
Chapter 4 – Requirements Engineering

Chapter 4 Requirements Engineering 130/10/2014

Topics covered

 Functional and non-functional requirements

 Requirements engineering processes

Chapter 4 Requirements Engineering 230/10/2014

Requirements engineering

 The process of establishing the services that a customer

requires from a system and the constraints under which

it operates and is developed.

 The system requirements are the descriptions of the

system services and constraints that are generated

during the requirements engineering process.

Chapter 4 Requirements Engineering 330/10/2014

What is a requirement?

 It may range from a high-level abstract statement of a
service or of a system constraint to a detailed
mathematical functional specification.

 This is inevitable as requirements may serve a dual
function

 May be the basis for a bid for a contract - therefore must be open
to interpretation;

 May be the basis for the contract itself - therefore must be
defined in detail;

 Both these statements may be called requirements.

Chapter 4 Requirements Engineering 430/10/2014

Requirements abstraction (Davis)

Chapter 4 Requirements Engineering 5

“If a company wishes to let a contract for a large software development

project, it must define its needs in a sufficiently abstract way that a

solution is not pre-defined. The requirements must be written so that

several contractors can bid for the contract, offering, perhaps, different

ways of meeting the client organization’s needs. Once a contract has

been awarded, the contractor must write a system definition for the

client in more detail so that the client understands and can validate what

the software will do. Both of these documents may be called the

requirements document for the system.”

30/10/2014

Types of requirement

 User requirements

 Statements in natural language plus diagrams of the services the

system provides and its operational constraints. Written for

customers.

 System requirements

 A structured document setting out detailed descriptions of the

system’s functions, services and operational constraints. Defines

what should be implemented so may be part of a contract

between client and contractor.

Chapter 4 Requirements Engineering 630/10/2014

Mentcare: A patient information system for

mental health care

 A patient information system to support mental health

care is a medical information system that maintains

information about patients suffering from mental health

problems and the treatments that they have received.

 Most mental health patients do not require dedicated

hospital treatment but need to attend specialist clinics

regularly where they can meet a doctor who has detailed

knowledge of their problems.

 To make it easier for patients to attend, these clinics are

not just run in hospitals. They may also be held in local

medical practices or community centres.

Chapter 1 Introduction 30/10/2014 7

Mentcare

 Mentcare is an information system that is intended for

use in clinics.

 It makes use of a centralized database of patient

information but has also been designed to run on a PC,

so that it may be accessed and used from sites that do

not have secure network connectivity.

 When the local systems have secure network access,

they use patient information in the database but they can

download and use local copies of patient records when

they are disconnected.

Chapter 1 Introduction 30/10/2014 8

User and system requirements

Chapter 4 Requirements Engineering 930/10/2014

Readers of different types of requirements

specification

Chapter 4 Requirements Engineering 1030/10/2014

System stakeholders

 Any person or organization who is affected by the

system in some way and so who has a legitimate interest

 Stakeholder types

 End users

 System managers

 System owners

 External stakeholders

Chapter 4 Requirements Engineering 1130/10/2014

Stakeholders in the Mentcare system

 Patients whose information is recorded in the system.

 Doctors who are responsible for assessing and treating

patients.

 Nurses who coordinate the consultations with doctors

and administer some treatments.

 Medical receptionists who manage patients’

appointments.

 IT staff who are responsible for installing and maintaining

the system.

Chapter 4 Requirements Engineering 1230/10/2014

Stakeholders in the Mentcare system

 A medical ethics manager who must ensure that the

system meets current ethical guidelines for patient care.

 Health care managers who obtain management

information from the system.

 Medical records staff who are responsible for ensuring

that system information can be maintained and

preserved, and that record keeping procedures have

been properly implemented.

Chapter 4 Requirements Engineering 1330/10/2014

Agile methods and requirements

 Many agile methods argue that producing detailed

system requirements is a waste of time as requirements

change so quickly.

 The requirements document is therefore always out of

date.

 Agile methods usually use incremental requirements

engineering and may express requirements as ‘user

stories’ (discussed in Chapter 3).

 This is practical for business systems but problematic for

systems that require pre-delivery analysis (e.g. critical

systems) or systems developed by several teams.

Chapter 4 Requirements Engineering 1430/10/2014

Functional and non-functional requirements

Chapter 4 Requirements Engineering 1530/10/2014

Functional and non-functional requirements

 Functional requirements

 Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

 May state what the system should not do.

