Commented Dafny Programming Problems

(CVS 14-15, MIEL, DI / FCT / UNL)

Luis Caires

(version 1.0 of April 12, 2015)

1 Introduction

In this note, we discuss some programming exercises and comment on some
useful tips for Dafny programming, and code verification in general.

2 maxvec

// return the maximum of the values in array al[-]
// stored in positions i such that O <= i < a.Length
// a.Length > 0

method maxvec(a:array<int>) returns (m:int)

requires a != null;

requires a.Length > 0;

ensures forall j :: (0 <= j < a.Length) ==> a[j] <= m ;
ensures exists j :: (0 <= j < a.length) &% al[j] == m ;
{

var i:int := 1;

var t:int := al[0];

while (i != a.Length)

invariant 0 < i <= a.LlLength;

invariant forall j :: (0 <= j < i) ==> a[j] <=t ;

invariant exists j :: (0 <= j < i) && alj]l ==t ;
{
if (alil > t) { t:=alil; }
i=1i+1;
}
m := t;
}

2.1 Comments

e The first post condition states that m is > than any elements in the array,
but this does not ensure m is actually the maximum. For that the second
post condition is needed, stating that m actually belongs to the array.

3

e To help Dafny check complex postconditions in programs with while loops,

you often need to provide explicit loop invariants. This will make Dafny
happy. As the first invariant, you should always (and note: this is a rule
you should always follow) start by defining the condition that expresses
the interval of variation of the loop control variable. In this case, we write
0<i<=a.Length.

To explain Daffy how the loop works to establish the method postcon-
ditions, you should then write invariants for the loop, that approximate
the post conditions as the iteration progresses (see lectures). At the entry
of every ith iteration we know that forall j::(0<=j<i) ==> al[jl<=t.
This states that the ”current” maximum (stored in t) is greater that all el-
ements in the array up to (but excluding) position i. We also know that at
the entry of every ith iteration exists j::(0<=j<i) && al[jl==t. This
states that the ”current” maximum (stored in t) is actually present in the
array somewhere up to (but excluding) position i.

Notice that indeed all loop invariants are valid at loop entry by making

var i:int := 1;
var t:int := al[0];

They are also valid at each iteration and at loop exit (Dafny checks this,
using Hoare logic). Then, since at loop exit i==a.Length, Dafny deduces
that the post conditions are valid when the method terminates.

filled

// the method filled returns true if and only if
// the first n elements of array are all set to the value v

method filled(a:array<int>, v:int, pos:int) returns (s:bool)

requires a !'= null;

requires 0 <= pos <= a.lLength;

ensures s <==> forall j :: 0<=j<pos ==> a[jl== v;
{

var i:int := O;

while (i < pos)
invariant (0 <= i <= pos);

invariant forall j :: 0<=j<i ==> a[jl==v ;
{
if (a[i] '= v) { s := false; return; }
i=1i+1;
}
s true;

3.1 Comments

e This is an extremely simple example, just to illustrate the introduction of

invariants in loops. In this case, the invariant states that all positions of

4

the already visited initial segment of the array, up to position i, contain
the value v.

find

// if there is an index j (0 <= j < n)
// such that al[j] == v then return true

// otherwise return false

// n cannot exceed the allocated array size

method find(a:array<int>, v:int, n:int) returns (found:bool)

requires a !'= null && O <= n <= a.Llength;

ensures found <==> exists j :: 0 <= j < n && al[j] == v;
{

var i : int := 0;

while (i<n)
invariant 0 <= i <= n;
invariant forall j :: 0 <= j < i ==> a[j] != v;

{

}

if(afli] == v) {

return true;

=1+ 1;

return false;

}

4.1 Comments

5

e The key invariant states that all elements up to (and excluding i) are dif-

ferent from i, that is, forall j :: 0<=j<i ==> a[j]'!=v. Hence, when
arriving to the end of the loop we can return false, to satisfy the post-
condition. On the other end, if at some point the loop finds v, it may
immediately return true, and satisfy the post condition as well.

