methods
for software construction

(techniques and tools)

Departamento de Informatica FCT UNL (uso reserva do©)

Course Topics (Overview)

Software Static Verification

— understand the principles and know how to use
assertion methods in practice to specify, reason
about, and validate software, including tools

Software Testing (Dynamic Verification)

— understand the principles and methods for testing
software, including some tools

Concurrent Programming

— understand how to write correct concurrent OO
programs

Secure Programming

— understand how to write secure program code
against specified information flow policies

Departamento de Informatica FCT UNL (uso reservado ©)

Course Evaluation Rules

* Graded handouts (4)
— Groups of 1-2 students

— You will progressively design and implement a middle
sized application and certify its correctness for a set
of interesting properties using a combination of the
techniques and tools learned in the course

— Due dates : end of March, April, May, June
* Midterm test: 20.April.2015 (T1)

 Finaltest 1-2-3.Jun.2013 (P1-P2-P3)

Departamento de Informatica FCT UNL (uso reservado ©)

Software Correctness

Departamento de Informatica FCT UNL (uso reserva do©)

Relevance of Software Correctness

* The software industry is becoming increasingly
competitive: although it seems that “anyone” in the IT
field can develop software, to be successful a company
must be extremely careful with the quality of its product

* Shipping incorrect, “buggy”, or instable software can Kill
the credibility of a developer (individual or company)

* Debugging and patching software is extremely
expensive, both in terms of resources and reputation.

« Currently, applications may affect zillions of users, and
Impact of crashes, security flaws, data loss, or incorrect
behavior is highly visible (e.g., think of cloud
applications such as GMail or Facebook).

Departamento de Informatica FCT UNL (uso reservado ©)

Too easy to make flawed software

United Airlines

A first-class cock up
Feb 16th 2015, 16:55 BY B.R. (&) Timekecper 3 Tweet |68

Reuters

WHEN Matt and Emil, a couple of expat Americans living in London, were invited to be
groomsmen at a friend’s wedding in New York, they feared they would not be able to afford
to make the transatlantic trip. And then fortune intervened. They heard about a glitch on
United Airlines' British website. A computer error meant that the airline was offering trips
across the pond for just £52 ($80), as long users selected to pay in Danish kroner. Even
more remarkably, the tickets were for the first-class cabin.

Departamento de Informatica FCT UNL (uso reservado ©)

SOCIEDADE

A justica num verdadeiro
«estado de Citius»

Reporter TVI verificou com os préprios olhos o caos vivido nos
tribunais. Programa informatico que suporta a atividade judicial
esta sem funcionar ha mais de 30 dias

Por: Redagdo / Claudia Rosenbuch | 29 de Setembro de 2014 s 22:59

Topic: Security Follow via:),
Microsoft reveals Windows
vulnerable to FREAK SSL flaw

Summary: Redmond has said that the FREAK security flaw is found in versions of its Windows
operating system from Windows Server 2003, Windows Vista, and higher.

i ® By Chris Duckett | March 6, 2015 -- 03:12 GMT (03:12 GMT)

- L

3 Follow @dobes 2,273 followers Get the ZDNet Announce UK newsletter now

Comments 74 ([n 71 W Tweet (247 [[IIEEY &0 more +

The FREAK security bug that allows attackers to conduct man-in-the-middle attacks on Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) connections encrypted using an outmoded cipher has
claimed another victim. This time, it is Microsoft's Secure Channel stack.

"Microsoft is aware of a security feature bypass vulnerability in Secure Channel (Schannel) that affects
all supported releases of Microsoft Windows," the company said in a security advisory. "The vulnerability
facilitates exploitation of the publicly disclosed FREAK technique, which is an industry-wide issue that is
not specific to Windows operating systems."

Although Microsoft Research was part of the team to uncover FREAK alongside European
cryptographers, Redmond chose not to reveal Windows as vulnerable until today.

"When this security advisory was originally released, Microsoft
had not received any information to indicate that this issue had ~ What's Hot on ZDNet

been publicly used to attack customers," the company said. 5 Windows 10: Will your PC run it?

Bug Report from Apple (2013

i0S 7.0.2

= Passcode Lock
Available for: iPhone 4 and later
Impact: A person with physical access to the device may be able to make calls to any number

Description: A NULL dereference existed in the lock screen which would cause it to restart if the emergency
call button was tapped repeatedly. While the lock screen was restarting, the call dialer could not get the lock
screen state and assumed the device was unlocked, and so allowed non-emergency numbers to be dialed.
This issue was addressed by avoiding the NULL dereference.

CVE-ID

CVE-2013-5160 : Karam Daoud of PART - Marketing & Business Development, Andrew Chung, Mariusz Rysz
= Passcode Lock

Available for: iPhone 4 and later, iPod touch (5th generation) and later, iPad 2 and later

Impact: A person with physical access to the device may be able to see recently used apps, see, edit, and
share photos

Description: The list of apps you opened could be accessed during some transitions while the device was
locked, and the Camera app could be opened while the device was locked.

CVE-ID

CVE-2013-5161 : videosdebarraquito

Departamento de Informatica FCT UNL (uso reservado ©)

Software Verification at Facebook

Moving Fast with Software Verification | Publications | Research at Facebook | Facebook

4 > 4 [btps & research.facebook.com A r ¢ REEE ©
(1] #3 Facaagestdod..king.com Eventually Cons... Queue ScopusProfile PCT-FCT ERC metrics RID TT-IST MIT-TLO TTxfer WoS CLIP »
Moving Fast with Software Verification | Publications | Research at Facebook | Facebook :— +

n Research Our Research Programs Publications Events Blog

PUBLICATION

Moving Fast with Software
Verification

Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino Luca, Peter O'Hearn, Irene Papakonstantinou, Jim
Purbrick. Dulma Rodriguez
NASA Formal Method Symposium - February 10

e -

Abstract

For organisations like Facebook, high quality software is important. However, the pace of
change and increasing complexity of modern code makes it difficult to produce error free
software. Available tools are often lacking in helping programmers develop more reliable and
secure applications.

Formal verification is a technique able to detect software errors statically, before a product is
actually shipped. Although this aspect makes this technology very appealing in principle, in
practice there have been many difficulties that have hindered the application of software

wvarifinntian in industrial anviranmants ln navticaular in an arasniontian lika Eanahanliabara tha

Departamento de Informatica FCT UNL (uso reservado ©)

Relevance of Software Correctness

* Quality procedures must be enforced at all levels, in
particular at the construction phase, where most of the
Issues are introduced and difficult to circunvent.

* Questions for you now:

— What methods do you currently use to make sure
your code is “bullet-proof” ?

— How can you prove to yourself (and others) that your
code is “bullet-proof” ?

— What arguments do you use to convince yourself and
others that your code works as expected and not

goes wrong, with respect to functional correctness,
security, or concurrency errors?

Departamento de Informatica FCT UNL (uso reservado ©)

Relevance of Software Correctness

* Quality procedures must be enforced at all levels, in
particular at the construction phase, where most of the
Issues are introduced and difficult to circunvent.

* Questions for you now:

— What methods do you currently use to make sure
your code is “bullet-proof” ?

— How can you prove to yourself (and others) that your
code is “bullet-proof” ?

— What arguments do you use to convince yourself and
others that your code works as expected and not

goes wrong, with respect to functional correctness,
security, or concurrency errors?

 You will know better answers at the end of this course.

Departamento de Informatica FCT UNL (uso reservado ©)

Software Correctness: What and How

Departamento de Informatica FCT UNL (uso reserva do©)

Software Correctness: What and How

 Key engineering concern:
— software developed and constructed is “correct’
* \What does this mean?
— Is it crash-free? (“runtime safety”)
— Gives the right results? (“functional correctness”)
— Does it operate effectively? (“resource conformance™)
— Does it violate user privacy? (“security conformance”)

» several methodological approaches to favour and
validate correctness exist (software engineering course)

* In this course, we cover some techniques to rigorously
ensure and validate correctness during construction

Departamento de Informatica FCT UNL (uso reservado ©)

Software Correctness: What and How

‘runtime safety” is easier to define (no crashes, etc)
— programming language type systems help on this
other kinds of correctness are not so easy to define
usually relative to special assumptions ...
— what the system is supposed to do
 play chess, manage bank accounts, ...
— the available resources
* bandwidth, memory, clock speed, ...
— the security policies
 only my friends can see my pics, ...
To precisely define such assumptions, we need
— rigorous specification languages
— ways of validating that the system meets the spec

Departamento de Informatica FCT UNL (uso reservado ©)

Specifications

* Then what does “correct software” mean?
— Always relative to some given (our) specs

* Correct means that software meets OuUr specs
— There is no such thing as the “right specification”
— In practice, the spec is usually incomplete ...
— The spec should not be wrong !
— It should be easy to check what the spec states
— The spec must be simple, much simpler than code
— The spec should be focused (pick relevant cases)
* e.g., buffers are not being overrun
* e.g., never transfer money without logging source

Departamento de Informatica FCT UNL (uso reservado ©)

What may specs look like”?

