.
P \

Software Engineering

Chapter 6 — Architectural Design

07/05/2018 Chapter 6 Architectural Design 1

Topics covered

< Architectural design decisions
< Architectural views
<> Architectural patterns

< Application architectures

07/05/2018 Chapter 6 Architectural Design 2

Architectural design

< Architectural design is concerned with understanding
how a software system should be organized and
designing the overall structure of that system.

<> Architectural design is the critical link between design
and requirements engineering, as it identifies the main
structural components in a system and the relationships
between them.

<> The output of the architectural design process is an
architectural model that describes how the system is
organized as a set of communicating components.

07/05/2018 Chapter 6 Architectural Design 3

Agqility and architecture

< It is generally accepted that an early stage of agile
processes is to design an overall systems architecture.

< Refactoring the system architecture is usually expensive
because it affects so many components in the system

07/05/2018 Chapter 6 Architectural Design 4

Architectural abstraction

< Architecture in the small is concerned with the
architecture of individual programs. At this level, we are
concerned with the way that an individual program is
decomposed into components.

< Architecture in the large Is concerned with the
architecture of complex enterprise systems that include
other systems, programs, and program components.
These enterprise systems are distributed over different
computers, which may be owned and managed by
different companies.

07/05/2018 Chapter 6 Architectural Design

Advantages of explicit architecture

< Stakeholder communication

= Architecture may be used as a focus of discussion by system
stakeholders.

< System analysis

= Means that analysis of whether the system can meet its non-
functional requirements is possible.

< Large-scale reuse

= The architecture may be reusable across a range of systems
» Product-line architectures may be developed.

07/05/2018 Chapter 6 Architectural Design 6

Architectural representations

< Simple, informal block diagrams showing entities and
relationships are the most frequently used method for
documenting software architectures.

< But these have been criticised because they lack
semantics, do not show the types of relationships
between entities nor the visible properties of entities in
the architecture.

<> Depends on the use of architectural models. The
requirements for model semantics depends on how the
models are used.

07/05/2018 Chapter 6 Architectural Design 7

The architecture of a packing robot control

system

/o WA \A N L
Software Engineering

07/05/2018

Vision
system
Object Arm
identification —> controller
system
Packaging
selection
system
>
. -
Packing
system

Gripper
controller

Chapter 6 Architectural Design

Conveyor
controller

|
Workb;:;f; Update
Outline and
2 Forms Properties Views
= - < > />
kbench /
i o el’\cerg ives) = %//
. =

|

er |/
//% Applica .

iz

Architectural Styles 9

Box and line diagrams

< Very abstract - they do not show the nature of
component relationships nor the externally visible
properties of the sub-systems.

<> However, useful for communication with stakeholders
and for project planning.

07/05/2018 Chapter 6 Architectural Design 11

...50 we will use Components and Deployment
diagrams

id Component Model3 / dd Metwark KMadel /
Product
rodue firewsall H
Item C(.;ms/
/\ :
Customer Details E wtocp-ipx
Order @ Customer 1
lozal netwiork Ij
J_\ 1 1
Payment
T . wetherneatns wethernets
1 1.7
o =]
AccountDetails ‘f:|::I primary H Wi kStE‘tiDl‘l

sarvwar

7]

Account

07/05/2018 Chapter 6 Architectural Design 12

Use of architectural models

<> As a way of facilitating discussion about the system
design

= A high-level architectural view of a system is useful for
communication with system stakeholders and project planning
because it is not cluttered with detail. Stakeholders can relate to
It and understand an abstract view of the system. They can then
discuss the system as a whole without being confused by detail.

< As a way of documenting an architecture that has been
designed

= The aim here is to produce a complete system model that shows

the different components in a system, their interfaces and their
connections.

07/05/2018 Chapter 6 Architectural Design 13

.
P \

Software Engineering

Architectural design decisions

07/05/2018 Chapter 6 Architectural Design 14

Architectural design decisions

< Architectural design is a creative process Sso the process
differs depending on the type of system being
developed.