Notice that in Dafny there is no need to assign the return value to the
found variable, the return statement does the job. So return true means
the same as found := true; return.

prime

// the method prime checks if a number is prime
function prime(n:int):bool
{n>04&& forall i :: (2 <=i<mn) ==> (% i!'=0)1}

method isprime(n:int) returns (p:bool)
requires n>=0;
ensures p <==> prime(n);

{

var i : int := 2;
while (i < n/2)
invariant forall j :: (2<= j < i) ==> (n % j != 0) ;

{

}

if (n % i == 0) { return false; }
i=1i+1;

return true;

}

5.1 Comments

6

e This example is very similar to the find operation above: to check if a
number is prime we just have to find some divisor.

e Notice the the use of a defined function in an assertion. In Dafny, functions
are always pure and cannot have side effects. In fact, they are considered
”ghost”, only used by the verifier, and do not generate code. If you really
need to call a function from actual (non ”ghost” code) you should define
it as function method, e.g.,:

function method prime(n:int):bool
{n>04&& forall i :: (2<=i<n) == (n’% 1i!=0)1%}

reverse

// the method reverse should return a copy of array a
// but with the first nelems elements by reverse order

method reverse(a:array<int>, nelems:int) returns (b:array<int>)

requires a != null;

requires 0 <= nelems < a.lLength;

ensures b != null;

ensures b.Length == nelems;

ensures forall k:int :: O<=k<nelems ==> b[k]==a[nelems-k-1);
{

b := new int[nelems];

var i:int := O;

while(i < nelems)

invariant 0 <= i <= nelems;

invariant forall k:int :: 0<=k<i ==> b[k]==al[nelems-k-1];

{

b[i] := alnelems-i-1];
i=1i+1;

6.1 Comments

e There is no much to comment here, but this example illustrates how to
create a new array. We take the opportunity to challenge you to write a
variation of this method where the array would be reversed in place.

7 1ncvec

// the method incvec increments in place the
// first nelem elements of array a

method incvec(a:array<int>, nelems:int)
requires a != null;
requires O <= nelems < a.Length;
ensures forall k:int :: 0O<=k<nelems ==> al[k]==1+old(alk]);
modifies a;
{
var i:int := 0;
while(i < nelems)
modifies a;
invariant 0 <= i <= nelems;
invariant forall k:int :: 0<=k<i ==> alk]==1+o0ld(alk]);
invariant forall k:int :: i<=k<nelems ==> alk]==old(al[k]);
{
ali] := af[i] + 1 ;
i=1i+1;

7.1 Comments

e This example illustrates issues related to changing global structures in
place through side effects, and how to express invariants that capture
ongoing manipulations on such structures.

e Notice that the array a is changed in place by the method and by the
loop. In this case, the method declaration requires a so-called “frame
conditions” to be expressed, in this case via a modifies clause.

e Besides the usual invariants, any loop that changes the memory it accesses
may also specify the footprint using a modifies clause.

e This examples also illustrates the use of the specification 01d (=) construct.
For any Dafny expression e, the expression o1d(e) denotes the initial value
of expression e when the envolving method was called. This is useful to
specify side effects in post-conditions, as is the case of the incvec method.
Another example of using old may be:

class Up {
var c:int;
method increase(d:int)

requires d>0 && c¢>=0;
modifies this;
ensures ¢ > old(c);
{

c := c+d;

¥

¥

e Notice that the invariants must say that at any iteration step, the array
positions up to i have been incremented with respect to the initial value,
while the positions from i to the end of the array preserve their initial
values. Both conditions are needed to allow Dafny to reason about the
effect of the loop body. Convince yourself that both invariants are really
needed (hint: if the second invariant is omitted, it would be possible to
write code in the loop body that changes some position above i without
breaking the first invariant, yielding inchrrect code). Dafny forces the
programmer to fully specfy the stronger conditions to ensure the method
post-condition.

8 sort

// the method sorts array b in place, up to position nelems
method sort(b:array<int>, nelems:int)

modifies b;

requires initarray(b,nelems);

ensures sorted(b,nelems);

We first define a few auxiliary functions, useful for expressing several assertions.

// array c is created with sixe enough for nelems

function initarray(c:array<int>,nelems:int):bool

{

c!=null && O<=nelems<=c.Length

b

// first nelems elements are sorted

function sorted(c:array<int>, nelems:int):bool

requires initarray(c,nelems);

reads c;

{

forall i:: (O<=i<nelems) ==> forall j::(i<j<nelems) ==> c[i]<=c[j]
}

// first i elems are less or equal than elems from i to nelems
function majors(c:array<int>,i:int,nelems:int) :bool

requires initarray(c,nelems);

reads c;

{

forall k::0<=k<i ==> forall 1l::i<=l<nelems ==> (c[k] <= c[1])
}

Here is now our code for the sort method, using the selection sort algorithm.

method sort(b:array<int>, nelems:int)
modifies b;
requires initarray(b,nelems);
ensures sorted(b,nelems);
{
var i:int := 0;
while (i<nelems)
invariant 0<=i<=nelems;
invariant sorted(b,i) && majors(b,i,nelems);
{
var j := 1 ;
while (j < nelems)
invariant i<=j<=nelems;
invariant sorted(b,i) && majors(b,i,nelems);
invariant forall k:: i<=k<j ==> b[il<= bl[k];