A classical example is the use of “assertions”
— you have used assertions before (IP, POO, AED)?
The simplest and fine grained spec is the “Hoare triple”

{A}P{B}

A and B are assertions (conditions on the program state)
P is the program we want to check
The Hoare ftriple says:

If program P starts in a state satisfying A, then, if it
terminates, the resulting state satisfies B.

A is called the “pre-condition”
B is called the “post-condition”

Departamento de Informatica FCT UNL (uso reservado ©)

Interface contracts in ADT specs

* ADT specifications (we will detail this later) involve
method contracts, expressed as assertions

method P(... parameters ...)

requires pre-condition-assertion PRE
ensures post-condition-assertion POST
modifies non-local-state-changed MOD

{

... method code

J

* The method call P(...), whenever started in a state that
satisfies PRE, if it terminates, always ends in a state
that satisfies POST, and only has effects on MOD

Departamento de Informatica FCT UNL (uso reservado ©)

Invariants in ADT specs

« ADT specifications (we will detall this later) may involve
representation invariants and abstraction mappings
also expressed as assertions

class C {
invariant invariant-assertion REPINV
iInvariant abstraction-map-assertions ABSMAP

{

... methods...
)

 ADT C implementation relies on a representation type T
that satisfies the representation invariant REPINV and
maps into the abstract type as specified by ABSMAP

Departamento de Informatica FCT UNL (uso reservado ©)

Checking Specs: Dynamic Verification

* verification done at runtime
* success stories: unit and coverage testing

 runtime monitors to (continuously) check that code do
not violate correctness properties

 violations causes exceptional behavior or halt, so errors
are detected after something wrong already occurred
(think of a car crash, or securiy leak)

 always introduces a level of performance overhead

* may show the existence of some errors, but does not
ensure absence of errors (the code passed a test suite
today, but may fail with some other clever test)

« challenge: how do you make sure that you are defining
the “right” tests and "enough” tests

Departamento de Informatica FCT UNL (uso reservado ©)

Checking Specs: Static Verification

+ verification done at development / compile time

* relies on reasoning about what programs do, by
analyzing the source code

» does not incur in performance overhead, since the code
IS not actually executed

« can tackle many complex correctness properties (e.g.,
functionality, race absence, security, etc)

» success stories: type checking, as statically performed
by a compiler, and extended static checking

« can ensure absence of all errors of a certain well
defined kind, e.g., “no null dereferences”

» challenge: do you know how to give enough information
to the verifier ? How “smart” is the verifier?

Departamento de Informatica FCT UNL (uso reservado ©)

Some history ...

21

Departamento de Informatica FCT UNL (uso reservado ©)

Turing

Kick off:
— “Checking a large routine”

“How can one check a routine in the
sense of making sure that it is right?
In order that the man who checks

may not have too difficult a task the
programmer should make a number
of definite assertions which can be i 0 s
checked individually, and from which ==&l

In order that w chec ot haw diffioult a task tb
progreamses should & mmber of nite assortio oh can be check
individually, and froa which the correctncas of the whole progr o ean!
follows,

g dition, 17 it Lla glven]

programme easily follows.”
Alan Turing, 24th June 1949 e

Departamento de Informatica FCT UNL (uso reservado ©)

Assertions

Second boost:
— Floyd’s Assertion Method

Robert Floyd’s, "Assigning Meanings
to Programs, " opened the field of
program verification. His basic idea
was to attach so-called "tags” in the
form of logical assertions to individual
program statements or branches that
would define the effects of the
program based on a formal semantic
definition of the programming
language.

R. Floyd, MFCS, June 1967

Departamento de Informatica FCT UNL (uso reservado ©)

23

Program Specs

Lift Off:
— Hoare Logic

“‘Computer Programming is an
exact science in that all the
properties of a program and all
consequences of executing it in
any given environment can, in
principle, be found out from the
text of the program itself by
means of purely deductive
reasoning.”

Tony Hoare, CACM 1969

Departamento de Informatica FCT UNL (uso reservado ©)

i ™

AXIoM 1: ASSIGNMENT AXIOM
{plt/x]} x =t {p}.

RuLE 2: CoMPOSITION RULE

{p} S:i {r}, {r} S: {q}
{p} S;;S: {q}

RuLE 3: if-then-else RULE

{p e} S {q}, {pA e} S:{q}
{p} if e then S, else S; fi {¢}

RULE 4: while RULE

{pNe}S{p)
{p} while edo S od {p N\ e}

24

Hoare Logic Today

[|
® O O Retrospective: An Axiomatic Basis for Computer Programming | October 2009 | Communications of the ACM
I O [l } + | C|http://cacm.acm.org/magazines/2009/10/42360-1 SS' '] l (Q~
" EE

m =

Gmail ISl

OutSystems S...io 4.1 Help Google

eracareers CLIP - Autenticacao UROP - Und...es Program

— Hoare Logic

“ The axiomatic method gives
an objective criterion of the
quality of a programming
language, and the ease with
which programmers could use It.
The latest response comes from
hardware designers, who are
using axioms in anger to define
the properties of modern
multicore chips with weak
memory consistency.”

COMMUNICATIONS

Home News Blogs Opinion

Home » Magazine Archive » 2009 » No. 10 » Retrosp

this article
Abstract
Full Text (HTML)
Full Text (PDF)
User Comments (0)
In the Digital Edition

In the Digital Library

article contents
Introduction
Retrospective (1969-1999)
Progress (1999-2009)
Prospective (2009-)
The End
Author
Footnotes

Figures

ACM.ORG JOIN ACM ABOUT COMMUNICATION

s

v

(I

® Commu

Browse by Subject

ive: An Axi ic Basis for C » Full Text

VIEWPOINTS

Retrospective: An Axiomatic Basis for Computer Programming
C.A.R. Hoare revisits his past Communications article on the axiomatic approach to
programming and uses it as a touchstone for the future.

C.A.R. Hoare

Communications of the ACM
Vol. 52 No. 10, Pages 30-32
10.1145/1 64.1562779

This month marks the 40th anniversary of
the publication of the first article I wrote as
an academic.” T have been invited to give my
personal view of the advances that have been
made in the subject since then, and the
further advances that remain to be made.
Which of them did I expect, and which of
them surprised me?

Engineeri
Credit: Robert M. McClure

Retrospective (1969-1999)

My first job (1960-1968) was in the computer industry; and my first major project was to
lead a team that implemented an early compiler for ALGOL 60. Our compiler was directly
structured on the syntax of the language, so elegantly and so rigorously formalized as a
context-free language. But the semantics of the language was even more important, and
that was left informal in the language definition. It occurred to me that an elegant

Tony Hoare, CACM 2009 :

Departamento de Informatica FCT UNL (uso reservado ©)

Extended Static Checking
JML and Extended Static Checking for Java

ESC/JavaZ2is a
programming tool
that uses static
analysis to verify the
correctness of Java
programs, using an
extension of Hoare
Logic called JML.

G.T. Leavens, 2000

Extended Static Checking for Java

Cormac Flanagan
Greg Nelson

Compagq Systems Research Center 130 Lytton Ave. Palo Alto, CA 94301, USA

ABSTRACT

Software development and maintenance are costly endeav-
ors. The cost can be reduced if more software defects are
detected earlier in the development cycle. This paper in-
troduces the Extended Static Checker for Java (ESC/Java),
an experimental compile-time program checker that finds
common programming errors. The checker is powered by
verification-condition generation and automatic theorem-

proving techniques. It provides programmers with a sim-
ple annotation language with which programmer design de-
cisions can be fxpressed formally. ESC/Java examines the
annotated software and warns of inconsistencies between the
design decisions recorded in the annotations and the actual
ocode, and also warns of potential runtime errors in the code.
This paper gives an overview of the checker architecture and
annotation language and describes our experience applying
the checker to tens of thousands of lines of Java programs.

Categories and Subject Descriptors

D.2.1 [Software Engineering|: Requirements/Specifications;
D.2.4 [Software Engineering]: Program Verification

General Terms

Design, Documentation, Verification

Departamento de Informatica FCT UNL (uso reservado ©)

K. Rustan M. Leino
James B. Saxe

Mark Lillibridge
Raymie Stata

coverage

extended

. decidabulity ceiling
type
chec}uy

effort

Figure 1: Static checkers plotted along the two di- ~
mensions ¢ '

static checki
formed with
cause ESC ¢
tional static
automatic t]
programs, W
many errors
ming langua y
cast errors, A

rors in cond g—mﬂi’“

=

Extended Static Checking
Spec #

The Spec# Programming System: An Overview

Spectt is an extension of the

object-oriented language C#. T

It extends the type system to Vst KR 15615 Ocoen 204 To e CAGSES 2004 procedngs
include non-null types and R

checked exceptions. It e ey 0 devel a0 miatin bgh qualty software. Thi pape deserbes the

goals and architecture of the Spec# programming system, consisting of the object-

Mike Bamett, K. Rustan M. Leino, and Wolfram Schulte

oriented Spec# programming language, the Spec# compiler, and the Boogie static

p r O Vi des m e th Od Con tr a Ct S i n program verifier. The language includes construets for writing specifications that

capture programmer intentions about how methods and data are to be used, the

t h e fo rm Of p re_ a n d compiler emits run-time checks to enforce these specifications, and the verifier

can check the consistency between a program and its specifications.

postconditions as well as
object invariants.