< However, a number of common decisions span all
design processes and these decisions affect the non-
functional characteristics of the system.

07/05/2018 Chapter 6 Architectural Design 15

Architectural design decisions

Is there a generic application
architecture that can act as a
template for the system that is
being designed?

How will the system be
distributed across hardware
cores or processors?

What will be the fundamental
approach used to structure
the system?

How will the structural
components in the system be
decomposed into
sub-components?

What architectural patterns or
styles might be used?

What strategy will be used to
control the operation of the
components in the system?

07/05/2018

What architectural organization
is best for delivering the
non-functional requirements
of the system?

How should the architecture
of the system be
documented?

Chapter 6 Architectural Design

16

Architecture reuse

< Systems in the same domain often have similar
architectures that reflect domain concepts.

< Application product lines are built around a core
architecture with variants that satisfy particular customer
requirements.

<> The architecture of a system may be designed around
one of more architectural patterns or ‘styles’.

» These capture the essence of an architecture and can be
Instantiated in different ways.

07/05/2018 Chapter 6 Architectural Design 17

Architecture and system characteristics

< Performance

= Localise critical operations and minimise communications. Use
large rather than fine-grain components.

< Security

= Use a layered architecture with critical assets in the inner layers.

< Safety

» |Localise safety-critical features in a small number of sub-
systems.

< Avallability

» |nclude redundant components and mechanisms for fault
tolerance.

< Maintainability

= Use fine-grain, replaceable components.
07/05/2018 Chapter 6 Architectural Design 18

Software Engineering

Architectural views

07/05/2018 Chapter 6 Architectural Design 19

Architectural views

< What views or perspectives are useful when designing
and documenting a system’s architecture?

< What notations should be used for describing
architectural models?

<> Each architectural model only shows one view or
perspective of the system.

* |t might show how a system is decomposed into modules, how
the run-time processes interact or the different ways in which
system components are distributed across a network.

» For both design and documentation, you usually need to present
multiple views of the software architecture.

07/05/2018 Chapter 6 Architectural Design 20

Architectural views

NN
los W \A N
Software Engineering

® o
Logical Physical
view view
System
architecture
Development Process
view view
® o

07/05/2018 Chapter 6 Architectural Design 21

Views and UML diagrams

4+1 View Model (Philippe Kruchten) UML (industry standard)

Class Diagram

o Logical View
Use Case Diagram

Object diagram
State-chart diagram

O Process View

0 Deployment View

0 Development View Sequence diagram

O Scenario View

Collaboration diagram
Or Use Case View

Activity diagram
Component diagram

O o o o o o o o d

Deployment diagram

Chapter 6 Architectural design 22

4 + 1 view model of software architecture

< Alogical view, which shows the key abstractions in the
system as objects or object classes.

< A process view, which shows how, at run-time, the
system is composed of interacting processes.

< A development view, which shows how the software is
decomposed for development.

< A physical (deployment) view, which shows the system
hardware and how software components are distributed
across the processors in the system.

<> Related using use cases or scenarios (+1)

07/05/2018 Chapter 6 Architectural Design 23

Representing architectural views

rn:? 44
Software Engineering

<> Some people argue that the Unified Modeling Language (UML) is an
appropriate notation for describing and documenting system
architectures

< Architectural description languages (ADLs) have been developed
but are not widely used
System simple_cs = {

Component client = { Port send-request; };
Component server = { Port receive-request; };

Connector rpc = { Roels { caller, callee}};
Attachments {
client.send-request to rpc.caller;

Cliend [*> Py server.receive-request to rpc.callee; }}

07/05/2018 Chapter 6 Architectural Design 24

.
P \

Software Engineering

Architectural patterns

07/05/2018 Chapter 6 Architectural Design 25

Architectural patterns

< Patterns are a means of representing, sharing and
reusing knowledge.

<> An architectural pattern is a stylized description of good
design practice, which has been tried and tested Iin
different environments.

