
Construction and 
Verification of Software 

2017 - 2018
MIEI - Integrated Master in Computer Science and Informatics

Consolidation block 

Lecture 1 - Introduction and Motivation
João Costa Seco (joao.seco@fct.unl.pt) 

based on previous editions by Luís Caires (lcaires@fct.unl.pt)

mailto:joao.seco@fct.unl.pt
mailto:lcaires@fct.unl.pt


Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Construction and Verification of Software

This course covers principles, methods, techniques and tools for the 
dependable and trustworthy construction and validation of software 
systems, ensuring as much as possible the absence of programming 
errors ("bugs"), with a focus on CONCURRENCY and SAFETY. 

Project based learning using specialised techniques and tools. 

2



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Syllabus
• Verified Software Construction

• Assertion methods and Hoare and Separation Logic; Assertion 
Inference; Abstract and Behavioural types. Representation Invariants. 
Abstract interpretation; Model-checking. 

• Hands On Exercises / Final Project using verification tools (Dafny, 
Verifast, INFER). 

• Software Testing
• Model-based testing; Test selection and test generation; Fault-based 

testing. Symbolic execution; Automated testing; Tools. 

• Concurrent Programming
• Sharing, confinement, ownership. Control of interference. Reasoning 

about concurrent code with monitors and locks based on resource 
invariants. Construction of concurrency control code from behavioral 
specs.

3



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Objectives
• Static Verification of Software 

• understand the principles and know how to use assertion 
methods in practice to specify, reason about, and verify software 

•  Dynamic Verification of Software
• understand the principles and methods for testing software. 

• ADTs and Concurrent Programming
• Write correct concurrent programs and ADTs 

• understand ADT programming methodologies 

• understand concurrent programming methodologies 

• understand ADT programming methodologies 

• understand concurrent programming methodologies

4



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Bibliografia
Program Development In Java: Abstraction, 
Specification, and Object-Oriented Design.  
Barbara Liskov (with John Guttag); MIT Press. 

Code Complete: A Practical Handbook of Software 
Construction, Second Edition.  
Steve McConnell, Microsoft Press. 

The Art of Software Testing, Second Edition  
Glenford Myers, Corey Sandler, Tom Badgett  

Java Concurrency in Practice,  
Goetz et al. Addison-Wesley, 2006. 

Tutorials for Dafny and Verifast

5



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Logistics and Evaluation
• 13 Lectures 

• Midterm (w6) and Final Test (w12) — to be determined 

• Lab Sessions (3-4 Lab classes) — to be determined 
• Teams of 1-2 students 

• Handouts - Test generation, Dafny exercises 

• Project (two deliveries) 
Development and verification of concurrent system - Verifast 

• Communication: — to be determined soon 
• Evaluation details not final in CLIP, will be updated

6



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Logistics and Evaluation
• 13 Lectures 

• Midterm (w6) and Final Test (w12) — to be determined 

• Lab Sessions (3-4 Lab classes) — to be determined 
• Teams of 1-2 students 

• Handouts - Test generation, Dafny exercises 

• Project (two deliveries) 
Development and verification of concurrent system - Verifast 

• Communication: — to be determined soon 
• Evaluation details not final in CLIP, will be updated

7



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

What’s the True Cost of a Software Bug?

• A software bug can have direct impact in time and  
revenue and also indirect costs in user loyalty and 
reputation of a company.

8
https://crossbrowsertesting.com/blog/development/software-bug-cost/

“the cost to fix an error found after product release was 4 to 5 times higher 
than if it’s uncovered during the design phase, and up to 100 more 
expensive than if it’s identified in the maintenance phase.” (IBM)

http://blog.celerity.com/the-true-cost-of-a-software-bug


http://servicevirtualization.com/report-software-failures-cost-1-1-trillion-2016/


Not really a new 
thing

• Byte Magazine  
1995



Hardware bugs 
are even worse

• Byte Magazine 
March 1995



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Hardware Bugs are even worse

12

https://www.cs.earlham.edu/~dusko/cs63/fdiv.html



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Too easy to make flawed software

13



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Bug Report from Apple (2013)

14
http://news.cnet.com/8301-1009_3-57603787-83/apple-promises-to-fix-ios-7-lock-screen-hack/

http://news.cnet.com/8301-1009_3-57603787-83/apple-promises-to-fix-ios-7-lock-screen-hack/


Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

This is really bad!! (all over the news)

15

https://twitter.com/lemiorhan/status/935578694541770752


Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

“Weird Facebook glitch breaks News Feed for some users”

16

https://mashable.com/2018/01/16/facebook-glitch-breaks-news-feed-no-posts/#.QKL0.AehZqw


Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

https://meltdownattack.com/

17



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Making Sure Software Really Works 
• Software failures: 

• system crashes 
• unresponsive services 
• data losses 
• incorrect behaviours 
• security flaws 

•  can have huge impacts: 
• economic  

NASA’s Mars Climate Orbiter - $125M+; Ariane5, $8B+; 
• user hassle 

FB - 2.2B; Gmail - 1B+; Instagram - 500M; Twitter - 330M; Netflix - 120M 
• data and systems security 

Vulnerabilities reported in 10y (Microsoft:3000, Oracle:3100, Apple:2600, …) 
• military 

Stuxnet (USA->Iran); F22 Crash; Patriot Missiles missed targets;  

18

https://raygun.com/blog/10-costly-software-errors-history/
https://www.darkreading.com/vulnerabilities---threats/the-10-worst-vulnerabilities-of-the-last-10-years/d/d-id/1325425?
https://en.wikipedia.org/wiki/List_of_software_bugs#Military


https://www.cvedetails.com/top-50-vendors.php


Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Pressure to update software fast
• Software development is increasingly competitive 
• Any mistake can be extremely expensive  
• Pressure is on to deliver fast and change even faster 
• Companies deploy software at  

an astonishing pace: 
• Amazon: “every 11.7 seconds” 
• Netflix:  

“thousands of times per day” 
• Facebook:  

“bi-weekly app updates”

20

https://techbeacon.com/10-companies-killing-it-devops


What’s the proper way 
of doing it?



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Processes and Tools
• Processes and Methods for software construction 

and software deployment (DevOps) 
• Specification and development methods 
• Testing tools and toolchains 
• Validation and Verification techniques

22

https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff


Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Software Testing
“Software testing is a process, or a series of 
processes, designed to make sure computer code 
does what it was designed to do and that it does not 
do anything unintended” 

The Art of Software Testing, Second Edition.  
Glenford Myers.

23



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Software Testing - Validation
“Validation is the process designed to increase our 
confidence that a program works as intended.  It can 
be done through verification or testing.” 

“Verification is a formal or informal argument that a 
program works on all possible inputs”. 

“Testing is the process of running a program on a set 
of test cases and comparing the actual results with 
expected results”  

in Program Development in Java (p222)

24



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Software Verification at Facebook

25



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Software Verification at Facebook

26



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado) 27
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Testes de Software
“Testing shows the presence,  
  not the absence of bugs” 

Edsger W. Dijkstra, 1969

28



Software Correctness



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Relevance of Software Correctness 
• Quality procedures must be enforced at all levels, in 

particular at the construction phase, where most of the 
issues are introduced and difficult to circumvent. 

• Questions for you now: 
• What methods do you currently use to make sure your code is 

“bullet-proof” ?  

• How can you prove to yourself (and others) that your code is 
“bullet-proof” ? 

• What arguments do you use to convince yourself and others that 
your code works as expected and not goes wrong, with respect 
to functional correctness, security, or concurrency errors?

30



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Relevance of Software Correctness 
• Quality procedures must be enforced at all levels, in 

particular at the construction phase, where most of the 
issues are introduced and difficult to circumvent. 

• Questions for you now: 
• What methods do you currently use to make sure your code is 

“bullet-proof” ?  

• How can you prove to yourself (and others) that your code is 
“bullet-proof” ? 

• What arguments do you use to convince yourself and others that 
your code works as expected and not goes wrong, with respect 
to functional correctness, security, or concurrency errors? 

• You will know better answers at the end of this course.

31



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Software Correctness: What and How 
• Key engineering concern: 

Make sure that the software developed and constructed is “correct”. 
• What does this mean? 

• Is it crash-free? (“runtime safety”) 

• Gives the right results? (“functional correctness”) 

• Does it operate effectively? (“resource conformance”) 

• Does it violate user privacy? (“security conformance”) 

• … 

• several process and methodological approaches to ensure and 
validate correctness exist (software engineering course) 

• In this course, we cover some techniques to rigorously ensure and 
validate correctness during software construction

32



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Software Correctness: What and How 
• “runtime safety” (no crashes, etc.) is a bit easier to define 

• programming language type systems help a bit … 

• other kinds of correctness are not so easy to define 
• usually relative to special assumptions ... 

• what the system is supposed to do: play chess, manage bank accounts, … 

• the available resources: bandwidth, memory, processing speed, … 

• the security policies: only my friends can see my pics, … 

• To precisely define such assumptions, we need 
• 1: precise specifications 

• 2: ways of validating that your system meets the spec

33



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Correctness is against a specification
• Then what does “correct software” mean? 