Barnett, Leino, Schulte, 2004

27

Departamento de Informatica FCT UNL (uso reservado ©)

Dafny
Dafny

Dafny: An Automatic Program Verifier

Dafny is an imperative object- for Functional Correctness

K. Rustan M. Leino

based language with built-in Nt e
specification constructs. The

Traditionally, the full verification of a program’s functional correctness has been obtained with
pen and paper or with interactive proof assistants, whereas only reduced verification tasks, such as ex-

Ll Ll []
D a fn S t a t I C rO ra m Ve rl ﬁ e r tended static checking, have enjoyed the automation offered by satisfiability-modulo-theories (SMT)
solvers. More recently, powerful SMT solvers and well-designed program verifiers are starting to

break that tradition, thus reducing the effort involved in doing full verification.

5 This paper gives a tour of the language and verifier Dafny, which has been used to verify the

Ca n e u S e O Ve r I y e functional correctness of a number of challenging pointer-based programs. The paper describes the
features incorporated in Dafny, illustrating their use by small examples and giving a taste of how they

are coded for an SMT solver. As a larger case study, the paper shows the full functional specification

functional correctness of ot St i .
programs. The specifications
include pre- and
postconditions, frame
specifications (read and write
sets), and termination metrics

Leino, Koenig, 2010

28

Departamento de Informatica FCT UNL (uso reservado ©)

risedfun @ MSR

e 006 rise4fun e
(«]>] [(_’ rise4fun.com ¢ [iReaden) @
&3 [T i hup://www..apapncepdf STM ERCmetrics https://dsp.../cpd-10.pdf POPL2013 RID TT-IST MIT-TLO TTxfer WoS Coq CLIP Heidegger Lectures DI-DEV SAIA Conselho Cientifico D5

Cie it R S e o e e e e e

i e cac Sl ARG P ; A

708285 programs analyzed

risedfun

a community of software engineering tools
all tutorial automata concurrency design infrastructure languages security synthesis testing verification

new!

z3rcf
Python interface for the Z3 Real Closed

f* visual c++
A verification tool for higher-order The Visual C++ compiler

dafny

A language and program verifier for
Fields package (and Theorem Prover)

functional correctness stateful programs

microsoft

agl bek boogie chalice

Automatic Graph Layout A domain specific language for writing and Intermediate Verification Language A language and program verifier for
analyzing common string functions. reasoning about concurrent programs.

code contracts counterdog dafny dkal

Language agnostic modular program Theorem-prover for Counterfactual Datalog A language and program verifier for Distributed Knowledge Authorization
verification and repair with abstract functional correctness Language

interpretation.

esm formula try f# f*

Empirical Software Engineering and Formal Modeling Using Logic Programming Programming language combining functional, A verification tool for higher-order
Measurement Group and Analysis object-oriented and scripting programming. stateful programs

heapdbg koka pex

Runtime heap abstraction A function-oriented language with effect Automatic test generation using Dynamic
inference Symbolic Execution for .NET

29

Departamento de Informatica FCT UNL (uso reservado ©)

Verifast

L}
Ve rlfa St public void broadcast_message(String message) throws IOException
//@ room(this) &*& message != ;
//@

room(this);

{

L} o Hic //@ room 11s) ;
VeriFast is a verifier for
List membersList = this.members;
Iterator iter = membersList.iterator();

single-threaded and et eemneret
multithreaded C and Java =~ .
programs annotated with

preconditions and e

@ mem_nth(i, membe

foreach<Member>(?members, @member) &*& iter(iter, membersList, members, ?i
&*& hasNext == (i < length(members)) &*& 0 <= i &*& i <= length(members);

'@ foreach_remove<Member>(member, members);

postconditions written in e e e e,

writer.write(message);

separation logic. i)
/7@ member (member) ;

/@ foreach_unremove<Member>(member, members);
hasNext = iter.hasNext();

Jacobs, Smans, Piessens,,
2010 }

NB: separation logic is a
spec language for talking
about programs that allocate
memory and use references

Departamento de Informatica FCT UNL (uso reservado ©)

30

Static Verification and Analysis
of Software

Departamento de Informatica FCT UNL (uso reserva do©)

Some Dafny programming first!

Microsoft

Research

dafny

Is this program correct?
1 class PSet

2 {

3 wvar s: set<int>;

4 var n: int;

5

6 function SetInv(): bool

7 reads this;

& {

9 (forall x::x in s ==> x >=0) & Is|l == n
10 }

11

12 method initBag()
13 ensures SetInv();
14 modifies this;

15 {

16 s :={};
17 n := 0;
18 }

19

20 method add(x:int)
21 requires SetInv() && x >= 0;

modifies th1s,
| home [video |l permalink

tutorial '»' shortcut: Alt+B

Departamento de Informatica FCT UNL (uso reservado ©)

Dafny warm up simple exercises

consider the following method declaration:

method sum(a:array<int>, n:int) returns (s:int)

{
.

 The method sum is supposed to return (in s) the sum the values of the first n
elements in array a. Write the code in Dafny.

« Compile your method in Dafny. Add the necessary contract assertions to compile
your code without errors.

« Add to your code the postcondition
ensures s >=0

Then, without changing your code, add to your code some method precondition
that will enables your code to compile without errors.

Departamento de Informatica FCT UNL (uso reservado ©)

Dafny warm up simple exercises

consider the following method declaration:

method memcpy(a:array<int>, b:array<int>, n:int)
modifies b;

{
.

 The method memcpy is supposed to copy the first n values of array a to array b.
Write the code in Dafny, with the necessary contract assertions to compile your
code without errors.

« Write an appropriate post-condition that defines the behavior of the method.

« Check your code with Dafny. We need to define the invariant of the while loop.

Departamento de Informatica FCT UNL (uso reservado ©)

‘Research

dafny

Is this program correct?

1 method memcpy(a:array<int>, b:array<int>, n:int)
2 modifies b;

3 requires al!=null & b!= null & & n >= 0 && a.Length >= n & b.Length >= n;
4 {

5 var i:int := 0;
6 while (i<n)
7

8

9

{

b[i] := a[il;

1:=1+1;
10 }
11 3}
12
13 method main()
14 {
15 var al : array<int> := new int [20],
16
17 var a2 : array<int> := new int [15 J;
18
19 memcpy(al,a2,15);
20 }

 home | permalink [

tutorial "»"' shortcut: Alt+B

Departamento de Informatica FCT UNL (uso reservado ©)

Basic Program Specs
(Hoare Logic)

Tony Hoare (MSR)

C.A.R.HOARE
United Kingdom — 1980

For his fundamental contributions to the definition and design
of programming languages.

Departamento de Informatica FCT UNL (uso reservado ©)

Hoare Logic

Hoare logic is to talk about properties of programs
* What properties are we generally interested in”?
— 1. safety properties (partial correctness)

— 2. prove that if the program terminates (delivers a an
outcome), then the final state satisfies some property

— 3. liveness properties (total correctness)

— 4. state that the program actually terminates (at least,
under certain well specified conditions)

Hoare logic is the “mother of all program logics”:
— It helpsuson 1 and 2, butnoton 3 and 4 ...

Reason for HL success: verification at the level of the
programming languages (not of programs, cf. Floyd)

* Applicable to any imperative programming language

Departamento de Informatica FCT UNL (uso reservado ©)

Simple Programming Language

E =
num % integer
X % variable
E+E.. % integer operators
E<E.. % relational operators
EandE ... % boolean operators
P:=
skip % No op
x:=E % Assignment
P:P % Sequential Composition
if E then P else P % Conditional
while E do P % lteration

Departamento de Informatica FCT UNL (uso reservado ©)

States and State Transformers

* An imperative code snippet essentially a state
transformer, it transforms a initial state into a target state

 What is a state?
state = assignment of values to memory variables

eg.,o0={x—>1,y—>2,z—>3}

* A (imperative) program transforms states into states
Let P £ X ;= y+X; z .= z-X
Then P executed in state o yields state o’ where
o={x—>3,y—>2,z—0}
We may say that P transforms o in 0’
P is only defined on states o where vars(P) € dom(o)

Departamento de Informatica FCT UNL (uso reservado ©)

States and Assertions

A (correctness) property is a set of (good) states
What is an assertion ?
* Alogical formula specifying a set of states (x != null)

Essentially an assertion is a boolean expression that
only depends on observing program (state) variables

Thus, an assertion is just a pure observation, it is either
true or false, its evaluation does not change the state

In general, one may use all the expressiveness of (first
order) logic in assertions (e.g. quantifiers, etc...)

The assertion language is part of the specification
language, not of the programming language

But in some cases, assertions may be expressed in the
programming language (Java / Dafny).

