Construction and

Verification of Software
2017 - 2018

MIEI - Integrated Master in Computer Science and Informatics
Consolidation block

Lecture 2 - Specification and Verification

Joao Costa Seco (joao.seco@fct.unl.pt)
based on previous editions by Luis Caires (Icaires@fct.unl.pt)

FACULDADE DE
CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

mailto:joao.seco@fct.unl.pt
mailto:lcaires@fct.unl.pt

Software Correctness

Relevance of Software Correctness

* Quality procedures must be enforced at all levels, in
particular at the construction phase, where most of the
Issues are introduced and difficult to circumvent.

* Questions for you now:

 \What methods do you currently use to make sure your code is
“bullet-proot” 7

« How can you prove to yourself (and others) that your code is
“bullet-proof” ?

 What arguments do you use to convince yourselt and others that
your code works as expected and not goes wrong, with respect
to functional correctness, security, or concurrency errors?

* You will know better answers at the end of this course.

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 47

Software Correctness: What and Ho

* Key engineering concern:
Make sure that the software developed and constructed is “correct”.

e \What does this mean?

Is it crash-free? (“runtime safety”)

Gives the right results? (“functional correctness”)

e Does it operate effectively? (“resource conformance”)

Does it violate user privacy? (“security conformance”)

* several process and methodological approaches to ensure and
validate correctness exist (software engineering course)

* |n this course, we cover some techniques to rigorously ensure and
validate correctness during software construction

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 48

Correctness is against a specificatio

e Then what does “correct software” mean?

* Always relative to some given (our) specs

e Correct means that software meets our specs
* There is no such thing as the “right specification”
* |n practice, the spec is usually incomplete ...
« But the spec must not be wrong |
* |t should be very easy to check what the spec states

 The spec must be simple, much simpler than code

* The spec should be focused (pick relevant cases)
* e.g., buffers are not being overrun

* e.g., never transfer money without logging the source

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 49

Checking Specs: Dynamic Verificatl

* By “dynamic verification” we mean that verification is done at
runtime, while the program executes

* Some successful approaches:
unit testing
coverage testing
regression testing
test generation

runtime monitoring

e use runtime monitors to (continuously) check that code do not violate
correctness properties

* violations causes exceptional behaviour or halt, so errors are detected
after something wrong already occurred (think of a car crash, or a
securiy leak)

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 50

Checking Specs: Dynamic Verificatl

e Some shortcomings of dynamic verification

e always introduces a level of performance overhead

* may show the existence of some errors, but does not ensure
absence of errors (the code passed a test suite today, but may
fail with some other clever test)

* Challenge: how do you make sure that you are
defining the “right” tests and “enough” tests

 Will talk about testing methods later on in the course

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

51

Checking Specs: Static Verification

e “static verification” means verification at compile time

* relies on algorithmic reasoning about what programs do, by analysing
the source code, not by running the code

* can ensure absence of all errors of a certain well defined kind, e.g.,
“‘no null dereferences”

e can also tackle many complex correctness properties (e.g.,
functionality, absence of races, security, etc)

e does not introduce in performance overhead at runtime

* success stories:
« type checking, as performed by the compiler
« extended checking, static checking of assertions

« abstract interpretation, simulates execution on a simpler decidable abstract
model of runtime data

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

52

Checking Specs: Static Verification

o Specifications are the essential tool for abstraction and
decomposition.

 [For each program we need to know
* in what conditions it can be used (requires/pre-conditions)

 what are its effects (effects/ensures/post-conditions)

The post condition assertion can be assumed after the
program’s execution, provided that the pre-conditions
were met at the beginning. That's the only assumptions
that can be drawn from the post-condition.