 Non-functional requirements

 Constraints on the services or functions offered by the system
such as timing constraints, constraints on the development
process, standards, etc.

 Often apply to the system as a whole rather than individual
features or services.

 Domain requirements

 Info and constraints on the system from the domain of operation

Chapter 4 Requirements Engineering 1630/10/2014

Functional requirements

 Describe functionality or system services.

 Depend on the type of software, expected users and the

type of system where the software is used.

 Functional user requirements may be high-level

statements of what the system should do.

 Functional system requirements should describe the

system services in detail.

Chapter 4 Requirements Engineering 1730/10/2014

Mentcare system: functional requirements

 R1. A user shall be able to search the appointments lists.

 R2. The system shall generate each day, for each clinic,

a list of patients who are expected to attend

appointments that day.

 R3. Each staff member using the system shall be

uniquely identified by his or her 8-digit employee

number.

Chapter 4 Requirements Engineering 1830/10/2014

Requirements imprecision

 Problems arise when functional requirements are not

precisely stated.

 Ambiguous requirements may be interpreted in different

ways by developers and users.

 Consider the term ‘search’ in requirement R1

 User intention – search for a patient name across all

appointments in all clinics;

 Developer interpretation – search for a patient name in an

individual clinic. User chooses clinic then search.

Chapter 4 Requirements Engineering 1930/10/2014

Requirements completeness and consistency

 In principle, requirements should be both complete and

consistent.

 Complete

 They should include descriptions of all facilities required.

 Consistent

 There should be no conflicts or contradictions in the descriptions

of the system facilities.

 In practice, because of system and environmental

complexity, it is very difficult to produce a complete and

consistent requirements document.

Chapter 4 Requirements Engineering 2030/10/2014

Non-functional requirements

 These define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are I/O device capability, system
representations, etc.

 Process requirements may also be specified mandating
a particular IDE, programming language or development
method.

 Non-functional requirements may be more critical than
functional requirements. If these are not met, the system
may be useless.

Chapter 4 Requirements Engineering 2130/10/2014

Types of nonfunctional requirement

Chapter 4 Requirements Engineering 2230/10/2014

Non-functional requirements implementation

 Non-functional requirements may affect the overall

architecture of a system rather than the individual

components.

 For example, to ensure that performance requirements are met,

you may have to organize the system to minimize

communications between components.

 A single non-functional requirement, such as a security

requirement, may affect a number of related functional

requirements that define system services that are

required.

 It may also generate requirements that restrict existing

requirements.

Chapter 4 Requirements Engineering 2330/10/2014

Non-functional classifications

 Product requirements

 Requirements which specify that the delivered product must

behave in a particular way e.g. execution speed, reliability, etc.

 Organisational requirements

 Requirements which are a consequence of organisational

policies and procedures e.g. process standards used,

implementation requirements, etc.

 External requirements

 Requirements which arise from factors which are external to the

system and its development process e.g. interoperability

requirements, legislative requirements, etc.

Chapter 4 Requirements Engineering 2430/10/2014

Examples of nonfunctional requirements in the

Mentcare system

Chapter 4 Requirements Engineering 25

Product requirement
The Mentcare system shall be available to all clinics during normal
working hours (Mon–Fri, 0830–17.30). Downtime within normal
working hours shall not exceed five seconds in any one day.

Organizational requirement
Users of the Mentcare system shall authenticate themselves using
their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out in
HStan-03-2006-priv.

30/10/2014

Goals and requirements

 Non-functional requirements may be very difficult to state

precisely and imprecise requirements may be difficult to

verify.

 Goal

 A general intention of the user such as ease of use.

 Verifiable non-functional requirement

 A statement using some measure that can be objectively tested.

 Goals are helpful to developers as they convey the

intentions of the system users.

Chapter 4 Requirements Engineering 2630/10/2014

Usability requirements

 The system should be easy to use by medical staff and

should be organized in such a way that user errors are

minimized. (Goal)

 Medical staff shall be able to use all the system functions

after four hours of training. After this training, the

average number of errors made by experienced users

shall not exceed two per hour of system use. (Testable

non-functional requirement)

Chapter 4 Requirements Engineering 2730/10/2014

Metrics for specifying nonfunctional

requirements

Chapter 4 Requirements Engineering 28

Property Measure

Speed Processed transactions/second

User/event response time

Screen refresh time

Size Mbytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

30/10/2014

Requirements engineering processes

Chapter 4 Requirements Engineering 2930/10/2014

Requirements engineering processes

 The processes used for RE vary widely depending on
the application domain, the people involved and the
organisation developing the requirements.

