COMPILING FOR THE COMMONINTERMEDIATE LANGUAGE

The Common Intermediate Language

The Common Intermediate Language (CIL - also known as
Microsoft Intermediate Language, or MSIL) is an intermediate
representation developed by Microsoft to be the core language
of the .NET framework. AIll the .NET languages such as C#,

VB .NET of VC++ are compiled to CIL, which is the only
language accepted by the Common Language Runtime (CLR) of
NET.?

CIL Instruction Set Architecture

The CIL is a stack- based architecture (having a bytecode
format, like JAVA bytecode its instructions are also of
varying lengths). As it was meant to support many features of
advanced languages, it has many dedicated instructions, such
as those needed to handle the creation and manipulation of
objects and the invocation of object methods.

In this document we describe a subset of the language
that corresponds to a basic stack- based architecture, but a
useful subset that simple languages can be compiled to.

The columns in the next three sections show the assembly
format, description and transition of the stack contents for
the instructions in this subset. A typical stack transition
Is shown as: ..,valil,val2 -> ..,result. This describes an
instruction removing the top two values on the stack (val2 is
the top value), and pushing the “result”.

1 For more detailed information, see:
http://msdn.microsoft.com/net/ecma

CIL Instructions:

Assembly
add
and

ceq
cgt
clt

div
dup
mul
neg

not

rem
shl
shr
sub

XOor

CIL Instructions:

Assembly
beq targ
bge targ

bgt targ
ble targ
blt targ
br targ

brfalse targ
brtrue targ
call method

nop

ret

Shift
shift
subtract

Arithmetic Instructions

Description

adds two values on top of stack
ands two values on top of stack

compares top two stack values, pushes 1
if they are equal, O if else

compares top two stack values, pushes 1
if vall is greater than val2, 0 if else
compares top two stack values, pushes 1
if vall is less than val2, 0 if else

divides vall by val2
duplicates

top value on the stack
multiplies
negates top value on the stack

bitwise complement of top value on stack
bitwise OR of two values on top of stack
remainder of vall by val2 (vall % val2)
vall left by val2 bits

vall right by val2 bits

val2 from vall

bitwise XOR of top two stack values

Control Instructions
Description

branch to targ if top stack values equal
branch to targ if vall (2nd stack value)

>= val2 (top stack value)

if vall > val2
if vall <= val2
if vall < val2

branch to target
if vall is false or null

if vall is false or zero

branch to targ
branch to targ
branch to targ

unconditional
branch to targ

branch to targ

call a method

no operation
return from method

2 The callee’s stack should be empty except

value (if

stack.

any), which

two values on top of the stack

.,vall,val2

.,vall,val2

.,vall,val2

.,vall,val2

.,vall,val2
.,vall -> ..
.,vall,val2
.,vall -> ..
.,vall -> ..
.,vall,val2
.,vall,val2
.,vall,val2
.,vall,val2
.,vall,val2

.,vall,val2

.,vall,val2

.,vall,val2

.,vall,val2
.,vall,val2

.,vall,val2

-> ..

.,vall -> ..
.,vall -> ..

.,argl..argn -> ..

-> ..

retval? -> ..

Stack Transition

.,vall,val2

-> .., result
-> .., result
-> .., result
-> .., result
-> .., result
-> ..,result
,vall,vall
-> ..,result
,result
,result

-> .., result
-> .., result
-> .., result
-> .., result
-> ..,result
-> ..,result

Stack Transition

-> ..

-> ..

-> ..

-> ..

-> ..

,retval (if any)

,retval (if any)

the return

iIs pushed to the top of the caller’s

CIL Instructions: Memory/Stack Instructions

Assembly Description Stack Transition
ldarg num push numt" argument onto top of the stack .. > ..,aTQnm
ldc.i4 num push number num onto top of the stack .. -> ..,num
ldloc indx push indxt" local variable onto top of the stack .. -> ..,vall

pop pop top value from the stack ..,val->..

stloc indx pop top value from stack to indx'™ loc. variable ..,vall -> ..

Compiling the 1CS142 Language For CIL

Consider a simple while statement inside an if-
statement, such as the one below. A CIL bytecode sequence
that implements it (inefficiently, but correctly) is shown
below it, along with the stack contents for each line in the
next column.