{
if(b[i] > b[j]) {
var s : int := b[i]l;
bli] := b[jl;
b[j]l := s;
}
j o= e
}
i = i+1;

8.1 Comments

e Writing auxiliary functions, such as e.g., sorted and majors above, to
abstract assertions highly contributes to make Dafny code highly readable
and modular. Just compare the declaration above of the sort method
with the equivalent following one, much less readable.

method sort(b:array<int>, nelems:int)
modifies b;
requires b!=null && O<=nelems<=b.Length;
ensures forall i:: O<=i<nelems ==

forall j::i<j<nelems ==> b[i]<=b[j]

e Notice that help Dafny handle two nested loops, we need to propagate the
invariants of the outer loop to the inner loop. This is because the inner
loop changes the array in ways that could possible break the invariant of
the outer loop.

e The postcondition defined above does not ensure that the final array con-
tents is a permutation of the initial array contents. As an exercise you may
change the code above so that it would actually express such a stronger
postcondition.

9 strf

// the method strf checks if b appears within a, and returns
// in pos the position if that is the case, or -1 if not
// n is the number of chars in a, m is the number of chars in b

function ins(k: int, i:int): bool
{0<=k<i}

method strf(a:seq<int>, n:int, b:seq<int>, m:int) returns (pos:int)
requires 0 <= n <= |al;

requires 0 <= m <= |b];

requires n >= m;

-1 <= pos <= n - m;

ensures
ensures
ensures

ghost
var i:

pos
pos

var
int

= 0 ==> forall k::0 <= k < m ==> b[k]==a[pos+k];
==-1 ==> forall k::ins(k,n-m+1) ==
exists p:: 0<=p<m && b([p] !'= alk+p];

f:seq<int> := [];
= 0;

while (i < n-m+1)
invariant 0 <= i <= n-m+1;

invariant

Ifl == i;

invariant forall k::0<=k<i ==> 0<=f[k]<m;
invariant forall k:: ins(k,i) ==> b[f[k]] != alk+f[k]];

{

var j:int :=0;

while (j < m)

invariant 0 <= j <= m;

invariant forall k:: 0<=k<j ==> b[k] == ali+k];

{

if (ali+j] !'= b[jl) { break; }
= j+l1

J
¥

if (j==m) { return i; }
f :=1f + [j];
i+1;

i:=

3

return -1;

}

9.1 Comments

e This program illustrates two interesting advanced verification techniques:
the use of “ghost” variables in the specifications, and the use of helper
functions to help Dafny prove the correctness of forall / exists assertions.

e There are two postconditions to check. The first talks about the case
where the substring is found (pos >= 0). In this case, the postcondition
must simply say that the string b occurs at position pos in a.

e For the other case (pos == -1), the postcondition must say that the string

10

b occurs nowhere in a. To express that, we need a more complex forall /
exists assertion, namely (X)

forall k::in(k,n-m+1) ==> exists p::0<=p<m && b[p] != alk+p];

This says that for any k such that 0 <= k < n-m+1 there is a position p
with 0<=p<m that is different in b and a from position k, so that the string
b does not occur in a at position k.

Now, notice that the existential just asserts that there is some index p
that makes the occurrence fail, but does not say what is the actual value
of such p. The assertion is abstract on that, it just says that for any k
such that bla bla there is some p (depending on k) such that etc, etc.

In such situations, Dafny asks the programmer to actually provide some
hint about what are the actual values of such positions p’s. Of course
returning such concrete positions is not needed for the algorithm to work,
neither needed by client code, but just to make clear the reasoning en-
volved to show that the code is correct. We can see such values of p as
the concrete "proof” that shows that the string b does not occur at each
position k in string a, in case the client code would like to check that strf
is working fine.

We then make them explicit using so-called “ghost” variables and “ghost”
code. Such “ghost” variables and “ghost” code is not compiled (so it is not
executed at runtime, exactly like all assertions) and belong to the world
of assertions, is just checked at compile time, to make explicit the values
of the existentially quantified variables in forall / exist assertions. Such
values are technically called “witnesses”.

In the example above, the witnesses are stored in the ghost sequence f.
The main idea is that for each k, let f [k] store the position p at which
b and the substring of a that starts at k differ. So, for any k such that
0<=k<i, f[k] stores the value of the p mentioned in exists: :p, referred
in the final postcondition (X) above. The values £[0] ... £[i-1] witness
the fact that string b does not occur at each position 0..i-1 in string a,
and help Dafny to resolve the existentials in assertion (X) above. The key
properties of sequence £ is established by the invariants

invariant |f| == 1i;

invariant forall k::0<=k<i ==> 0<=f[k]<m;
invariant forall k:: ins(k,i) ==> b[f[k]] != alk+f[k]];

to be continued ...