 However, there are a number of generic activities
common to all processes

 Requirements elicitation;

 Requirements analysis;

 Requirements validation;

 Requirements management.

 In practice, RE is an iterative activity in which these
processes are interleaved.

Chapter 4 Requirements Engineering 3030/10/2014

A spiral view of the requirements engineering

process

Chapter 4 Requirements Engineering 3130/10/2014

Requirements elicitation and analysis

 Sometimes called requirements elicitation or

requirements discovery.

 Involves technical staff working with customers to find

out about the application domain, the services that the

system should provide and the system’s operational

constraints.

 May involve end-users, managers, engineers involved in

maintenance, domain experts, trade unions, etc. These

are called stakeholders.

Chapter 4 Requirements Engineering 3230/10/2014

Requirements elicitation

 Software engineers work with a range of system

stakeholders to find out about the application domain,

the services that the system should provide, the required

system performance, hardware constraints, other

systems, etc.

 Stages include:

 Requirements discovery,

 Requirements classification and organization,

 Requirements prioritization and negotiation,

 Requirements specification.

Chapter 4 Requirements Engineering 3330/10/2014

The requirements elicitation and analysis

process

Chapter 4 Requirements Engineering 3430/10/2014

Problems of requirements elicitation

 Stakeholders don’t know what they really want.

 Stakeholders express requirements in their own terms.

 Different stakeholders may have conflicting

requirements.

 Organisational and political factors may influence the

system requirements.

 The requirements may change during the analysis

process. New stakeholders may emerge and the

business environment may change.

Chapter 4 Requirements Engineering 3530/10/2014

Requirements discovery

 The process of gathering information about the required

and existing systems and distilling the user and system

requirements from this information.

 Interaction is with system stakeholders from managers to

external regulators.

 Systems normally have a range of stakeholders.

Chapter 4 Requirements Engineering 3630/10/2014

Interviewing

 Formal or informal interviews with stakeholders are part

of most RE processes.

 Types of interview

 Closed interviews based on pre-determined list of questions

 Open interviews where various issues are explored with

stakeholders.

 Effective interviewing

 Be open-minded, avoid pre-conceived ideas about the

requirements and are willing to LISTEN to stakeholders.

 Prompt the interviewee to get discussions going using a

springboard question, a requirements proposal, or by working

together on a prototype system.

Chapter 4 Requirements Engineering 3730/10/2014

Interviews in practice

 Normally a mix of closed and open-ended interviewing.

 Interviews are good for getting an overall understanding
of what stakeholders do and how they might interact with
the system.

 Interviewers need to be open-minded without pre-
conceived ideas of what the system should do

 You need to prompt the user to talk about the system by
suggesting requirements rather than simply asking them
what they want.

30/10/2014 Chapter 4 Requirements Engineering 38

Problems with interviews

 Application specialists may use language to describe
their work that isn’t easy for the requirements engineer to
understand.

 Interviews are not good for understanding domain
requirements

 Requirements engineers cannot understand specific domain
terminology;

 Some domain knowledge is so familiar that people find it hard to
articulate or think that it isn’t worth articulating.

Chapter 4 Requirements Engineering 3930/10/2014

Scenarios

 A structured form of user story

 Scenarios should include

 A description of the starting situation;

 A description of the normal flow of events;

 A description of what can go wrong;

 Information about other concurrent activities;

 A description of the state when the scenario finishes.

Chapter 4 Requirements Engineering 4130/10/2014

User Stories and Scenarios

 User Story

As a Customer

I want to transfer Money from current to savings account

so that my savings increase

 Scenario1: Money Transfer to Savings Account OK

Given the customer has logged into their current account

And the balance is shown to be 100 euros

When the customer transfers 75 euros to their savings account

Then the new current account balance should be 25 euros

User Stories x Use Cases

User Stories Use Cases

Similarities •Generally formulated in users' everyday
language. They should help the reader
understand what the software should
accomplish.

•Written in users' everyday business language, to
facilitate stakeholder communications.

Differences •Provide a small-scale and easy-to-use
presentation of information, with little
detail, thus remaining open to
interpretation, through conversations
with on-site customers.

•Use cases organize requirements to form a narrative
of how users relate to and use a system. Hence they
focus on user goals and how interacting with a system
satisfies the goals.
•Use case flows describe sequences of interactions. A
use case is intended to provide sufficient detail for it to
be understood on its own.