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 53

Design by Contract vs Defensive Programming

* Design by contract () |BECT-ORIENTED
» Eiffel language (Bertrand Meyer)

 Formal specitication of pre-, post-conditions and invariants

e Assume that all preconditions are met when invoking an
operation and that all postconditions will be satisfied
after the operation is executed.

e Detfensive programming
* Prepare for all possible inputs and associated responses

e Logic based verification
e Hoare Logic

» |f all components are verified, all contracts

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 54

What may specs look like”

e A classical example is the use of “assertions”
—You have used assertions before (IP, POO, AED)?
e A simple and fine grained spec is the “Hoare triple™:

AP 1B}

e A and B are assertions (conditions on the program state)
e P |s the piece of code we want to talk about
* [he Hoare triple says:

e |[f program P starts in a state satistying A, then, if it

terminates,

e Alscalledt
e Biscalledt

he resulting state satisties B.
ne “pre-condition”

ne “post-condition”

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 55

Con

Interface contracts in ADT specs

e ADT specifications (we will detail this later) involve method

contracts, expressed as assertions

method P(... parameters ...)

requires pre-condition-assertion % PRE
ensures post-condition-assertion % POST
modifies global-state-changed % MOD
{

... method code

}

e [he method call P(...), whenever started in a state that
satisfies PRE, if it terminates, always ends in a state that
satisfies POST, and only has effects on MOD

struction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado) 56

Invariants in ADT specs

e ADT specifications (we will detail this later) may involve
representation invariants and abstraction mappings also
expressed as assertions

class C {
invariant invariant-assertion REPINV
invariant abstraction-map-assertions ABSMAP

{

... methods...

}

e ADT C implementation relies on a representation type T
that satisfies the representation invariant REPINV and
maps into the abstract type as specified by ABSMAP

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

57

How are Specs verified?

* Alogic is used to prove properties of programs

* What kinds of properties are we interested in?
e safety properties (partial correctness)

e state that if the program terminates (delivers an outcome), then the
final state satisfies some property

e liveness properties (total correctness)

e say that the program terminates (at least under certain conditions)

e Hoare logic is the “mother of all program logics”: It
provides a foundation for most program logics for
imperative programming languages

 Reason of HL success: verification at the level of the
programming languages (not of programs, cf. Floyd)

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

58

Dafny

“Dafny iS an imperative ObjeCt_ Dafay: An Automatic Program Verific
based |aﬂguage with built-in for Functional Correctness

K Busan N Lo

specification constructs. The Sesnrerzompeid
Dafny static program verifier —_—

Trdidonal s thu (WL ov Scvtion of & program’s Lactboal comevtims ha Nea el w0
pon i puper of w2 Lot et v preod sed stande, » hasias vady nudacix vinfestos teds, i e cn

can be used to Verify the e ¢ splnbelgrraars e M dnr e b v s

sdvers. Murr covemiy, poearfel SMT slvrs and wol-don prod prvgr wn viri ey asm wating =
brveh Soe vadasm, bue mdiaing T ot sreedsed mdomg Tl wrstaw

functional correctness of T i

s el conovmess o0 o ssder of allioagaay peasct Seocd prepaasis. The pagur Jowa oy U

oAy overgurmey i Dnfey, (hesrsing doir soe by sl comnpr e ansd pving ¢ imecof o ey

Programs. The SPECITICAtIONS s i s wove s i sy b s e ot s

of B SO Wake dpwndes s et

include pre- and
postconditions, frame
specifications (read and write
sets), and termination metrics”

Leino, Koenig, 2010

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

risedfun @ Microsoft Research (MSR)

- » 2 1 muete o C L

. ‘..f_,'.‘.'

e R B

rise4fun

¢ Lomanitly of woftewery eyplveering Lols
AL TL0erEa] NTORTE CONTEMTRTCY SNSIRY IATRIETRLCTArE LaN0 00T BACATATY TYMINGELS TESTATE werlifioaTien
new!
dafny | visual ces zircf
AR ARL FE T LD Y L LA LITE ST BT SRR Ll T L S ' YAl L NI L VA AT W The L . T
COALLFal EWeimms FLAMSL e FLALIR B2 am LVE Thamsd TVvewar)
microsoft

Doogie chalice

Al ATV R . LsYea L JNNe oM W v Ty N

PR AN Bt e e g e,
code comtracts dkal
log = 4 e le S - . . F s . e i el Nt
o 1 w e a8 reaeiy » ot o .Y - 8-
e | I - e
esn try f#
bl b Lt s Ingineing o Formal & by Sy i Trag Fragramnsg . oQopn et vy Vsl .,
Now v rrae -t Crose =l Malinihy Mmool wrieiing reapreamiig,
heapddg koka pex
BT S et e * Amtise e lagywgs ¥ . AL ML P s alrg e
I Nree » S A mLoe S e
[- J— e ” J— - -]

Construction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado) 60

A glimpse of Dafny programming

dafny =

[s this progran correct?