Departamento de Informatica FCT UNL (uso reservado ©)

States and Assertions

Consider a state over variables x,...,z, myfile, yourfile
Examples of assertions:
° X > y
¢« X=2%
* S =max(x,y)
e foralli::0<=i<n==>store[i] >=0
o CanWrite(myfile) && !CanWrite(yourfile)
Note that:
* An assertion need not specify a single state!
« E.qg., even(x) and odd(y)
« An assertion may specify no state at all!
« E.g.,x=x+1, false, etc, ...

Departamento de Informatica FCT UNL (uso reservado ©)

Hoare Triples

Hoare logic is a deductive system for statically
reasoning about programs

The statements of Hoare Logic are called Hoare triples

{A}P{B}
{A} A is a state formula
{B} B is a state formula
P P is a program

Q: What does mean {A} P {B }, if it is valid?

A: It means that program P, whenever started in a state
that satisfies property A, if it terminates, always ends in
a state that satisfies property B

Departamento de Informatica FCT UNL (uso reservado ©)

Operation Contracts in ADTs

* ADT specifications (we will detail this later) involve
method contracts, expressed as assertions

method P(... parameters ...)

requires pre-condition-assertion PRE
ensures post-condition-assertion POST
modifies non-local-state-changed MOD

{
{ PRE } method code { POST }

J

* The method call P(...), whenever started in a state that
satisfies PRE, if it terminates, always ends in a state
that satisfies POST, and only has effects on MOD

Departamento de Informatica FCT UNL (uso reservado ©)

Invariants in ADTs

« ADT specifications (we will detall this later) may involve
representation invariants and abstraction mappings
also expressed as assertions

class C {
invariant invariant-assertion REPINV
iInvariant abstraction-map-assertions ABSMAP

{

... methods...
)

 ADT C implementation relies on a representation type T
that satisfies the representation invariant REPINV and
maps into the abstract type as specified by ABSMAP

Departamento de Informatica FCT UNL (uso reservado ©)

Rules of Hoare Logic

Departamento de Informatica FCT UNL (uso reserva do©)

Proofs in Hoare Logic

* A proof in Hoare logic adds assertions between program
statements, making sure that the program statements
satisfy the corresponding Hoare triples.

* For example, consider the code snippet
if (x>y){z:=x}else{z:=y}

* A Hoare Logic derivation may look like
{ true }
if (x>y)
{(x>y) Hz=x} {(x>y) && (z==x)}
else
{(x<=y)}{z:= } { (x<=y) && (z==Y)}
{ (x>y) && (z ==

Departamento de Informatica FCT UNL (uso reservado ©)

Example: Rule for Sequence

{A}P{B} {B}Q{D}
{A}P;Q{D}

Departamento de Informatica FCT UNL (uso reservado ©)

Rules of Hoare Logic (general form)

* The inference rules of Hoare logic may be presented as
regular inference rules, deriving (valid) Hoare triples
given some already derived Hoare triples

{A1}P1{B1} ... {An} Pn{Bn}
{C}C(P1,...Pn){D}

« What is nice here:
* the program in the conclusion contains the
subprograms P+, .., Pn as components

* we derive properties of the composite from the
properties of its parts (compositionality)

* pretty much the same as with a type system

Departamento de Informatica FCT UNL (uso reservado ©)

One rule for each PL construct

AXIOM 1: ASSIGNMENT AXIOM
{plt/x]} x =t {p}.

RULE 2: ComMPOSITION RULE

{p} S: {r}, {r} S: {q)
(P} S;;S: {q)

RuULE 3: if-then-else RULE

{pNe}S {q}, {p/ e} S:{q}
{p} if e then S, else S; fi {¢}

RULE 4: while RULE

{pNe}S{p)
{p} while edo S od {p N\ —e}

* Areally cool idea:

* every programmer can use the Hoare rules
informally to mentally check her code while coding

 also, tools exist to automate most of the process
* we now go through each rule, one by one

49

Departamento de Informatica FCT UNL (uso reservado ©)

Rule for Skip

{A}skip{A]}

Departamento de Informatica FCT UNL (uso reservado ©)

Rule for Sequence

{AjP{B} {B};Q{D}

{A}P;Q{D}

Departamento de Informatica FCT UNL (uso reservado ©)

Rule for Conditional

(A& E}P{B) (A& IE}Q{B}

{A}ifEthenPelse Q{B}

Departamento de Informatica FCT UNL (uso reservado ©)

Rule for Deduction

A=A {AIP{B} B=P
{A'}P{B}

« A= B means:
* Alogically implies B
« We prove A= B using the “usual” logical principles

Departamento de Informatica FCT UNL (uso reservado ©)

Rule for Assignment

{AIXE]} x:=E{A}

* A[X/E] means:

 the result of replacing all free occurrences of variable
X In assertion A by the expression E

* For this rule to be sound, we require E to be an
expression without side effects (a pure expression)

Departamento de Informatica FCT UNL (uso reservado ©)

Rule for Assignment

LALE] } x:= E{A[X]

We can think of A as a condition where “x” appears in
some places. A is a condition constrained by “x".

The assignment x := E changes the value of x to E, but
leaves everything else unchanged

So everything that could be said of E in the
precondition, can be said of x in the postcondition

Example: {x+1>0}x:=x+1{x>0}

Departamento de Informatica FCT UNL (uso reservado ©)

Rule for Assignment

{AX/E] } x:=E {A}

 Example:
e {(x*1>0)}x:=(x+1){x>0} the same as
e {(x>0)x/x+1]}x:=(x+1){x>07} by (Assignment)
¢ {(x+1)>0}x:=(x+1){x>0} iff (by log equiv)
e {Xx>-1}x=x+1{x>0} iIff (by log equiv)

Departamento de Informatica FCT UNL (uso reserva do©)

Rule for Assignment

{AIXE]} x:=E{A}
* Trick: if x does not occur in E, A
* We can always write { A& E==E }x=E{x==E}
* So, the following triple is always valid
{A}x =E{A&&Xx==E}

If x does not occur in E, A

Departamento de Informatica FCT UNL (uso reserva do©)

Rule for Assignment

{AIX/E] } x =E{A}
» Exercises. Derive:
e {y>0}x=y{x>0&&Yy==x}
e {x==y}x:=2x{y==xdiv 2}
« {P(y)&& Q(z)} (here P and Q are any properties)

X:=Yy;y: =2z Z=X
{P(z) && Q(y) }

Departamento de Informatica FCT UNL (uso reservado ©)

Simple Example

* Consider the program
P2if (x>y)thenz =xelsez:=y
* We should be able to (mechanically) check that

{true } P { z == max(x,y) }

Departamento de Informatica FCT UNL (uso reservado ©)

Simple Example

* Consider the program

P2if (x>y)thenz =xelsez:=y
 Hint, check

{true } P { z == max(x,y) }

{(x>y) } z=x{(x>y) && (2 ==X) }

{(X<=Y)}Z:=y{(X<=y)&& (2==Y)}

Departamento de Informatica FCT UNL (uso reserva do©)

Rule for Iteration

A& E}P {A}

[ATwhile E do P { A && IE}

Departamento de Informatica FCT UNL (uso reservado ©)

Rule for lteration

INV = Invariant Condition

7\

{INV && E} P {INV)
[NV} while E do P { INV && 'E}

* We cannot predict in general how many iterations will
the while loop do (undecidability of the halting problem).

* We approximate execution by an invariant condition

* Aloop invariant is a condition that always hold at loop
entry and at loop exit.

Departamento de Informatica FCT UNL (uso reservado ©)

Rule for lteration

INV = Invariant Condition

7\

{INV && E} P {INV)
[NV} while E do P { INV && 'E}

* |f the invariant holds initially and is preserved by the
oop body, it will hold when the loop terminates!

* |t does not matter how many iterations will run

« Unlike for other rules of Hoare logic, finding the invariant
requires human intelligence (you are a programmer :-)

Departamento de Informatica FCT UNL (uso reservado ©)

Loop Invariants

* Consider the program
P2 s:=0;i:=0; while (ikn)do {i:=i+1; s ;= s+i }
 What does P do?