Template
As a <type of user>, I want <some goal>
so that <some reason>.

•Title: "goal the use case is trying to satisfy"
•Main Success Scenario: numbered list of steps

• Step: "a simple statement of the interaction
between the actor and a system"

•Extensions: separately numbered lists, one per
Extension

• Extension: "a condition that results in
different interactions from .. the main
success scenario". An extension from main
step 3 is numbered 3a, etc.

Requirements specification

Chapter 4 Requirements Engineering 4430/10/2014

Requirements specification

 The process of writing down the user and system

requirements in a requirements document.

 User requirements have to be understandable by end-

users and customers who do not have a technical

background.

 System requirements are more detailed requirements

and may include more technical information.

 The requirements may be part of a contract for the

system development

 It is therefore important that these are as complete as possible.

Chapter 4 Requirements Engineering 4530/10/2014

Ways of writing a system requirements

specification

Chapter 4 Requirements Engineering 46

Notation Description

Natural language The requirements are written using numbered sentences in natural language.

Each sentence should express one requirement.

Structured natural

language

The requirements are written in natural language on a standard form or

template. Each field provides information about an aspect of the

requirement.

Design description

languages

This approach uses a language like a programming language, but with more

abstract features to specify the requirements by defining an operational

model of the system. This approach is now rarely used although it can be

useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define the

functional requirements for the system; UML use case and sequence

diagrams are commonly used.

Mathematical

specifications

These notations are based on mathematical concepts such as finite-state

machines or sets. Although these unambiguous specifications can reduce

the ambiguity in a requirements document, most customers don’t understand

a formal specification. They cannot check that it represents what they want

and are reluctant to accept it as a system contract

30/10/2014

Requirements and design

 In principle, requirements should state what the system
should do and the design should describe how it does
this.

 In practice, requirements and design are inseparable

 A system architecture may be designed to structure the
requirements;

 The system may inter-operate with other systems that generate
design requirements;

 The use of a specific architecture to satisfy non-functional
requirements may be a domain requirement.

 This may be the consequence of a regulatory requirement.

30/10/2014 Chapter 4 Requirements Engineering 47

Natural language specification

 Requirements are written as natural language sentences

supplemented by diagrams and tables.

 Used for writing requirements because it is expressive,

intuitive and universal. This means that the requirements

can be understood by users and customers.

Chapter 4 Requirements Engineering 4830/10/2014

Guidelines for writing requirements

 Invent/adopt a standard format and use it for all

requirements.

 Use language in a consistent way. Use shall for

mandatory requirements, should for desirable

requirements.

 Use text highlighting to identify key parts of the

requirement.

 Avoid the use of computer jargon.

 Include an explanation (rationale) of why a requirement

is necessary.

30/10/2014 Chapter 4 Requirements Engineering 49

Problems with natural language

 Lack of clarity

 Precision is difficult without making the document difficult to

read.

 Requirements confusion

 Functional and non-functional requirements tend to be mixed-up.

 Requirements amalgamation

 Several different requirements may be expressed together.

30/10/2014 Chapter 4 Requirements Engineering 50

Example requirements for the insulin pump

software system

Chapter 4 Requirements Engineering 51

3.2 The system shall measure the blood sugar and deliver
insulin, if required, every 10 minutes. (Changes in blood sugar
are relatively slow so more frequent measurement is
unnecessary; less frequent measurement could lead to
unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with
the conditions to be tested and the associated actions defined
in Table 1. (A self-test routine can discover hardware and
software problems and alert the user to the fact the normal
operation may be impossible.)

30/10/2014

Number
reqs

Explaining
reqs

A structured specification of a requirement for

an insulin pump

Chapter 4 Requirements Engineering 5230/10/2014

A structured specification of a requirement for

an insulin pump

Chapter 4 Requirements Engineering 5330/10/2014

Tabular specification of computation for an

insulin pump

Chapter 4 Requirements Engineering 54

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of

increase decreasing

((r2 – r1) < (r1 – r0))

CompDose = 0

Sugar level increasing and rate of

increase stable or increasing

((r2 – r1) ≥ (r1 – r0))

CompDose =

round ((r2 – r1)/4)

If rounded result = 0 then

CompDose =

MinimumDose

30/10/2014

Graphical notations: Use cases

(Mentcare system)

Chapter 4 Requirements Engineering 5530/10/2014

The software requirements document

 The software requirements document is the official

statement of what is required of the system developers.

 Should include both a definition of user requirements

and a specification of the system requirements.

