
Interpretação e Compilação – 2013-2014
Interpretation and Compilation of Programming Languages

Midterm April 9, 2014

Notes: The test is open book. Students can use any (individual) printed material that each one
brings along. The test has a duraction of 1h30.
PS: This document was editted in order to correct typos and ambiguities in the original.

Q-1 [5 val.] This question is about the definition of an abstract syntax for a programming
language. You are certainly aware that the vast majority of software systems available in the web
are based on interchangeable data formats, as the base for interoperability and extensibility. One
of such formats is XML. In order to safely manipulate XML values inside a programming language
we need special language constructs.

Consider the following programming language, called XiMpL, with the concrete syntax given by
the following grammar:

E ::= x | num | string | E1+E2

| decl x = E1 in E2 | 〈label〉E1...En〈/label〉 | E1@E2 | ‖ E ‖
| if E1 has label then E2 else E3

| for x in E1 with y = E2 in E3

The language comprises the base constructs for: integer literals (num) and their usual operations
on integers, represented here by operation E + E; string literals (string); identifier use (x)
and declaration decl x = E1 in E2. The language also manipulates XML values and terms. The
XML constructor 〈label〉E1...En〈/label〉, containing a sequence of expression representing the
child nodes, and denotes an XML value. The concatenation operation E1@E2 where the XML value
denoted by E1 is extended with a new child node denoted by E2; The selection operation ‖ E ‖
denotes the child node of an XML value. Notice that this operation is only defined on a node with
a single child node. Also, we have the inspection operation if E1 has label then E2 else E3, whose
denotation is the denotation of E2, in the case that E1 denotes an XML value with label label,
and the denotation of E3 otherwise. Finally, we have the iteration operation for x in E1 with y =
E2 in E3 that iterates over the inner nodes of the XML value denoted by expression E1, and whose
denotation is given by the expression E3 in the last iteration. On each iteration, x denotes an
element of the list and y denotes the value of E3 in the previous iteration, or the denotation of
expression E2 in the case of the first iteration.
Consider the example written in the programming language XiMpL:

decl l1 = <line>"Line 1"</line> in

decl l2 = <line>"Line 2"</line> in

decl doc = <doc><title>"Title"</title> l1 l2 </doc> in

for x in doc with y = <html></html> in

if x has title then y @ <h1>||x||</h1> else

if x has line then y @ <p>||x||</p> else y @ x

a) [2 val.] Define the abstract syntax of language XiMpL by means of an abstract data type,
defined in either ML, Haskell, or a set of Java classes and interfaces.

b) [2 val.] Define the set of values of language XiMpL by means of an abstract data type,
defined in either ML, Haskell, or a set of Java classes and interfaces.

c) [1 val.] The primitive operations of a programming language can be sometimes encoded
inside the language. In this case, the selection operation, which is defined only for XML values
with a single child node. Define the selection operation ‖ E ‖ using other constructs of the
same language.

Q-2 [8 val.] This question is about the definition of the operational semantics for language XiMpL.

a) [6 val.] Define the operational semantics of language XiMpL by means of a method eval in
each of the classes defined in question Q-1a, or a recursive function in either ML or Haskell.

b) [1 val.] State the denotation of the example expression in question Q-1, according to the
semantics defined in question Q-2a.

c) [1 val.] Enumerate the execution errors that may occur during the execution of a program
written in language XiMpL, according to the semantics defined in question Q-2a.

Q-3 [7 val.] This question is about the typing semantics of language XiMpL, and how it can be
used to avoid execution errors. Consider the abstract representation of the types necessary to type
language XiMpL, represented by the following abstract data type written in OCaml:

type ty = IntType | StringType | XMLNode

a) [4 val.] Define the typing semantics of language XiMpL, for the constructs enumerated
below, by means of a method typecheck in each of the Java classes of question Q-1a, or by
means of a recursive function in ML or Haskell.

(a) x

(b) decl x = E1 in E2

(c) 〈label〉E1...En〈/label〉
(d) if E1 has label then E2 else E3

(e) for x in E1 with y = E2 in E3

Take the following extra restrictions that must be imposed by type checking:

(a) XML constructors with more than one child node expression, must have all child nodes
of XML type.

(b) An XML constructor can only be iterated if its child nodes are of XML type.

(c) The contents of an XML value (‖ E ‖) can only be inspected if it has a single element.

b) [1 val.] Enumerate which runtime errors, presented in question Q-2c, can be avoided by
the type system just defined.

c) [1 val.] Check if the example of question Q-1 is well typed. Present the type of the
expression, or justify and present an appropriate correction.

d) [1 val.] Present the typing environment of expression y @ x.

2