I ¢less Pigs
|

) var §4: mtant>;

- YOor n; it

G Fusction SetIav(): Benl
7 roads this,

L {
3 (Forgll ix N S wes N3 D88 15 ==
0)}

12 method (nitiogd)
15 ensures Sevtinwd)s
14 =0 fies this;
15 {

LU S

17 LR

5 3
30 wmoLnad o3 x:int)

. rewires SetlvO B8 2 > 8
rOMTies s,

B ==

Construction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado)

61

Basic Program Specs (Hoare Logic)

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

62

C.A.R.HOARE
United Kingdom - 1980

For his fundamental contributions to the definition and design
of programming languages.

Hoare Logic (1969)

An Axiomatic Basis for of whotm it i prssitde Wy diduoo serch simple Uheoress w!
Computer Programming S22l

PO+ yXg=lr=plH4yX {1 ¢
C. A R Hoaxe The prvod of the second] of theseo Is:
The Queen’s Univerily of Belfast,® Northers Frebond Ab r=g)+yX (1 +4q)

==l T Xl +yxyg
wr=p)+ ytyxXyq
- {{r—=y -

1y gaper on oPempl s mode N eaplore the igael foemdo.
tiaes of Computer progromming by me of tathrigues which
wers Snt opplied s Be iy of geomatry ond have lpter
besn axtended to ofer brosches of mathematicn. This n-
voives the shcidotion of vl of avioms and rddes of derence
which con be wed In prooks of the properties of competer T“«'MAlb.\.')m,o.l
progrome. Exomples ore given of woh axioms oad rvles, oad Tl Infinite set of integres i
o formol proof of o smple heorem b daployed. Feally, It b “"-"_‘"“"‘N"“"""'i“'ﬂ_"‘
orpued Mot keportant advontages, Both theorstical ond proc- MAnipalated by computers peovide
scel. may folow from o purteonce of thee dopct Mhmwdhmmnn.u.
ST WOSDS. A® ISR bl :“td‘:ﬂ?m;fw.nt'u
::d progremn buwmal arguage snlosan parpemang eag g h:,-o. fl‘ll"“ Mﬂ(apolied i
e mdepemded propamm g pngen b b ’ w

CH CATIGORY, 48 420, 422 5.20. 5.2), 520, 524 (1) Striet intorpretation: the rem B

operaton doos not exist; when overh 73 :

ing program pever comgleton s ops

Ui cnse, the ogualithon of Al 10 AV 2

that beah siden exivt or fuil 10 exint

-

-'Qv

155

Construction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado) 04

https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjuh7-1tN_ZAhXJzlkKHSLUAZQQFggsMAA&url=https://www.cs.cmu.edu/~crary/819-f09/Hoare69.pdf&usg=AOvVaw0C3WohKPHelnsGPW5J9v_P

Simple Programming Language

E = Expressions
num

x
E+E]..
E<FE]|..
E and E ...

skip

r .= F

P; P

if £ then P else P
while F do P

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

Integer

Variable

Integer operators
Relational operators
Boolean operators

Programs

No op

Assignment

Sequential Composition
Conditional

Iteration

65

Con

States and State Transformers

stru

e A program is a state transformer,
it transtorms an initial state into a target state

e \What is a program state”? a state is an assignment of
values to state variables

oc={rx—1,y— 2,z+— 3}

e An imperative program transforms states into states
PEx =y+ux2:=2—=x

o |f P is executed in state o it yields state ¢’ where
o ={r—3,y—~22~0}

e \\Ve may say that P transforms o in ¢

e Pis only defined on states o where vars(P) € dom(o)

ction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

66

States and Assertions

A (safety) property is a set of (safe) states

Essentially an assertion is a boolean expression that
only depends on observing program (state) variables

Thus, an assertion is just a pure observation, it is either
true or false, its evaluation does not change the state

In general, one may use all the expressiveness of (first
order) logic in assertions (e.g. quantifiers, etc...)