[22}YP {22}

Departamento de Informatica FCT UNL (uso reservado ©)

Loop Invariants

* Consider the program
P2 s:=0;i:=0; while (ikn)do {i:=i+1; s ;= s+i }
* Here is a specification of program P

{n>=0}P{s==2(-0n))}

Departamento de Informatica FCT UNL (uso reservado ©)

Loop Invariants

* Consider the program
P2 s:=0;i:=0; while (ikn)do {i:=i+1; s ;= s+i }
* We should be able to (mechanically) check that

{n>=0}P{s==2(=0n))}

Departamento de Informatica FCT UNL (uso reservado ©)

Loop Invariants

{n>=0}
s:=0 ;

1 :=0;
while (i<n) do {

=1+ 1;
S:=Ss+1;

}
{ s ==2(=0.n))) }

Departamento de Informatica FCT UNL (uso reserva do©)

Loop Invariants

{n>=0}
s:=0 ;
{n>=0&&s==0}
1 :=0;

while (i<n) do {

=1+ 1;
S:=Ss+1;

}
{ s ==2(=0.n))) }

Departamento de Informatica FCT UNL (uso reserva do©)

Loop Invariants

{n>=0}
s:=0 ;
{n>=08&&s==0)
1:=0;
{ s==2%(j=0.i,j)) && 0 <=i<=n}
while (i<n) do { \
{ s==2(=0.i,j) && 0 <=i<=n}
=1+ 1; Invariant holds

S.=S+|;
{ s==2(=0.i,)) && 0 <=1 <=n }/
}

{ s==%(~0.ij) && 0 <=i<=n &&i>=n} =>
{ 8 ==2(=0.n,) }

Departamento de Informatica FCT UNL (uso reserva do©)

Loop Invariants

{n>=0}

s:=0 ;
{Nn>=0&&s==0}
1 :=0;

{ s==72(=0.,j) && 0 <=i<=n} Invariant holds
while (i<n) do { /

{ s==2(j=0.i,])) && 0 <=i<=n}
{ s==3(=0.,j)) && 0 <=i<n} i:=i+1;
{ s==3(=0.i1,])) && 0 <=i<=n}s:=s +i;
} 18T o) BRO=EISEN e Invariant holds
{ s==2(i=0.i,j) && 0 <= i <=n && i>=n}
{ s ==2(=0.n)) }

Departamento de Informatica FCT UNL (uso reservado ©)

Loop Invariants

{n>=0}

s:=0 ;

{Nn>=0&&s==0}

1 :=0; Invariant
{ s==2(=0.i,)) && 0 <=i<=n} broken

while (i<n) do {
{ s==2(i=0.i,]) && 0 <=i<=n} /
{ §==3(0.,)) && 0 <=i<n} i:=i+1;
{ s==2(=0.i1,])) && 0 <=i<=n}s:=s+i
{ 8==2(=0.i,J) && 0 <=1 <=n }«_ Invariant
} restored
{ s==2%(=0.i,j)) && 0 <= i <= n && i>=n}
{ s==2(=0.n]) }

Departamento de Informatica FCT UNL (uso reservado ©)

Loop Invariants

{n>=0}
s:=0 ;

1 :=0;
while (i<n) do {

=1+ 1;
S:=Ss+1;

}
{ s ==2(=0.n))) }

Departamento de Informatica FCT UNL (uso reserva do©)

Hints for finding loop invariants

First: carefully think about the post condition of the loop

« Typically the post-condition talks about a property
“accumulated” across a “range” (this is why you are
using a loop, right ?)

* e.g., maximum of all elements of an array

* e.g., visited elements in a data structure

Second: design a “generalized” version of the post-

condition, in which the already visited part of the data is
made explicit as a function of the “loop control variable”

The loop body will temporarily break the invariant, but must
restore it at the end of the body

Important. make sure that the invariant together (&&) with
the termination condition really implies your post-condition

Departamento de Informatica FCT UNL (uso reservado ©)

Exercise

* MaX

// return the maximum of the values in array a[-]
// in positions i such that O <= i < numelems
// numelems > O

// numelems cannot exceed the allocated array size
static int max(int a[], int numelems)

Departamento de Informatica FCT UNL (uso reservado ©)

Exercise
e find

// if there is an index j (O <= j < numelems)
// such that a[j] == v then return |
// otherwise return -1

// numelems cannot exceed the allocated array size
static int find(int v, int a[], int numelems)

Departamento de Informatica FCT UNL (uso reservado ©)

Exercise

* reverse

// the method reverse should return a “copy” of array a
// but with the first n elements by reverse order

method reverse(a:array<int>, int n) returns (b:array<int>)

{

// write the code and fully check it with dafny

// define the weakest preconditions you can think of
// define the strongest postconditions you can think of

Departamento de Informatica FCT UNL (uso reservado ©)

Exercise
e filled

// the method filled returns true if and only if
// the first n elements of array are all set to value v

method filled(a:array<int>, v:int, n:int) returns (s:bool)

{
}

// write the code and fully check it with dafny

// define the weakest preconditions you can think of
// define the strongest postconditions you can think of

Departamento de Informatica FCT UNL (uso reservado ©)

Exercise
o strf

// the method checks if b appears within a, and returns the
// position if that is the case, or -1 if not
// nis the number of chars in a, m is the number of chars in b

method strf(a:array<char>, n:int, b:array<char>, m:int) returns (pos:int)

!
5

// write the code and fully check it with dafny
// define the weakest preconditions you can think of

// define the strongest postconditions you can think of

Departamento de Informatica FCT UNL (uso reservado ©)

Exercise
e fibo

function fib(n : int) : int // this is the recursive spec of fibonacci
requires n>=0;

{
if (n==0) then 1 else
if (n==1) then 1 else fib(n-1)+fib(n-2)

}

// the method fibo below should implement fib efficiently
// “bottom up” using a while loop

method fibo(n : int) returns (f : int)
requires n>=0;
ensures f == fib(n);

Departamento de Informatica FCT UNL (uso reservado ©)

Exercise

// consider the following functions

function initarray(c:array<int>,nelems:int):bool

{

cl=null && O<=nelems<=c.Length

}

function sorted(c:array<int>, nelems:int):bool

requires initarray(c,nelems);
reads c;

{

forall i:: (O<=i<nelems) ==> forall j::(i<j<nelems) ==> cJ[i]<=c][]]

}

Departamento de Informatica FCT UNL (uso reservado ©)

Exercise
insert

// the method inserts integer v in the sorted array a
// if a already contains v, the method does nothing

method insert(a:array<int>, nelems:int, viint) returns (newsize:int)
modifies a;

requires initarray(a, nelems+1) && sorted(a, nelems);

ensures nelems <= newsize <= 1+nelems && sorted(a,newsize);
ensures exists p:: O<=p<newsize && a[p] == v;

{
;

// write the code and fully check it with dafny
// define the weakest preconditions you can think of

// define the strongest postconditions you can think of

Departamento de Informatica FCT UNL (uso Teservado ©)

Exercise

sort

// the method sort returns in b a sorted array
// first consider the following post-conditions
// and write the code for sort (use the selection sort algorithm)

method sort(a:array<int>, nelems:int, b:array<int>)
modifies b;

requires initarray(a,nelems) && initarray(b,nelems);
ensures sorted(b,nelems);

{
;

// to express the loop invariants, you may find it useful
// the function majors defined in the previous slide

Departamento de Informatica FCT UNL (uso reservado ©)

Exercise
e sort

// the method sort returns in b a sorted array
// first consider the following post-conditions
// and write the code for sort (use the selection sort algorithm)

function majors(c:array<int>,icint,nelems:int):bool
requires initarray(c,nelems);
reads c;

{
//

forall k::0<=k<i ==> forall l::ix=l<nelems ==> (c[k] <= c[l])

}

Departamento de Informatica FCT UNL (uso reservado ©)

Operation Contracts in ADTs

* ADT specifications (we will detail this later) involve
method contracts, expressed as assertions

method P(... parameters ...)

requires pre-condition-assertion PRE
ensures post-condition-assertion POST
modifies non-local-state-changed MOD

{
{ PRE } method code { POST }

J

* The method call P(...), whenever started in a state that
satisfies PRE, if it terminates, always ends in a state
that satisfies POST, and only has effects on MOD

Departamento de Informatica FCT UNL (uso reservado ©)

Hints for finding loop invariants

First: carefully think about the post condition of the loop

« Typically the post-condition talks about a property
“accumulated” across a “range” (this is why you are
using a loop, right ?)

* e.g., maximum of all elements of an array

* e.g., visited elements in a data structure

Second: design a “generalized” version of the post-

condition, in which the already visited part of the data is
made explicit as a function of the “loop control variable”

The loop body will temporarily break the invariant, but must
restore it at the end of the body

Important. make sure that the invariant together (&&) with
the termination condition really implies your post-condition

Departamento de Informatica FCT UNL (uso reservado ©)

Invariants in ADTs

« ADT specifications (we will detall this later) may involve
representation invariants and abstraction mappings
also expressed as assertions

class C {
invariant invariant-assertion REPINV
iInvariant abstraction-map-assertions ABSMAP

{

... methods...
)

 ADT C implementation relies on a representation type T
that satisfies the representation invariant REPINV and
maps into the abstract type as specified by ABSMAP

Departamento de Informatica FCT UNL (uso reservado ©)

Abstract Data Types

Classes and Objects

Departamento de Informatica FCT UNL (uso reserva do©)

Abstract Data Types (Liskov, 78)

* ADTs: building blocks for software construction
— Software System : set of ADTS
— Promotes reuse, modifiability, and correctness

Departamento de Informatica FCT UNL (uso reservado ©)

88

ADTs (Liskov & Zilles, 78

PROGRAMMING WITH ABSTRACT DATA TYPES

Barbara Liskov
Massachusetts Institute of Technology
Project MAC
Cambridge, Massachusetts

Stephen Zilles
Cambridge Systems Group
IBM Systems Development Division
Cambridge, Massachusetts

Abstract

The motivation behind the work in very-high-level languages is to ease the programming task by pro-
viding the programmer with a language containing primitives or abstractions suitable to his problem area.
The programmer is then able to spend his effort in the right place; he concentrates on solving his problem,
and the resulting program will be more reliable as a result. Clearly, this is a worthwhile goal.

