
Chapter 2 – Software Processes

Chapter 2 Software Processes 130/10/2014

Topics covered

 Software process models

 Process activities

 Coping with change

 Process improvement

Chapter 2 Software Processes 230/10/2014

The software process

 A structured set of activities required to develop a

software system.

 Many different software processes but all involve:

 Specification – defining what the system should do;

 Design and implementation – defining the organization of the

system and implementing the system;

 Validation – checking that it does what the customer wants;

 Evolution – changing the system in response to changing

customer needs.

 A software process model is an abstract representation

of a process. It presents a description of a process from

some particular perspective.

Chapter 2 Software Processes 330/10/2014

Software process descriptions

 When we describe and discuss processes, we usually

talk about the activities in these processes such as

specifying a data model, designing a user interface, etc.

and the ordering of these activities.

 Process descriptions may also include:

 Products, which are the outcomes of a process activity;

 Roles, which reflect the responsibilities of the people involved in

the process;

 Pre- and post-conditions, which are statements that are true

before and after a process activity has been enacted or a

product produced.

Chapter 2 Software Processes 430/10/2014

Plan-driven and agile processes

 Plan-driven processes are processes where all of the

process activities are planned in advance and progress

is measured against this plan.

 In agile processes, planning is incremental and it is

easier to change the process to reflect changing

customer requirements.

 In practice, most practical processes include elements of

both plan-driven and agile approaches.

 There are no right or wrong software processes.

Chapter 2 Software Processes 530/10/2014

Software process models

Chapter 2 Software Processes 630/10/2014

Software process models

 The waterfall model

 Plan-driven model. Separate and distinct phases of specification

and development.

 Incremental development

 Specification, development and validation are interleaved. May

be plan-driven or agile.

 Integration and configuration

 The system is assembled from existing configurable

components. May be plan-driven or agile.

 In practice, most large systems are developed using a

process that incorporates elements from all of these

models.
Chapter 2 Software Processes 730/10/2014

The waterfall model

Chapter 2 Software Processes 830/10/2014

Waterfall model phases

 There are separate identified phases in the waterfall

model:

 Requirements analysis and definition

 System and software design

 Implementation and unit testing

 Integration and system testing

 Operation and maintenance

 The main drawback of the waterfall model is the difficulty

of accommodating change after the process is

underway. In principle, a phase has to be complete

before moving onto the next phase.

Chapter 2 Software Processes 930/10/2014

Waterfall model problems

 Inflexible partitioning of the project into distinct stages

makes it difficult to respond to changing customer

requirements.

 Therefore, this model is only appropriate when the requirements

are well-understood and changes will be fairly limited during the

design process.

 Few business systems have stable requirements.

 The waterfall model is mostly used for large systems

engineering projects where a system is developed at

several sites.

 In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work.

Chapter 2 Software Processes 1030/10/2014

Incremental development

Chapter 2 Software Processes 1130/10/2014

Incremental development benefits

 The cost of accommodating changing customer

requirements is reduced.

 The amount of analysis and documentation that has to be

redone is much less than is required with the waterfall model.

 It is easier to get customer feedback on the development

work that has been done.

 Customers can comment on demonstrations of the software and

see how much has been implemented.

 More rapid delivery and deployment of useful software to

the customer is possible.

 Customers are able to use and gain value from the software

earlier than is possible with a waterfall process.

Chapter 2 Software Processes 1230/10/2014

Incremental development problems

 The process is not visible.

 Managers need regular deliverables to measure progress. If

systems are developed quickly, it is not cost-effective to produce

documents that reflect every version of the system.

 System structure tends to degrade as new increments

are added.

 Unless time and money is spent on refactoring to improve the

software, regular change tends to corrupt its structure.

Incorporating further software changes becomes increasingly

difficult and costly.

Chapter 2 Software Processes 1330/10/2014

Integration and configuration

 Based on software reuse where systems are integrated

from existing components or COTS (Commercial-off-the-

shelf) systems.