The assertion language is part of the specification
language, not of the programming language

But In some cases, assertions may be expressed in
the programming language (Java / Dafny).

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 6/

Assertions in Dafny

Research

afny

Is this program correct?

1 method strncpy(a:array<int>, n:int, b:array<int>)
2 requires al=null &8 bl= null;

3 requires @ <= n <= a.length <= b.Length;

4 modifies b;

S ensures forall j::(@<=j<n) ==> b[j] == a[3)];

6 {

7 var 1:int :=0;

8 while (1 < n)

9 invariant @ <= 1 <= n;
10 tnvariant forall j::(@<=j<i) ==> b[j] == a[3];
11 {
12 b[1] := a[i];
13 Lot AR
14 }
15 }

Construction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado)

68

Some bits of history ... (extra)
Kick off:

— Checking a large routine

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

69

Turing
Kick off:

— “Checking a large routine”

“How can one check a routine in the
sense of making sure that it is right?
In order that the man who checks

may not have too difficult a task the
programmer should make a number

of definite assertions which canbe =
checked individually, and from which = === v
the correctness of the whole T o i e s e 7 e P
programme easily follows.” G
Alan Turing, 24th June 1949 =

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

70

Assertions

Second boost:

— Floyd’s Assertion Method

Robert Floyd’s, "Assigning Meanings
to Programs,” opened the field of
program verification. His basic idea
was to attach so-called "tags" in the
form of logical assertions to individual
program statements or branches that
would define the effects of the
program based on a formal semantic
definition of the programming
language.

R. Floyd, MFCS, June 1967

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

71

Assertions

[-------- AREJ " AI=1AS=D
e |

________ REJAIEIT AIEa+LIAS= }:.0;
'-

‘- o
—— e d Aima s IAS= Zd,‘. lkS"Z‘a

-3
________ REJ AIEV AisanS= L
=i

]
AEJTAIEI AisanS= s
y=i

nEITAIEd A25ign+IAS= T 0

=1

Ficuax 1. Flowehart of program t compute S = 2. 4, (n 2 0)

Construction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado)

/2

L anguage Based Program Specs

Lift Off:

— Hoare Logic

“Computer Programming is an
exact science in that all the
properties of a program and all
consequences of executing it in

AXI10M 1 ASSIUNMENT AXION

any given environment can, in (pAt/z]) x = 1 {p).
pI’InCIp/e, be found Out frOm the RuLk 2 Comprosmon R l(.k' i
. p) S, (r), (r) S: {9}

text of the program itself by DO

means of purely deductive Sk o e PIR A

reasoning_ 7 [Pl ifethen S, olse 5, fi (g}

Rure 4 while RuLe

Tony Hoare, CACM 1969 ___(pASte)

(p) whileedo Sod [p /)

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

Hoare Logic Today

Still hot ... o e 1 Camm—
L M0 i M St L D W e e waieend cr-w__-!-um.-; —
— Hoare Logic Y firi
The axiomatic method gives W R Y TR TS

an objective criterion of the 52
quality of a programming o=
language, and the ease with oo
which programmers could use it.
The latest response comes from -~~~
hardware designers, who are
using axioms in anger to define
the properties of modern

multicore chips with weak

memory consistency.”

Tony Hoare, CACM 2009

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

BAtres portve: A2 Axeatis 3asls oo Lasipetor Frogranaadng

" ey
- — Ae™ v e a2 ek w
» P S
ree ahe N ae -
“ [e m
P Ll B -
~
L i ol e BRE = 2 L
» N S el e T ¢ e »
bl s nam em wgbhnan laan v “4’ ot A & PT) SRR R
v od e basommn, mokpen)l wlw i Lema ol s
i I B -ar Ll b e LRl L) el i