< Patterns should include information about when they are
and when the are not useful.

< Patterns may be represented using tabular and graphical
descriptions.

07/05/2018 Chapter 6 Architectural Design 26

The Model-View-Controller (MVC) pattern

Description

Example

When used

Advantages

Disadvantages

07/05/2018

Separates presentation and interaction from the system data. The system is
structured into three logical components that interact with each other. The
Model component manages the system data and associated operations on
that data. The View component defines and manages how the data is
presented to the user. The Controller component manages user interaction
(e.qg., key presses, mouse clicks, etc.) and passes these interactions to the
View and the Model. See Figure 6.3.

Next Figure shows the architecture of a web-based application system
organized using the MVC pattern.

Used when there are multiple ways to view and interact with data. Also used
when the future requirements for interaction and presentation of data are
unknown.

Allows the data to change independently of its representation and vice versa.
Supports presentation of the same data in different ways with changes made
in one representation shown in all of them.

Can involve additional code and code complexity when the data model and
interactions are simple.

Chapter 6 Architectural Design 27

The organization of the Model-View-Controller

N\
AL

/o WA \ A
Software Engineering

Controller View View
) selection
Maps user actions »| Renders model

to model updates Requests model updates

- -
elects view Sends user events to
- User events

controller
Change
notification
State
change State query
Model
Encapsulates application
— > state Dl

Notifies view of state
changes

07/05/2018 Chapter 6 Architectural Design 28

Web application architecture using the MVC
pattern

Browser

Controller F View
orm to
: display .
HTTP request processing | ° | Dynamic page
Application-specific logic generation
idati < Forms management
Data validation User events g
A
Change
notification
Update Refresh request
request
Model
Business logic
— -

Database

07/05/2018 Chapter 6 Architectural Design 29

Layered architecture

< Used to model the interfacing of sub-systems.

<> Organises the system into a set of layers (or abstract
machines) each of which provide a set of services.

<> Supports the incremental development of sub-systems in
different layers. When a layer interface changes, only the
adjacent layer is affected.

< However, often artificial to structure systems in this way.

07/05/2018 Chapter 6 Architectural Design 30

The Layered architecture pattern

== R }\
Software Engineering

Description Organizes the system into layers with related functionality
associated with each layer. A layer provides services to the layer
above it so the lowest-level layers represent core services that
are likely to be used throughout the system. See Figure 6.6.

Example A layered model of a system for sharing copyright documents
held in different libraries.
When used Used when building new facilities on top of existing systems;

when the development is spread across several teams with each
team responsibility for a layer of functionality; when there is a
requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is
maintained. Redundant facilities (e.g., authentication) can be
provided in each layer to increase the dependability of the
system.

Disadvantages In practice, providing a clean separation between layers is often
difficult and a high-level layer may have to interact directly with
lower-level layers rather than through the layer immediately
below it. Performance can be a problem because of multiple
levels of interpretation of a service request as it is processed at
each layer.

07/05/2018 Chapter 6 Architectural Design 31

A generic layered architecture

/o WA \A N 3
Software Engineering

User interface

User interface management
Authentication and authorization

Core business logic/application functionality
System utilities

System support (OS, database etc.)

07/05/2018 Chapter 6 Architectural Design 32

The architecture of the iLearn system

=SBy B,
Software Engineering

Browser-based user interface iLearn app

Configuration services

Group Application Identity
management management management

Application services

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder
Spreadsheet Virtual learning environment History archive

Utility services

Authentication Logging and monitoring Interfacing
User storage Application storage Search

07/05/2018 Chapter 6 Architectural Design 33

Repository architecture

< Sub-systems must exchange data. This may be done in
two ways:
= Shared data is held in a central database or repository and may
be accessed by all sub-systems;

= Each sub-system maintains its own database and passes data
explicitly to other sub-systems.

< When large amounts of data are to be shared, the
repository model of sharing is most commonly used as
this is an efficient data sharing mechanism.