Unfortunately, it is very difficult for a designer to select in advance all the abstractions which the
users of his language might need. If a language is to be used at all, it is likely to be used to solve
problems which its designer did not envision, and for which the abstractions embedded in the language are
not sufficient.

This paper presents an approach which allows the set of built-in abstractions to be augmented when the
need for a new data abstraction is discovered. This approach to the handling of abstraction is an outgrowth
of work on designing a language for structured programming. Relevant aspects of this language are described,
and examples of the use and definitions of abstractions are given.

I R I W 4

Barbara Liskov (MIT)

BARBARA LISKOV
United States — 2008

For contributions to practical and theoretical foundations of
programming language and system design, especially related to data
abstraction, fault tolerance, and distributed computing.

Departamento de Informatica FCT UNL (uso reservado ©)

Barbara Liskov (MIT)

Barbara Liskov (MIT)

Turing Award winner

ADTs

Distributed
OO programming

Behavioral
specifications

-

DI FCT UNL
Distinguished Lecture #1
3 October 2012 - 14:00

Departamento de Informatica FCT UNL (uso reservado ©)

Abstract Data Type

« External View
— A public opaque data type (that clients will use)
Note: opague means = behaves as a primitive type

Departamento de Informatica FCT UNL (uso reservado ©)

93

Abstract Data Type

Abstract types are intended to be very much
like the built-in types provided by a programming
language. The user of a built-in type, such as
integer or integer array, is only concerned with
creating objects of that type and then performing
operations on them. He is not (usually) concerned
with how the data objects are represented, and he
views the operations on the objects as indivisible
and atomic when in fact several machine instructions
may be required to perform them. In addition, he is
not (in general) permitted to decompose the objects.
Consider, for example, the built-in type integer.

A programmer wants to declare objects of type
integer and to perform the usual arithmetic opera-
tions on them. He is usually not interested in an
integer object as a bit string, and cannot make use
of the format of the bits within a computer word.
Also, he would like the language to protect him
from foolishmisuses of types (e.g., adding an in-
teger to a character) either by treating such a
thing as an error (strong typing), or by some sort
of automatic type conversion,

Departamento de Informatica FCT UNL (uso reservado ©)

94

Abstract Data Type (External View)

« External View
— A public opaque data type (that clients will use)
Note: opagque means = behaves as a primitive type
— A set of operations on this data type

— Operations must neither reveal, nor allows a client to
mess up the internal representation

— pre and post conditions on these operations must be
expressed in terms of the abstract type (the only type
known to the client)

— This is why ADTs promote reuse, modifiability, and
correctness: the developer can change the
Implementation anytime, without breaking contracts

Departamento de Informatica FCT UNL (uso reservado ©) 95

Abstract Data Type (Internal View)

* Internal View
— A representation data type (hidden from clients)
— A set of operations on the representation data type

e important remarks

— A programmer must define the operations in such a
way that the representation state (invisible to clients)
Is kept consistent with the intended abstract state

— Pre-conditions on the public operations, expressed on
the abstract state, must map into pre-conditions
expressed in terms of the representation state

— The same for post-conditions

— At all times the concrete state must represent a well
defined abstract state (otherwise something is wrong!)

Departamento de Informatica FCT UNL (uso reservado ©) 96

Example (PSet ADT)

class PSet {

// an abstract Pset aset

method new(sz:int) ({}

// initializes aset (e.g., Java constructor)

method add(v:int) ({}
// adds v to aset if space available)

function size() : int

// returns number of elems in aset

function maxsize() : int

// returns max number of elems allowed in aset

Departamento de Informatica FCT UNL (uso reservado ©)

97

Technical ingredients in ADT design

* The absfract state
— defines how client code sees the object

* The representation type

— chosen by the programmer to implement the ADT
internals. The programmer is free to chose the
Implementation strategy (data-structures, algorithms).
This is done at construction time.

* The concrete state

— In general, not all representation states are legal
concrete states

— a concrete state is a representation state that really
represents some well-defined abstract state

Departamento de Informatica FCT UNL (uso reservado ©) 98

Technical ingredients in ADT design

* The representation invariant

— the rep invariant is a condition that restricts the
representation type to the set of concrete states

— if the ADT representation falls outside the rep
iInvariant, something is wrong (inconsistent rep state).

* The abstraction function
— maps every concrete states into some abstract states

 The operation pre- post- conditions
— expressed for the representation type
— also expressed for the abstract type (for client code)

Departamento de Informatica FCT UNL (uso reservado ©) 99

Example (PSet ADT)

class PSet {

// an abstract Pset aset

method new(sz:int) ({}

// initializes aset (e.g., Java constructor)

method add(v:int) ({}
// adds v to aset if space available)

function size() : int

// returns number of elems in aset

function maxsize() : int

// returns max number of elems allowed in aset

Departamento de Informatica FCT UNL (uso reservado ©)

100

Positive Set ADT

 Abstract State

— a set of positive integers aset
— aset: set<int> subject to
—forall x :: x inaset==>x>=0

Departamento de Informatica FCT UNL (uso reservado ©)

101

Positive Set ADT

* Representation type
— an array of integers store with sufficient large size
— an integer nelems counting the elements in store

102

Departamento de Informatica FCT UNL (uso reservado ©)

Positive Set ADT

* Representation type
— an array of integers store with sufficient large size
— an integer nelems counting the elements in store
* Representation invariant
— (store != null) &&
— (0 <= nelems <= store.length) &&
— (forall i :: 0 <=i < nelems ==> store]i] >= 0)

Departamento de Informatica FCT UNL (uso reservado ©)

103

Positive Set ADT

* Representation type
— an array of integers store with sufficient large size
— an integer nelems counting the elements in store

* Representation invariant
— (store != null) &&
— (0 <= nelems <= store.length) &&
— (forall i :: 0 <=i < nelems ==> store]i] >= 0)
* Abstraction mapping
— <nelems=n, store=[vo,V1,...Vstore.Length-1]> — {Vo,...,Vn-1}
— more later

d0©) 104

Departamento de Informatica FCT UNL (uso reservado

Example

class PSet {

var store: array<int>;

var nelems: int;

function RepInv () :bool // specify the representation invariant

reads this, store;

{
store !'= null && (0<= nelems <=store.Length) && (forall i
}

Departamento de Informatica FCT UNL (uso reservado ©)

0<=i<nelems

==> store[i]>=0)

105

Example

class PSet {

var store: array<int>;

var nelems: int;

method newPSet (sz:int)
modifies this;

requires sz>=0;

ensures RepInv(); // The constructor must establish the invariant
{

store := new int[sz];

nelems := 0;
}

Departamento de Informatica FCT UNL (uso reservado ©) 106

Example

class PSet {

var store: array<int>;

var nelems: int;

method add(v:int)
modifies this, store;
requires RepInv() && v >= 0; // all operations must require the representation invariant

ensures RepInv(); // all operations must ensure the representation invariant

{
if (nelems<store.Length) {

store[nelems] := v;
nelems := nelems+1l;

}

Departamento de Informatica FCT UNL (uso reservado ©) 107

Example

class PSet {

var store: array<int>;

var nelems: int;

function size() : int
requires RepInv() ;
reads this;

{

nelems

Departamento de Informatica FCT UNL (uso reservado ©) 108

Example

class PSet {

var store: array<int>;

var nelems: int;

function maxsize() : int
requires RepInv() ;
reads this, store;

{
store.Length

Departamento de Informatica FCT UNL (uso reservado ©) 109

Bank Account ADT

 Abstract State

— the account balance bal
— bal: int subject to

—bal >=0

Departamento de Informatica FCT UNL (uso reservado ©)

110

Bank Account ADT

* Representation type
— an integer bal

— In this simple case the representation type is the
same as the abstract type

— the "meaning’ is different
— we do not want e.g., to multiply bank accounts :-)

Departamento de Informatica FCT UNL (uso reservado ©)

111

Bank Account ADT

* Representation type
— an integer bal

— In this simple case the representation type is the
same as the abstract type

— the "meaning” of the rep and abs types are different
— we do not want e.g., to multiply bank accounts :-)
* Representation invariant
— (bal >=0)
— this time, pretty simple

Departamento de Informatica FCT UNL (uso reservado ©) 112

Example (Account)

class Account {

var bal: int;

method Init ()
modifies this;

{ bal := 0; }

function getBal(): int
reads this;

{ bal }

method deposit(v:int)
modifies this;

{ bal := bal + v; }

method withdraw(v:int)
modifies this;

{ if (bal>=v) { bal := bal - v; } }

}

Departamento de Informatica FCT UNL (uso reservado ©)

113

Example (Account)

class Account {

var bal: int;

function RepInv() :bool // specify the representation invariant

reads this ;

{
bal >= 0

Departamento de Informatica FCT UNL (uso reservado ©) 114

Example (Account)

class Account {

var bal: int;

function RepInv() :bool // specify the representation invariant

reads this ;

{
bal >= 0

method newAccount ()
modifies this;
ensures RepInv();

{
bal := 0;

Departamento de Informatica FCT UNL (uso reservado ©) 115

Example (Account

class Account {

var bal: int;

function getBal(): int
reads this;

requires RepInv() ; // all operations must require the representation invariant

{
bal

method deposit(v:int)

modifies this;

requires RepInv() && (v>=0);

ensures RepInv(); // all operations must ensure the representation invariant

{
bal := bal + v;

Departamento de Informatica FCT UNL (uso reservado ©) 116

Example (Account

class Account {

var bal: int;

method withdraw(v:int)
modifies this;
requires RepInv() && (v>=0); // all operations must require the representation invariant

ensures RepInv() ; // all operations must ensure the representation invariant
{
if (bal>=v) { bal := bal - v; }

Departamento de Informatica FCT UNL (uso reservado ©) 117

Example (Account)

class Account {

var bal: int;

method withdraw(v:int)
requires RepInv() && v <= getBal();
ensures RepInv()
modifies this;
{
bal := bal - v;

Departamento de Informatica FCT UNL (uso reservado ©)

118

Soundness and Abstraction Map

* \WWe have learned how to express the
representation invariant and make sure that no
unsound states are ever reached

* We have informally argued that the
representation state in every case represents
the right abstract state, but how to make sure?