2 Y

74

Extended Static Checking
JML and Extended Static Checking for Java

ESC/JavaZ2is a
programming tool
that uses static iy Ty -~

analysis to verify the TR ——
correctness of Java s _—

e PV W T YT Y W e oy

Extended Static Checking for Java

- Wt s e Y oy v e v

programs, using an — Sosiosintrone A

PORE P wen. i dbediw o somand | B ek

extension of Hoare — :iiiicozi=in |-

rsan
Aowm . ome *bh o) provmmn e b
-

Logic called JML. SRR ATt
G.T. Leavens, 2000 = “ereimes

Cotogrews and Subjecy waﬂﬂ-‘

LU R e T bl U R SR
NG Sdhven Nygreweg Fupie Viniwe

Cageral lerem

(L= wv..bdom "wmbrr

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 75

Extended Static Checking
Spec #

The Spec? Programming System: An Overview

Spec# is an extension of the

object-oriented language C#. S S e

It extends the type system 10 i ol il ol e
include non-null types and

checked exceptions. It oot Ly i e e b~ M-

podds] achitechae of e Specd prog asmrsag o sirn coatisteag of Be) oct

Mike Barsett K Bstino M Lano. 3ad Woltram Schube

orentvd S peed prograncrang angaape, e Speod conpuer, xad Se Beoge vaty

pro VideS methOd COntraCtS in y::nm vttt The Ling iage (e Dades 200uraets for wWidag Peci e Ds

Oy L A 9->g'mnr' HEMENAL AT A el I 0 29 D e) B
the form of pre- and SRS i i s vt ek bl 6 R
postconditions as well as

object invariants.
Barnett, Leino, Schulte, 2004

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

/6

Dafny

Datfny

Dafay: An Automatic Program Verificr

Dafny is an imperative object- for Functional Comrcetacss

K Busan N Lose

based language with built-in

SHInodmiLcroamtt con

specification constructs. The ormt

Tndidoned s, tha (L sor Scuton of & program’s Lactosad comevtnms hv e o ned wio
pon wid pupor of w iR Lot et ve preod sl stande, w hesvas vady rudacox vin festos ted, sch s cn

Dafny static program verifier e e g

bovah Bom vadaawm, b s-‘-u‘ G ot srvndsed i domg Tl wrihstan

. Flon g i o s of B it aod ssilan BDalay, wiheats Daes Suns sid 0 sy e

Can e use tO Verl y t e o Used conovmems oL o susder of Jaliogaay peasct Seocd pregassis. The pager Jowa o Us
oAy vergurmey Dnfep, henrsing deir sox by sl comnpres ansd pving & bmecof s Sy

r ondiex Tur e SVET selvir. Av e bt cae sanly, e puoner slaras b Il D ol spee W aiem

functional correctness of e Yo gt s ol
programs. The specifications :
include pre- and
postconditions, frame
specifications (read and write
sets), and termination metrics

Leino, Koenig, 2010

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

risedfun @ MSR

rise4fun

¢ Lomanitly of woftewery eyplveering Lols
AL TL0erEa] NTORTE CONTEMTRTCY SNSIRY IATRIETRLCTArE LaN0 00T BACATATY TYMINGELS TESTATE werlifioaTien
new!
dafny £ visual ce+ zircf
A LR AR FE N Y Y L LA LITE ST BT SRR Ll T L S ' YAl L NI L VA AT W The L . T
COALLFal EWeimms FLAMSL e s FLALIR B2 am LVE Thamsd TVvewar)
microsoft
chalice
L INidge o Vi w v T o N
PR AN Bt e e g e,
code comtracts counterdog dafny dkal
log = 4 il g - - ey pt T T wdmmrvy . » SR wl pawre - g . i i el Nt
o | v e o reeiy » o o BEE *Te - - 8-
2w stiym
esn foraula try f#
byl e Lt e Ingineing #d formal & by Sy e s | Fragrommpg . og0n el v g Vesllw .,
Now v rrae -t Crose =l Malinihy Mmool wrieiing reapreamiig,
heapddg koka pex
ST S B ret e At e lagwgs ¥l ' » ML P s alrg e
I Nree » S A mLoe S e