07/05/2018 Chapter 6 Architectural Design 34

The Repository pattern

= =Tl W} \/\ {
Software Engineering

Description

Example

When used

Advantages

Disadvantages

07/05/2018

All data in a system is managed in a central repository that is
accessible to all system components. Components do not
interact directly, only through the repository.

Next Figure is an example of an IDE where the components
use a repository of system design information. Each software
tool generates information which is then available for use by
other tools.

You should use this pattern when you have a system in which
large volumes of information are generated that has to be
stored for a long time. You may also use it in data-driven
systems where the inclusion of data in the repository triggers
an action or tool.

Components can be independent—they do not need to know
of the existence of other components. Changes made by one
component can be propagated to all components. All data can
be managed consistently (e.g., backups done at the same
time) as it is all in one place.

The repository is a single point of failure so problems in the
repository affect the whole system. May be inefficiencies in
organizing all communication through the repository.
Distributing the repository across several computers may be

difficult.
Chapter 6 Architectural Design

35

A repository architecture for an IDE

/o WA \A N
Software Engineering

UML
editors

Design
translator

|

Code
generators

|

07/05/2018

Project
repository

Java
editor

|

Design
analyzer

|

[\

Python
editor

Report
generator

Chapter 6 Architectural Design

36

Client-server architecture

<> Distributed system model which shows how data and
processing is distributed across a range of components.

= Can be implemented on a single computer.

< Set of stand-alone servers which provide specific
services such as printing, data management, etc.

< Set of clients which call on these services.
<> Network which allows clients to access servers.

07/05/2018 Chapter 6 Architectural Design 37

The Client—server pattern

Description

Example

When used

Advantages

Disadvantages

07/05/2018

In a client—server architecture, the functionality of the system is
organized into services, with each service delivered from a
separate server. Clients are users of these services and access
servers to make use of them.

Next Figure is an example of a film and video/DVD library
organized as a client—server system.

Used when data in a shared database has to be accessed from a
range of locations. Because servers can be replicated, may also be
used when the load on a system is variable.

The principal advantage of this model is that servers can be
distributed across a network. General functionality (e.g., a printing
service) can be available to all clients and does not need to be
implemented by all services.

Each service is a single point of failure so susceptible to denial of
service attacks or server failure. Performance may be unpredictable
because it depends on the network as well as the system. May be
management problems if servers are owned by different
organizations.

Chapter 6 Architectural Design

38

A client—server architecture for a film library

Caer) (cionz) (Cciens) (“ciems)

[T

Internet

Catalog Video Picture Web

server server server server

Library Film store Photo store Film a!nd
catalogue photo info.

07/05/2018 Chapter 6 Architectural Design 39

Los W \ N T !
Software Engineering

Design patterns

30/10/2014 Chapter 7 Design and Implementation 43

Design patterns

<> A design pattern is a way of reusing abstract knowledge
about a problem and its solution.

< A pattern is a description of the problem and the essence
of its solution.

<> It should be sufficiently abstract to be reused in different
settings.

< Pattern descriptions usually make use of object-oriented
characteristics such as inheritance and polymorphism.

30/10/2014 Chapter 7 Design and Implementation 44

Patterns

< Patterns and Pattern Languages are ways to describe
best practices, good designs, and capture experience in
a way that it is possible for others to reuse this
experience.

30/10/2014 Chapter 7 Design and Implementation 45

Pattern elements

< Name

= A meaningful pattern identifier.

<> Problem description.

< Solution description.

= Not a concrete design but a template for a design solution that
can be instantiated in different ways.

< Conseqguences

= The results and trade-offs of applying the pattern.

30/10/2014 Chapter 7 Design and Implementation 46

The Observer pattern

< Name
= QObserver.
< Description
= Separates the display of object state from the object itself.
<> Problem description
= Used when multiple displays of state are needed.
<> Solution description
= See slide with UML description.
< Consequences
= Optimisations to enhance display performance are impractical.