• Always relative to some given (our) specs 

• Correct means that software meets our specs 
• There is no such thing as the “right specification” 

• In practice, the spec is usually incomplete ... 

• But the spec must not be wrong ! 

• It should be very easy to check what the spec states 

• The spec must be simple, much simpler than code

• The spec should be focused (pick relevant cases) 
• e.g., buffers are not being overrun 

• e.g., never transfer money without logging the source

34



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Checking Specs: Dynamic Verification
• By “dynamic verification” we mean that verification is done at 

runtime, while the program executes 
• Some successful approaches:  

• unit testing

• coverage testing

• regression testing

• test generation

• runtime monitoring

• use runtime monitors to (continuously) check that code do not violate 
correctness properties 

• violations causes exceptional behaviour or halt, so errors are detected 
after something wrong already occurred (think of a car crash, or a 
securiy leak)

35



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Checking Specs: Dynamic Verification
• Some shortcomings of dynamic verification 

• always introduces a level of performance overhead 

• may show the existence of some errors, but does not ensure 
absence of errors (the code passed a test suite today, but may 
fail with some other clever test) 

• Challenge: how do you make sure that you are 
defining the “right” tests and “enough” tests 

• Will talk about testing methods later on in the course

36



Quiz



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Vamos ver quem sabe testar…
“The program reads three integer values from an input 
dialog. The three values represent the lengths of the 
sides of a triangle. The program displays a message that 
states whether the triangle is scalene, isosceles, or 
equilateral.” 

38

Create specific tests (10 minutes)



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Quiz
1. Do you have a test case that represents a valid scalene triangle?  

(Cases such as 1, 2, 3 and 2, 5, 10 are not valid triangles)  

2. Do you have a test case that represents a valid equilateral 
triangle?  

3. Do you have a test case that represents a valid isosceles 
triangle? (Cases such as 2,2,4 are not valid triangles.)  

4. Do you have at least three test cases that represent valid 
isosceles triangles such that you have tried all three 
permutations of two equal sides (e.g. 3,3,4; 3,4,3; and 4,3,3)?  

5. Do you have a test case in which one side has a zero value?  

6. Do you have a test case in which one side has a negative value? 

39



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Quiz
7. Do you have a test case with three integers greater than zero 

such that the sum of two of the numbers is equal to the third? 
(If 1,2,3 is a scalene triangle, it’s a bug.)  

8. Do you have at least three test cases in category 7 such that 
you have tried all three permutations where the length of one 
side is equal to the sum of the lengths of the other two sides 
(for example, 1,2,3; 1,3,2; and 3,1,2)?  

9. Do you have a test case with three integers greater than zero 
such that the sum of two of the numbers is less than the third 
(such as 1,2,4 or 12,15,30)?  

10. Do you have at least three test cases in category 9 such that 
you have tried all three permutations (for example, 1,2,4; 1,4,2; 
and 4,1,2)?

40



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Quiz
11. Do you have a test case in which all sides are zero 

(0,0,0)?  

12. Do you have at least one test case specifying 
noninteger values (such as 2.5,3.5,5.5)?  

13. Do you have at least one test case specifying the wrong 
number of values (two rather than three integers, for 
example)?  

14. For each test case did you specify the expected output 
from the program in addition to the input values? 

41

resultado = ?



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Quiz
11. Do you have a test case in which all sides are zero 

(0,0,0)?  

12. Do you have at least one test case specifying 
noninteger values (such as 2.5,3.5,5.5)?  

13. Do you have at least one test case specifying the wrong 
number of values (two rather than three integers, for 
example)?  

14. For each test case did you specify the expected output 
from the program in addition to the input values? 

42

resultado = ?

0 to 4

5 to 7

8+



Construction and Verification of Software, FCTUNL, © Luís Caires, João Costa Seco (uso reservado)

Readings
• Cost of Bugs 

https://crossbrowsertesting.com/blog/development/software-bug-cost/ 
• Pentium Bug 1990s  

https://www.cs.earlham.edu/~dusko/cs63/fdiv.html 
• Meltdown and Spectre 

https://meltdownattack.com/ 
• EWD303 

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/
EWD303.html 

• EWD268 Structured Programming 
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/
EWD268.html 

• Program Development in Java, Liskov/Guttag (ch1 and ch10). 
• “Dafny: An Automatic Program Verifier for Functional Correctness”, 

Leino.

43

https://crossbrowsertesting.com/blog/development/software-bug-cost/
https://www.cs.earlham.edu/~dusko/cs63/fdiv.html
https://meltdownattack.com/
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD268.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD268.html