* We now see how the correspondence between
the representation state and the abstract state
can be explicitly expressed in Dafny using ghost
variables, specification operations, and
abstraction map soundness check.

Departamento de Informatica FCT UNL (uso reservado ©) 119

Soundness and Abstraction Map

* We go back to the (more interesting) PSet ADT
* Recall, we had for representation invariant:

function RepInv() :bool
reads this, store;
{
store != null &&
(0 <= nelems <= store.Length) &&
(forall i :: 0 <= i < nelems ==> store[i] >= 0)
}

Departamento de Informatica FCT UNL (uso reservado ©) 120

Soundness and Abstraction Map

* We now represent the abstract state with a so-
called ghost variable.

* A ghost variable is only used in the specification
and does not actually use memory at runtime

» Usages of ghost variables only occur in spec
operations (not executed at runtime)

class PSet {

var store: array<int>; // the representation of the concrete state

var nelems: int;

ghost var aset: set<int>; // the abstract state

}
121

Departamento de Informatica FCT UNL (uso reservado ©)

Soundness and Abstraction Map

* We define a Sound() boolean function, a
predicate on the abstract and concrete state that
specifies the precise relation ship between both:

function Sound() :bool
reads this, store;
requires RepInv();
{
forall x:: x in aset <==> (exists i :: 0<=i<nelems && store[i] == x)

}

* WWe now express in operations how the abstract
state changes, and make sure that it is properly
related with the (sound) representation state

* As a benefit we may now also express pre and
post conditions in terms of the abstract state

Departamento de Informatica FCT UNL (uso reservado ©) 122

Example (PSet)

class PSet {
var store: array<int>; // the representation of the concrete state

var nelems: int;
ghost var aset: set<int>; // the abstract state
function RepInv () :bool // specify the representation invariant

reads this, store;

{

store !'= null && (0<= nelems <=store.Length) && (forall i :: O<=i<nelems

store[i]>=0)
}

function Sound() :bool
reads this, store;
requires RepInv() ;

{

(forall x:: x in aset <==> exists i :: 0<=i<nelems && store[i] ==

Departamento de Informatica FCT UNL (uso reservado ©)

X)

123

Example (PSet)

class PSet {
var store: array<int>; // the representation of the concrete state

var nelems: int;

ghost var aset: set<int>; // the abstract state

method Init(s:int)
modifies this;

requires s>=0;

ensures RepInv() && Sound() && aset == {};
{
store := new int([s];
nelems := 0;
aset := {}; // Specification operation, this works like a comment (checked by Dafny)

}

Departamento de Informatica FCT UNL (uso reservado ©) 124

Example (PSet)

class PSet {
var store: array<int>; // the representation of the concrete state

var nelems: int;

ghost var aset: set<int>; // the abstract state

method add(v:int)
modifies this, store;
requires RepInv() && Sound() && v >= 0 && size()<maxsize();

ensures RepInv() && Sound() && v in aset;

{

store[nelems] := v; // Implementation code (on the representation)
nelems := nelems+l;
aset := aset + {v}; // Specification operation (on the abstract state)

}

Departamento de Informatica FCT UNL (uso reservado ©)

125

Key Points

» Software Design time
— Abstract Data Type
— What are the Abstract States / Concrete States?
— What is the Representation Invariant ?
— What is the Abstraction Mapping?

« Software Construction time
— Make sure constructor establishes the Rep Inv
— Make sure all operations preserve the Rep Inv
« they may assume the Rep Inv
 they may require extra pre-conditions (e.g. on op args)
* they may enforce extra post-conditions
— Use assertions to make sure your ADT is sound

Departamento de Informatica FCT UNL (uso reservado ©) 126

Further Reading

Program Development in Java, Barbara Liskov and John Guttag, Addison Wesley,
2003, Chapter 5 “Data Abstraction” (other book chapters are also interesting).

Programming with abstract data types, Barbara Liskov and Stephen Zilles, ACM
SIGPLAN symposium on Very high level languages, 1974 (read the introductory parts,
the rest is already outdated, but the intro is a brilliant motivation to the idea of ADTs). You
can access this here: http://dl.acm.org/citation.cfm?id=807045.

127

Departamento de Informatica FCT UNL (uso reservado ©)

Dafny Exercises (1st+2nd Handout)

Instructions:
You have from April 9 (afternoon) to April 22 (23:59) to solve the handout.
You may work in groups of two or one (two is better)

You should send the teaching team your solutions by email to Icaires@fct.unl.pt
and carla.ferreira@fct.unl.pt (always to both) by the deadline.

You may email us with questions, we will answer them all, and try to help you
about the problem in every matter, except of course giving you the solution.

You may discuss the problem with your colleagues but you cannot of course use
code from others or give code to others. Solutions will be randomly selected for
discussion, and unability to demonstrate authorship of your work will trigger strict
application of the DI FCT UNL ethics code.

Departamento de Informatica FCT UNL (uso reservado ©)

Dafny Exercises (1st+2nd Handout)

« This exercise focuses on the development of a small but rigorously 100% bug free
dictionary abstract data type (ADT). To make things simple, consider that the type
of keys is the set of positive integers and the type of values is the type of integers.

« The ADT must provide the following operations

method assoc(k:int,v:int)
// associates val v to key k in the dictionary
method find(k:int) returns (r:RES)
// returns NONE if key k is not defined in the dict,
// or SOME(v) if the dictionary
method delete(k:int)
// removes any existing association of key k in the dictionary

Every dicionary entry should be represented by a record of type
datatype ENTRY = PACK(key: int, val: int)

The result of function find should be represented with type
datatype RES = NONE | SOME(int)

Departamento de Informatica FCT UNL (uso reservado ©)

Dafny Exercises (1st+2nd Handout)

You should take into consideration the following:

* The representation type of your ADT should be a mutable data structure (advice:
start by using something simple - an array, an ordered array, or a closed
hashtable. The work is already tricky using a simple unordered array, so do this
first, to get confidence that you will make it.

* Express the representation invariant using an auxiliary boolean function Replnv().
Levels of delivery:

* level 1: full development in Dafny, ensuring that the representation invariant is
preserved by all operations. (worth 80%).

* Jlevel 2: full development in Dafny, ensuring that the representation invariant is
preserved by all operations, and that all operations satisfy the post-conditions
expressed in terms of the representation type. For this you are expected to specify
the strongest post-conditions you can. (worth 90%).

* level 3: full development in Dafny, ensuring that the representation invariant is
preserved by all operations, and that all operations satisfy the post-conditions
specified, when expressed in terms of the abstract type; for this you will need to
model the abstract state using a ghost variable and define a soundness
abstraction mapping predicate Sound(). (worth 100%).

Departamento de Informatica FCT UNL (uso reservado ©)

Interference,
Separation Logic and
Verifast for Java

Departamento de Informatica FCT UNL (uso reserva do©)

Account ADT (Java)

public class Account {

int balance;

// RepInv() = balance >= 0;
public Account ()

{

balance = 0;

void deposit(int v)

{

balance += v;

}

void withdraw(int v)
// requires v >=0;

{

balance -= v;

}

}

Departamento de Informatica FCT UNL (uso reservado ©)

132

Account ADT (Java)

public class Account {

int balance;

int getBalance()
{

return balance;

static void main (String args[])

{
Account bl = new Account() ;
Account b2 = new Account();
bl.deposit (10) ;
// assert: bl.getBalance() == 10

Departamento de Informatica FCT UNL (uso reservado ©) 133

Account ADT (Java)

» Consider the following code fragment and Hoare triple

{ v >0}
{
int vl;
vl = al.getBalance() ;
if (vl >= v) {
al.withdraw(v) ;
a2.deposit(v) ;
}
}
{ (old(al.getBalance) >= v) ==> (al.getBalance() < old(al.getBalance())) }

* |s this Hoare triple valid?