30/10/2014 Chapter 7 Design and Implementation 47

The Observer pattern (1)

Software Engineering

Pattern Observer
name

Description Separates the display of the state of an object from the object itself and
allows alternative displays to be provided. When the object state
changes, all displays are automatically notified and updated to reflect the

change.
Problem In many situations, you have to provide multiple displays of state
description information, such as a graphical display and a tabular display. Not all of

these may be known when the information is specified. All alternative
presentations should support interaction and, when the state is changed,
all displays must be updated.

This pattern may be used in all situations where more than one
display format for state information is required and where it is not
necessary for the object that maintains the state information to know
about the specific display formats used.

30/10/2014 Chapter 7 Design and Implementation 48

The Observer pattern (2)

Solution
description

Consequences

30/10/2014

This involves two abstract objects, Subject and Observer, and two concrete
objects, ConcreteSubject and ConcreteObject, which inherit the attributes of the
related abstract objects. The abstract objects include general operations that are
applicable in all situations. The state to be displayed is maintained in
ConcreteSubject, which inherits operations from Subject allowing it to add and
remove Observers (each observer corresponds to a display) and to issue a
notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and
implements the Update() interface of Observer that allows these copies to be kept
in step. The ConcreteObserver automatically displays the state and reflects
changes whenever the state is updated.

The subject only knows the abstract Observer and does not know details of the
concrete class. Therefore there is minimal coupling between these objects.
Because of this lack of knowledge, optimizations that enhance display
performance are impractical. Changes to the subject may cause a set of linked
updates to observers to be generated, some of which may not be necessary.

Chapter 7 Design and Implementation 49

30/10/2014

Observer 1

Chapter 7 Design and Implementation

50
25
AlB|C|D
0
Subject T
- A: 40 .5 | Observer 2
B: 25
C:15
D: 20

Los W \ A7/
Software Engineering

50

A UML model of the Observer pattern

=] A
Software Engineering

Subject

Attach (Observer)
Detach (Observer)
Notify () =---------1

forall o in observers AN
o ->Update ()

Observer

Update ()

/N

ConcreteSubject

GetState () """

subject State

30/10/2014

AN

retum subjectState

ConcreteObserver

Update () S

observerState

Chapter 7 Design and Implementation

observerState =
subject = GetState ()

]

51

Facade pattern

las S AN
Software Engineering

<> The facade pattern is typically used when

= a simple interface is required to access a complex system,
= asystem is very complex or difficult to understand,
= an entry point is needed to each level of layered software, or

= the abstractions and implementations of a subsystem are tightly
coupled.

Client Facade :Client :Facade :Class1 :Class2

:Class3

/ \\ Subsystam 1

x'f'f c:f 2 \\
ZF ﬁ'fi \\\3 %

T '
\

T

y Class1 / Class3 :

Sample S5amp B
Class Sequq hce
Diagram [ua-gr}m

W . X

Composite pattern

los W \NA N
Software Engineering

< What problems can the Composite design pattern solve?

= A part-whole hierarchy should be represented so that clients can
treat part and whole objects uniformly.

= A part-whole hierarchy should be represented as tree structure.

Component :
Client it studeciadd SiNion composite]
1- :Component
operationy

foreach child in children :
chik.operation(l;

leafl
:Component
Leaf Composite : ~
Sample L OJ ' Sampk leaf3
Class _ . ' Object :Component
N operation|] operationf}- - f-------

Diagran Collabaration

composi le2
K:Cﬂmem

07/05/2018 Chapter 6 Architectural Design 53

Key points

< A software architecture is a description of how a software
system is organized.

< Architectural design decisions include decisions on the
type of application, the distribution of the system, the
architectural styles to be used.

< Architectures may be documented from several different
perspectives or views such as a conceptual view, a
logical view, a process view, and a development view.

<> Architectural patterns are a means of reusing knowledge
about generic system architectures. They describe the
architecture, explain when it may be used and describe
Its advantages and disadvantages.

07/05/2018 Chapter 6 Architectural Design 55