Construction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado) /8

Separation Logic

e
s,h|= P+ (P—+Q) {P}C{Q}
s,h|=Q {P+ R} C{Q* R}
John C. Reynolds Peter O’Hearn

Construction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado)

mod(C) Nfv(R) = 0

79

Verifast

Verifast PP UPep—
VeriFast is a verifier for | 1) Ty Eetvae! e,
single-threaded and '-lifil?'#-'-il--' Iy
multithreaded C and Java =
programs annotated with |
preconditions and it et 5
postconditions written in i vriias - et oo

separation logic. et AT

Jacobs, Smans, Piessens,
2010 |

NB: separation logic Is a
spec language for talking
about programs that allocate
memory and use references

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

80

Rules of Hoare Logic

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

31

Program Proofs in Hoare Logic

e A program proof in Hoare logic adds assertions
between program statements, making sure that all
Hoare triples are satisfied.

e [or example, consider the code snippet
it (x>y) {
Z =X
} else {
Z =V

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

32

Con

Program Proofs in Hoare Logic

e A Hoare Logic “proof” may look like
{ true }
if (x>y) {
{(X>y) |
Z = X;
{ (>y) && (2 == X) |
|
else {
{(X<=Y)}
Z.=Y,
{ (x<=y) && (z==1Y) |
|
{ (x>y) 8& (Z2 == X) || (X<=y) && (z == y)}
{ z==max(x,y) }

struction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado)

83

Con

Example: Rule for Sequence

* A sequence defines a dependency on the effects
of both program statements.

{A} P{B} {B}Q{C}
{A} P;Q {C}

struction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado)

34

Rules of Hoare Logic (general form)

® [he inference rules of Hoare logic are used to derive

(valid) Hoare triples given some already derived Hoare
triples

(ALY P (B} ... {A,) P, (B,
(AYCO(PL,...P,) (B}

e \\Vhat Is nice here:

e the program in the conclusion contains the
subprograms P1, ..., Pn as components

e \we derive properties of the composite from the
properties of its parts (compositionality)

e pretty much the same as with a type system

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

35

“Structural” Proof Rules

e Basic logic proof systems operate on propositions, e.g.

A A — B A B A B
B ANDB AV B AV B

e Hoare logic proof system operates on Hoare triples, e.g.

{A} P{B} {B}Q{C}
{A} P;Q {C}

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

86

One rule for each PL construct

AXIOM 1. ASSIGNMENT AXIOM

(plt/x]} x =t {p}.
RuLe 2: Composition RuLk
{p} 5. {r}, (r) S: {q)
(P} ql. S {Q] .
Rure 3 U<then-clse Rune

{pAelSig)ipA e} S: (q)

e e — - — It e o - e . -

(p}ifethen S; else S: fi {g)
RuLk 4: while RuLe

(pAe} S {p)
{p) whileedoSod {p A —e)

* Areally cool idea:

e every programmer can use the Hoare rules informally to
mentally check her code while coding

 tools exist that automate most of the process
* we now go through each rule, one by one

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

37

Simple Programming Language

E = Expressions
num

x
E+E]..
E<FE]|..
E and E ...

skip

r .= F

P; P

if £ then P else P
while F do P

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

Integer

Variable

Integer operators
Relational operators
Boolean operators

Programs

No op

Assignment

Sequential Composition
Conditional

Iteration

38

Rule for Skip

{A} skip {4)

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

89

Rule for Skip

{A} skip {4)

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

90

Con

Example: Rule for Sequence

* A sequence defines a dependency on the effects
of both program statements.

{A} P{B} {B}Q{C}
{A} P;Q {C}

struction and Verification of Software, FCTUNL, © Luis Caires, Joao Costa Seco (uso reservado)

91

Rule for Conditional

{ANE} P{B} {AN-FE}Q{B}

{A} if F then P else Q {B}

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

92

Rule for Deduction

A — A {AVP{B' B — B
{A’} P{B'}

e A= B means “A logically implies B”

e \We prove A = B using the principles of first order logic,

plus basic properties of the domain data types, e.q.
properties of integers, arrays, etc.

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

93

Rule for Assignment

{A["/:]} z = E {4}

e A[E/X] means:

e the result of replacing all free occurrences of variable
X In assertion A by the expression E

e [or this rule to be sound, we require E to be an
expression without side effects (a pure expression)

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

94

Rule for Assignment

{A[%/:]} = .= E {A}
e \We can think of A as a condition where “X” appears in

some places. A Is a condition dependent on “X”.

