
Construction and Verification of Software – 2019/2020

Self Assessment Test 15 April, 2020

Notes: This is a self-assessment test. It is designed to be closed book and for a duration of 1h30m. There are 4 open
answer questions.

Version: A

Name: Number:

Q-1 Given the Hoare triple

{P} t := x; x := y; y := t {Q}

Define the weakest pre-condition and strongest post-conditions conditions P and Q, that make the triple valid.

Q-2 Taking into account what you learnt about Hoare Logic and the following Hoare triple:

{A} if (x%2 == 0) {z := z * 2;} else {y := y * 2;} {z%2 = 0 ∧ y%2 = 0}

Define the weakest precondition possible A that makes the Hoare triple above correct.

Q-3 Considering the program with a placeholder

i := 0; n := 0;

while (i < 10)

[]

{ n := (n + 1)%2; }

Define the loop invariant that established the strongest post-conditions for the program fragment.

Q-4 Select the Hoare triples, expressed here as a Dafny methods, that are not valid.

A - method m(a:array<int>, n:int) returns (x:int)

requires 1 < n < a.Length;

ensures true

{ return a[n] * a[n-1]; }

B - method m(a:array<int>) returns (b:bool)

requires 0 < a.Length

ensures b ==> a[0] == 0

{ return a[0] == 0; }

C - method m(y:int, w:int) returns (x:int)

requires y > 0 && -y <= w <= 0

ensures x > 0

{ x := y + w; }

D - method m(x:int) returns (y:int)

requires x == 1 && x == 2

ensures y > 0

{ y := -1; }

E -

method m(y:int, w:int) returns (x:int)

requires y > 0 && w < 0

ensures x > 0

{ x := y + w; }

1

Construction and Verification of Software - Self Assessment Test - 15 April, 2020 page 2 of 3

Q-5 Complete the code below with the strongest post-conditions, the weakest pre-conditions possible, and the
needed invariants so that Dafny verifies the code without errors.

function count(a:array<int>,p:int, i:int):int

requires 0 <= i <= a.Length

reads a

decreases i

{ if i == 0 then 0 else if a[i-1] == p then count(a,p,i-1) + 1 else count(a,p,i-1) }

method Count(a:array<int>, x:int) returns (s:int)

ensures []

{

var i := 0;

s := 0;

while i < a.Length

decreases a.Length - i

invariant []

invariant []

{

if a[i] == x

{ s := s + 1; }

i := i + 1;

}

}

Construction and Verification of Software - Self Assessment Test - 15 April, 2020 page 3 of 3

Q-6 Consider an ADT representing the control mechanism for a Dig-
ital Clock. It controls the configuration interface of the device.
Follow the state diagram on the right to complete the Dafny code
below such that it represents all state transitions of the object.
Complete the specification of the class by adding field declara-
tions and functions that help define all needed TypeStates and
conditions.

class DigitalClock {

var state: int;

var hours:int;

var minutes: int;

function method Idle():bool reads ‘state { state == 0 }

function method SettingHours():bool reads ‘state { state == 1 }

function method SettingMin():bool reads ‘state { state == 2 }

constructor()

ensures Idle()

{ state := 0; hours := 0; minutes := 0; }

method Set()

requires []

ensures []

ensures []

ensures []

modifies ‘state

{

state := (state + 1)%3;

}

method inc()

requires []

ensures []

ensures []

modifies ‘hours, ‘minutes

{

if SettingHours()

{

hours := (hours + 1)%24;

} else {

minutes := (minutes + 1)%60;

}

}

}