 It is NOT a design document. As far as possible, it

should set of WHAT the system should do rather than

HOW it should do it.

Chapter 4 Requirements Engineering 5630/10/2014

The structure of a requirements document

Chapter 4 Requirements Engineering 57

Chapter Description

Preface This should define the expected readership of the document and describe

its version history, including a rationale for the creation of a new version

and a summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the

system’s functions and explain how it will work with other systems. It

should also describe how the system fits into the overall business or

strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should

not make assumptions about the experience or expertise of the reader.

User requirements

definition

Here, you describe the services provided for the user. The nonfunctional

system requirements should also be described in this section. This

description may use natural language, diagrams, or other notations that are

understandable to customers. Product and process standards that must be

followed should be specified.

System architecture This chapter should present a high-level overview of the anticipated system

architecture, showing the distribution of functions across system modules.

Architectural components that are reused should be highlighted.

30/10/2014

The structure of a requirements document

Chapter Description

System

requirements

specification

This should describe the functional and nonfunctional requirements in more detail.

If necessary, further detail may also be added to the nonfunctional requirements.

Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between

the system components and the system and its environment. Examples of

possible models are object models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is based,

and any anticipated changes due to hardware evolution, changing user needs,

and so on. This section is useful for system designers as it may help them avoid

design decisions that would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the

application being developed; for example, hardware and database descriptions.

Hardware requirements define the minimal and optimal configurations for the

system. Database requirements define the logical organization of the data used

by the system and the relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic

index, there may be an index of diagrams, an index of functions, and so on.

Chapter 4 Requirements Engineering 5830/10/2014

Requirements validation

Chapter 4 Requirements Engineering 5930/10/2014

Requirements validation

 Concerned with demonstrating that the requirements

define the system that the customer really wants.

 Requirements error costs are high so validation is very

important

 Fixing a requirements error after delivery may cost up to 100 or

200 times the cost of fixing an implementation error.

Chapter 4 Requirements Engineering 6030/10/2014

Requirements validation techniques

 Requirements reviews

 Systematic manual analysis of the requirements.

 Prototyping

 Using an executable model of the system to check
requirements.

 Test-case generation

 Developing tests for requirements to check testability.

Chapter 4 Requirements Engineering 6130/10/2014

Software prototyping

 A prototype is an initial version of a system used to

demonstrate concepts and try out design options.

 A prototype can be used in:

 The requirements engineering process to help with requirements

elicitation and validation;

 In design processes to explore options and develop a UI design;

 In the testing process to run back-to-back tests.

Chapter 2 Software Processes 6230/10/2014

Benefits of prototyping

 Improved system usability.

 A closer match to users’ real needs.

 Improved design quality.

 Improved maintainability.

 Reduced development effort.

Chapter 2 Software Processes 6330/10/2014

The process of prototype development

Chapter 2 Software Processes 6430/10/2014

Prototype development

 May be based on rapid prototyping languages or tools

 May involve leaving out functionality

 Prototype should focus on areas of the product that are not well-

understood;

 Error checking and recovery may not be included in the

prototype;

 Focus on functional rather than non-functional requirements

such as reliability and security

Chapter 2 Software Processes 6530/10/2014

Throw-away prototypes

 Prototypes should be discarded after development as

they are not a good basis for a production system:

 It may be impossible to tune the system to meet non-functional

requirements;

 Prototypes are normally undocumented;

 The prototype structure is usually degraded through rapid

change;

 The prototype probably will not meet normal organisational

quality standards.

Chapter 2 Software Processes 6630/10/2014

Requirements change

Chapter 4 Requirements Engineering 6730/10/2014

Changing requirements

 Large systems usually have a diverse user community,

with many users having different requirements and

priorities that may be conflicting or contradictory.

 The final system requirements are inevitably a compromise

between them and, with experience, it is often discovered that

the balance of support given to different users has to be

changed.

Chapter 4 Requirements Engineering 6830/10/2014

Requirements evolution

Chapter 4 Requirements Engineering 6930/10/2014

Requirements management

 Requirements management is the process of managing

changing requirements during the requirements

engineering process and system development.

 New requirements emerge as a system is being

developed and after it has gone into use.

 You need to keep track of individual requirements and

maintain links between dependent requirements so that

you can assess the impact of requirements changes.

You need to establish a formal process for making

change proposals and linking these to system

requirements.

Chapter 4 Requirements Engineering 7030/10/2014

Requirements change management

Chapter 4 Requirements Engineering 7230/10/2014