{ int a = Read();
if ((a > 0) && (a < 20)){
while (a > 0){
WriteHex (a) ;
WriteLn () ;
a=a - 1;

}
}
}

Bytecode assembly Stack contents after instruction
B T i P T T +
| { | $ |
| call Testd::Read() | $a
| stloc 1 | $
ldloc 1	$a
1dc.i4 O	$a, O
ble IL_B	$
ldloc 1	$a
1dc.i4 14	$a, 14
bgt IL B	$
IL_A: 1dloc 1	$a
1dc.i4 0	$a, 0O
ble IL_B	$
ldloc 1	$a
call Wrapper::WriteHex (int32)	$
call Wrapper::WriteLn()	$
ldloc 1	$a
1dc.id.1	$a, 1
sub	$(a-1)
stloc 1	$
br IL_A	$
IL_B: ret	$

Important points:

Procedures accept arguments on the stack, with the first
argument pushed first. On return all arguments will have been popped
and replaced with a return value (if there is one).

Stack contents : At the return of a procedure there must be the
same number of entries on the stack as in the entry, minus the
number of arguments (if any), plus any return value (if any). This
is another way of saying each procedure’s stack has to be empty when
returning from that procedure, with the possible presence of a
return value on top of the stack.

Local Variables : CIL allows accessing up to 65535 local
variables to push/pop from the stack. Instruction stloc num pops a

value and loads it to local variable num (num = 0 .. 65534), and
ldloc num pushes a value in local variable num to the top of the
stack. While emitting code for procedures, you will have the

opportunity to declare how many local variables each procedure will
have.

Storing each assignment to a variable with the stloc
instruction (and loading each usage of a variable in an expression
with the 1dloc instruction) should result code that automatically
fulfills the stack contents constraint. While this is not very
efficient, it saves the compiler from having to keeping track of
stack state.

Using the Wrapper Class to Create Output Files

The output for this assignment will be in assembly file
format. To produce output files, you will wuse the Wrapper
class that will be made available as a DLL file through the

TA’s website. The Wrapper class makes the following public
methods available:

public void insertMain (string[] code) ;
public void insertMain (string[] code,
int localvarNum,

int maxStackNum) ;

These methods insert a code sequence as the body of the Main()
method. The first one assumes a maximum local variable number and
stack size of 8, in the second one these are supplied explicitly.
The CIL instructions are to be entered as an array of strings,
preferably with one string per instruction (although strings of the
form “ldc.i4 10\ndup\n” are also permissible).

public void WriteFile(string fileName) ;
This method creates a CIL assembly file <fileName> with all the
contents (a Main() and procedures) that have been entered so far.

public void insertProcedure (string procedureNamnme,
string[] code,
bool returnsvVal,
int argNum,
int localVarNum,
int maxStackNum) ;

This method is similar to insertMain(), except that it inserts
a code sequence for a procedure <procedureName>, specifying the
number of arguments (only of int32 type for out input language),
whether a value is returned, and the maximum number of local
variables and stack length. The instructions are entered as strings
in an array.

public string getProcedureCall (string procedureName,

bool returnsval,
int argNum) ;
This method returns the string argument for a call instruction.

It generates a valid argument recognizable by an assembler for a
procedure with the given name, arguments and return type.

Predefined Methods

The following procedures are already built- in, you can insert
calls to them from the body of your compiled CIL code with the
getProcedureCall() method of the Wrapper class.

void WriteLn(); // prints new line
void Write(int32); // prints an integer in decimal form
void WriteHex (int32); // prints an integer in hexadecimal form

int32 Read(); // reads an integer from the command line

An example of this is given here in this C# code segment.

string[] main = new string [4];

main[0] "ldc.i4 10";

main (1] getProcedureCall ("WriteHex", false,1);
]

main[2 getProcedureCall ("WriteLn", false,0) ;
main[3] "ret";
insertMain (main) ;

The output of this code is a CIL assembly segment for a Main()
method:

.method static void Main() cil managed {
.entrypoint
.maxstack 8
1dc.i4 10
call void class Wrapper::WriteHex (int32)
call void class Wrapper::WriteLn ()
ret