Departamento de Informatica FCT UNL (uso reservado ©)

134

Account ADT (Java)

Consider the following code fragment and Hoare triple

{ v >0}
{
int vl;
vl = al.getBalance() ;
if (vl >= v) {
al.withdraw(v) ;
a2.deposit(v) ;
}
}
{ (old(al.getBalance) >= v) ==> (al.getBalance() < old(al.getBalance())) }

Only if al and a2 refer to different account objects!

Departamento de Informatica FCT UNL (uso reservado ©) 135

Account ADT (Java)

* Tracking aliasing is very challenging, e.qg.,

static void test (Account al, Account a2, int v)
{
int vl;
vl = al.getBalance() ;
if (vl >= v) {
al.withdraw(v) ;

a2.deposit (v) ;

static void main (String args[])

{
Account bl = new Account();
Account b2 = new Account();
bl.deposit (10) ;
test(bl,b2,2) ;
test(bl,bl,2);

}

Departamento de Informatica FCT UNL (uso reservado ©)

136

Hoare Logic is unsound for aliasing

» Recall the basic Hoare Logic Rule:
x=E{A}

* The soundness of this reasoning principle is rooted on
the fact that no other variable aliases x. We have:

X:=-1{ }
« But, if y and x are aliases, we would have, e.g.

X:=-1{ }

@) 137

Departamento de Informatica FCT UNL (uso reservado

Aliasing and Interference

* Two programming language expressions are aliases Iif
they refer to the same memory location

 Aliasing occurs in any programming language with
pointers (e.qg., C, C++) or references (Java, C#)

* Two program fragments interfere if the execution of
one may change the effect or value of the other

 Interference in particularly important in the context of
concurrent programs (we will see more on this later)

» But interference already occurs in sequential
programs, due to aliasing.

Departamento de Informatica FCT UNL (uso reservado ©) 138

Hoare Logic is unsound for aliasing

* In our Account ADT example:
{ x.balance()==K && y.balance()>0 }
X.withdraw(K)
{ x.balance()==0 && y.balance()>0 }
« Again, if y and x are aliases, we would have, e.g.
{ x.balance()==K && y.balance()>0 }
x.withdraw(K)
{ x.balance()==0 && y.balance()==0 }

* To reason about programs with interference (aliasing or
concurrency) a different approach is needed.

Departamento de Informatica FCT UNL (uso reservado ©)

139

Separation Logic

John C. Reynolds Peter O’'Hearn

140

Departamento de Informatica FCT UNL (uso reservado ©)

Separation Logic

« Separation logic is based in two key principles
(1) Small footprint

The precondition of a code fragment describes the part
of the memory (heap) that the fragment needs to use.

(2) Implicit framing

No need to explicitly specify the properties of state that
IS changed / not changed by the program (modifies)

|t adds to Hoare Logic two key novel primitives
- the separating conjunction operator A*B

- the “precise” memory access assertion L[>V

Departamento de Informatica FCT UNL (uso reservado ©) 141

Separation Logic
Separation logic assertions used in our CVS course are
described by the following grammar:
A:=L|[->V % memory access
A*A % separating conjunction
emp % empty heap
B % boolean condition (pure, not spatial)
B?A:A % conditional
B:=B&&B|B||B|V==V]| VI=V]..

V= ... % expression (pure)

L ::=x.Id % class object field

Departamento de Informatica FCT UNL (uso reserva do©) 142

Separation Logic

the memory access assertion L|->V

Assertion L |-> V holds of the “piece” of the state
that consists precisely of memory loc L holding V

the empty assertion emp
Assertion emp holds of the empty heap
the separating conjunction A*B

Assertion A * B holds of any “piece” of the state that
can be disjointly decomposed in a “piece” that
satisfies A and another piece that satisfies B.

NOTE: if B is “pure”then A*B <=>A && B

do©) 143

Departamento de Informatica FCT UNL (uso reservado

Digression: The Stack and the Heap

Stack

Stores local variables and method parameters

The so-called call-stack, also stores return addresses
Recover discipline: FIFO, release on block exit

Heap

Stores dynamically allocated objects (e.g. new / malloc)
Recover discipline:explicit release or garbage collection
Heap Model

A sequence of mem locations (L) and their contents (V)

Departamento de Informatica FCT UNL (uso reservado ©) 144

Separation Logic

pure assertion (we remeber this from Dafny)

an assertion that does not depend on the state (e.g., a
boolean expression not mentioning memory accesses).

precise assertion

an assertion that uniquely specifies a concrete part of
the memory (unique footprint)

examples:
* NO pure assertion is precise
 L|-> Vs precise, for a unique value V

» exists 0. (o.f |-> 3) is not precise.

Departamento de Informatica FCT UNL (uso reservado ©)

145

Examples (SL / HL)

{x|->2}x:=4{x|->4}holds in SL
{}x:=4{x|->4}does not hold in SL
{}x:=4{x==41}holds in HL
{x|-=>2*"y|->3}x=y{x|->3"y|->3}holds in SL
{x|->V *x|-> U} never holds in SL (as an assertion)
{x==V && x == U } may hold in HL (as an assertion)

Departamento de Informatica FCT UNL (uso reservado ©)

146

Basic Rules of SL

147

Departamento de Informatica FCT UNL (uso reservado ©)

Assignment Rule (SL)

» Recall the basic Hoare Logic Rule:
x=E{A}
* The assignment rule in separation logic is
X =E/{ }

* Note the small footprint principle, the precondition refers
exactly to the part of the memory used by the fragment

Departamento de Informatica FCT UNL (uso reservado ©) 148

Frame Rule (SL)

* Akey principle in SL is the Frame Rule

{A}P{B}
{A*CIP{B*C)

* This frame rule allows us to preserve info about the “rest
of the world”, and locally reason about the effects of a
program that only manipulates a given piece of the state

* The given piece footprint is specified by precondition A

Departamento de Informatica FCT UNL (uso reservado ©) 149

Lookup Rule (SL)

 The memory lookup rule in SL is
{L|->V}y=L{L|->V &&y==Vj}
 Here y is a stack variable, not a heap location L
{LI->V}L:=L+1{L[|>V+1}
{L[->V}iy=L
{L|>V&&y==V }L :=y+1

{L[->y+1 && y==V}
{L|->V+1}

Departamento de Informatica FCT UNL (uso reservado ©)

150

Verifast

Verifast

VeriFast is a verifier for
single-threaded and
multithreaded C and Java
programs annotated with
preconditions and
postconditions written in
separation logic.

{

Jacobs, Smans, Piessens, 2010-14

NB: separation logic is a
spec language for talking
about programs that allocate
memory and use references

Departamento de Informatica FCT UNL (uso reservado ©)

publ lc voi id broadcast_message(String message) throws IOException
d

room(this)
room(this);

&*& message !=

m(this);
/@ or‘acq(memberso0,)
L st membersList = this.members;
Iterator iter = membersList.iterator();
boolean hasNext = iter. hasNext()

//@ length nonnegative(members0);
whi le (hasNext)
foreach<Member>(?members, @member) &*& iter(iter, membersList, members, ?i
&*& hasNext == (i < length(members)) &*& 0 <= i &*& i <= length(membe
Object o = iter.next();
Member member = (Member)o;
//@ mem_nth(i, memb LIS),
//@ foreach_remove<Member>(member, members);
'@ mcmb r (member);

Wr iter writer = member.writer;
writer.wri te(message)
writer.write("\r\n");

wrlter flush();
/ /e member (member) ;
//@ foreach_unremove<Membe
hasNext = 1ter.hasNext();

r>(member, members);

}
//@ iter_dispose(iter);
//@ room(this);

rs);

151

Account ADT (Java + Verifast)

public class Account ({
int balance;

/*@
predicate AccountInv(int b) = this.balance |-> b &*& b >= 0;
@x/

public Account ()
//Q@ requires true;

//@ ensures AccountInv (0) ;

{

balance = 0;

Departamento de Informatica FCT UNL (uso reservado ©)

152

Account ADT (Java + Verifast)

public class Account {

int balance;

void deposit(int v)
//@ requires AccountInv(?b) &*& v>=0;
//Q ensures AccountInv (b+v) ;

{

balance += v;

}

void withdraw (int v)

//@ requires AccountInv(?b) &*& b >=v;

//@ ensures AccountInv (b-v) ;

{
balance -= v;

}

}

Departamento de Informatica FCT UNL (uso reservado ©)

153

Account ADT (Java + Verifast)

public class Account {

int balance;

void deposit(int v)

//@ requires AccountInv(?b) &*& v>=0;

//Q ensures AccountInv (b+v) ;

{

//@ open AccountInv(_)

balance += v;

//@ close AccountInv(_)

}

}

* Verifast sometimes requires the programmer to explicitly
open and close predicates, if assertions are not precise

* Not needed here, since Accountlnv() is precise

Departamento de Informatica FCT UNL (uso reservado ©)

154

Account ADT (Java + Verifast)

public class Account ({

int balance;

int getBalance(()
//@ requires AccountInv(?b) ;
//@ ensures AccountInv(b) &*& result==

{

return balance;

.
4

Departamento de Informatica FCT UNL (uso reservado ©)

155

Account ADT (Java + Verifast)

Departamento de Informatica FCT UNL (uso reserva do©) 156