 Reused elements may be configured to adapt their

behaviour and functionality to a user’s requirements

 Reuse is now the standard approach for building many

types of business system

Chapter 2 Software Processes 1430/10/2014

Types of reusable software

 Stand-alone application systems (sometimes called

COTS) that are configured for use in a particular

environment.

 Collections of objects that are developed as a package

to be integrated with a component framework (e.g. .NET)

 Web services that are developed according to service

standards and which are available for remote invocation.

Chapter 2 Software Processes 1530/10/2014

Reuse-oriented software engineering

Chapter 2 Software Processes 1630/10/2014

Key process stages

 Requirements specification

 Software discovery and evaluation

 Requirements refinement

 Application system configuration

 Component adaptation and integration

Chapter 2 Software Processes 1730/10/2014

Advantages and disadvantages

 Reduced costs and risks as less software is developed

from scratch

 Faster delivery and deployment of system

 But requirements compromises are inevitable so system

may not meet real needs of users

 Loss of control over evolution of reused system elements

Chapter 2 Software Processes 1830/10/2014

Process activities

Chapter 2 Software Processes 1930/10/2014

Process activities

 Real software processes are inter-leaved sequences of

technical, collaborative and managerial activities with the

overall goal of specifying, designing, implementing and

testing a software system.

 The four basic process activities of specification,

development, validation and evolution are organized

differently in different development processes.

 For example, in the waterfall model, they are organized

in sequence, whereas in incremental development they

are interleaved.

Chapter 2 Software Processes 2030/10/2014

The requirements engineering process

Chapter 2 Software Processes 2130/10/2014

Software design and implementation

 The process of converting the system specification into

an executable system.

 Software design

 Design a software structure that realises the specification;

 Implementation

 Translate this structure into an executable program;

 The activities of design and implementation are closely

related and may be inter-leaved.

Chapter 2 Software Processes 2230/10/2014

A general model of the design process

Chapter 2 Software Processes 2330/10/2014

Design activities

 Architectural design, where you identify the overall

structure of the system, the principal components

(subsystems or modules), their relationships and how

they are distributed.

 Database design, where you design the system data

structures and how these are to be represented in a

database.

 Interface design, where you define the interfaces

between system components.

 Component selection and design, where you search for

reusable components. If unavailable, you design how it

will operate.
Chapter 2 Software Processes 2430/10/2014

System implementation

 The software is implemented either by developing a

program or programs or by configuring an application

system.

 Design and implementation are interleaved activities for

most types of software system.

 Programming is an individual activity with no standard

process.

 Debugging is the activity of finding program faults and

correcting these faults.

Chapter 2 Software Processes 2530/10/2014

Software validation

 Verification and validation (V & V) is intended to show

that a system conforms to its specification and meets the

requirements of the system customer.

 Involves checking and review processes and system

testing.

 System testing involves executing the system with test

cases that are derived from the specification of the real

data to be processed by the system.

 Testing is the most commonly used V & V activity.

Chapter 2 Software Processes 2630/10/2014

Stages of testing

Chapter 2 Software Processes 2730/10/2014

Testing stages

 Component testing

 Individual components are tested independently;

 Components may be functions or objects or coherent groupings

of these entities.

 System testing

 Testing of the system as a whole. Testing of emergent properties

is particularly important.

 Customer testing

 Testing with customer data to check that the system meets the

customer’s needs.

Chapter 2 Software Processes 2830/10/2014

Testing phases in a plan-driven software

process (V-model)

Chapter 2 Software Processes 2930/10/2014

Software evolution

 Software is inherently flexible and can change.

 As requirements change through changing business

circumstances, the software that supports the business

must also evolve and change.

 Although there has been a demarcation between

development and evolution (maintenance) this is

increasingly irrelevant as fewer and fewer systems are

completely new.

Chapter 2 Software Processes 3030/10/2014

System evolution

Chapter 2 Software Processes 3130/10/2014