* [he assignment x ;= E changes the value of x to E, but
leaves everything else unchanged

e 50 everything that could be said of E in the
precondition, can be said of x in the postcondition,
since the value of x after the assignment is E

e Example: {x+ 1 >0} x:=x+1{x>0}

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

95

Rule for Assignment

{A["/:]} z = E {4}

e Example, let'scheck {x>-1}x:=x+1{x>0}
{(X+1>0)}x:=x+1{x>0} by the := Rule
thatis, { (x > O)[x+1/x]} x:=Xx+1) {x>0]}

{x>-1}x=x+1{x>0]} by deduction

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

96

Rule for Assignment

{A["/:]} z = E {4}

e Jrick: if x does not appear in E or A.

We can always write { A& E==E}x:=E{x==E}
S0, if X does not occur In E, A the triple

(A)x:=E{A8 x==F)

IS always valid

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 97

Rule for Assignment

{A["/:]} z = E {4}

e [Exercises. Derive:
¢ [y>0}Xxi=y{x>0&_&Yy==x}
o [X==y}X:=2"%X{y==xdiv?2]
e {P(y)&&Qz)} (here P and Q are any properties)
X =Yy;Vy:i=2Z Z:=X
{ P2) & Qly) }

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

98

Example

e (Consider the program
P2if (x>y)thenz:=xelsez:=vy
e \We (mechanically) check the triple

{true } P {z == max(x,y) }

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

99

Example

e (Consider the program
P&if(x>y)thenz:=xelsez =y

e \We (mechanically) check the triple
{true } P {z == max(x,y) }

{ X ==max(x,y) } z:=x{z==max(x,y) }
{x>vy} z:=x{z==max(x,y) }

{y ==max(x,y) } z:=y {zZ==max(x,y) |
{y>=x}z:=vy{z==max(x,y) }

Construction and Verification of Software, DI - FCTUNL, © (uso reservado) 100

Construction and

Verification of Software
2017 - 2018

MIEI - Integrated Master in Computer Science and Informatics
Consolidation block

Lab Assignment 1 - Introduction to Dafny

Joao Costa Seco (joao.seco@fct.unl.pt)
based on previous editions by Luis Caires (Icaires@fct.unl.pt)

FACULDADE DE
CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

mailto:joao.seco@fct.unl.pt
mailto:lcaires@fct.unl.pt

Laboratory Assignment 1 - Dafny

* |nstall command line tool in your local machine

e Alternatively use the browser in rise4tun

e Adopt an editor and corresponding plug-ins
(Visual Studio, Visual Studio Code, Atom, Sublime)

o et familiar with the Dafny language tutorials

// Test your instalation with this example
method dup(x:int) returns (y:int)
ensures y == 2*X
{
assert 3 < 10;
return 2*x;

}

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

102

https://github.com/Microsoft/dafny/wiki/INSTALL
http://rise4fun.com/Dafny/
https://rise4fun.com/Dafny/tutorial/Guide

Cons

Laboratory Assignment 1 - Dafny

* Implement and fully verity the methods in the next
slides.

* Define the strongest postconditions you can think of

e Define the weakest preconditions you can think of
that are needed tor the postconditions to hold.

truction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado) 103

aboratory Assignment 1 - Exercises

1 -

method Abs(x: 1int) returns (y: int)

method Min2(x: int, y:1int) returns (w:int)

method Max2(x: int, y:1int) returns (w:int)

method Max3(x: int, y:int, z:int) returns (w:int)

method CompareTo(x:int, y:1int) returns (c:int)

Construction and Verification of Software, FCTUNL, © Luis Caires, Jodo Costa Seco (uso reservado)

104

Exercise

function fib(n : int) : 1int
// this 1s the recursive spec of fibonacci
requires n>=0;
{

1f (n==0) then 1 else

1f (n==1) then 1 else fib(n-1)+fib(n-2)
3

// the method fibo below should implement fib efficiently
// “bottom up” using a while loop

method fibo(n : 1int) returns (f : 1int)

requires n>=0;

ensures f == fib(n);

{
¥

Construction and Verification of Software, DI - FCTUNL, © (uso reservado) 105

