

INTRODUÇÃO À INVESTIGAÇÃO OPERACIONAL

Exame de Recurso

07 de janeiro de 2016 - Duração: 3 horas

ATENÇÃO: QUALQUER FRAUDE DETETADA NESTA PROVA IMPLICARÁ A REPROVAÇÃO NO CORRENTE ANO LETIVO NESTA UNIDADE CURRICULAR E SERÁ PARTICIPADA AO CONSELHO EXECUTIVO PARA PROCEDIMENTO DISCIPLINAR.

I

A *SoftCode*, empresa de software, acabou de assinar um projeto com um importante cliente. Este projeto é constituído por 4 grandes tarefas cujos tempos de execução e o mês em que cada tarefa deverá estar concluída são apresentados na Tabela 1.

Tabela 1: Número de horas de execução necessárias e mês de conclusão de cada tarefa

Tarefa	1	2	3	4
Total de horas de execução	40	30	20	20
Mês de conclusão	5	4	3	2

Dado o número de projetos que já tem em carteira, a direção da *SoftCode* analisou todas as necessidades dos trabalhos em curso e apresentou na Tabela 2 o número de horas disponíveis em cada mês para a execução deste novo projeto.

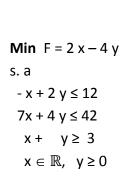
Tabela 2: Horas de trabalho disponíveis em cada mês

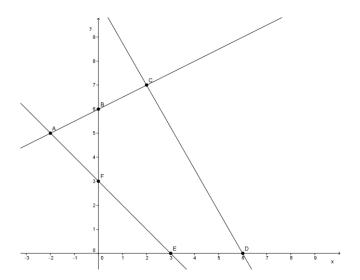
Mês	1	2	3	4	5
Número de horas disponíveis	10	35	20	50	60

O custo de execução de cada tarefa depende do mês em que esta se realiza. Na Tabela 3 apresenta-se o custo (\mathbf{c}_{ij}) de execução de <u>uma hora</u> da tarefa **i** no mês **j**.

Tabela 3: Custo de execução de uma hora de cada tarefa em cada um dos meses

Mês → Tarefa ↓	1	2	3	4	5
	45	20		20	20
1	15	20	60	20	20
2	10	20	40	60	30
3	20	40	20	50	20
4	30	30	30	40	20


a) Formule um modelo de Programação Linear que ajude a empresa a planear a execução do novo projeto de modo a minimizar o custo total do mesmo.


(2,0)

b) Suponha que a tarefa 4 precisa de ter 50% da tarefa 3 já executada para poder ser iniciada. Altere a formulação anterior de acordo com esta nova restrição.

(1,0)

Considere o seguinte problema de Programação Linear (Q) cujo gráfico se começou a esboçar.

a) Resolva graficamente o problema.

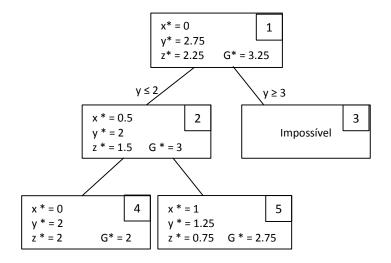
(1,5)

b) Admita que ao problema (Q) foi adicionada a restrição $\mathbf{x} - \mathbf{y} \le \mathbf{\delta}$, com $\mathbf{\delta} \le \mathbf{0}$. Resolva o problema de programação linear paramétrica resultante.

(2,0)

III

Considere o seguinte problema de Programação Linear Inteira e o correspondente quadro ótimo do problema relaxado, onde F1 e F2 são as variáveis de folga associadas às restrições 1 e 2, respetivamente.


Max
$$G = x + 2y - z$$

s. a $3x + y + z \le 5$
 $3x - y + 3z \ge 4$
 $x, y, z \ge 0$ e inteiros

	х		Z		F2	T.I.
у	3/2	1	0 1	3/4	1/4	11/4
Z	3/2	0	1	1/4	-1/4	9/4
G	1/2	0	0	5/2	3/4	13/4

Recorrendo ao algoritmo Branch & Bound, obteve-se a ramificação em árvore que se apresenta a seguir.

a) Construa o quadro do Simplex correspondente ao início da resolução do subproblema 2 (não resolva o subproblema!). Indique qual o algoritmo que deve aplicar para resolver o subproblema 2 assim como as correspondentes variáveis de entrada e de saída.

(1,5)

b) Identifique a variável escolhida para a ramificação do subproblema 2 e quais as restrições adicionadas que conduziram aos subproblemas 4 e 5.

(1,0)

c) Já foi encontrada a solução ótima do problema? Justifique. Em caso negativo, indique qual(ais) o(s) subproblema(s) que ramificaria a seguir e que restrição(ões) introduziria na ramificação.

(1,0)

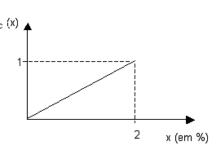
IV

O gestor de uma empresa vinícola está a ponderar o alargamento do negócio para países vizinhos. No quadro seguinte estão indicados os lucros (em u.m.) previstos para cada decisão que o gestor tomar, dependendo do estado da natureza:

Estado da Natureza →	0 -	0-	0-
Decisão ↓	θ1	θ2	θ3
Manter o negócio a nível nacional	130	110	95
Expandir para Espanha	100	120	125
Expandir para França	90	95	105

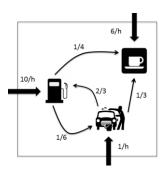
a) Indique justificando, que decisão recomendaria ao gestor da empresa.

(1,5)


- b) Sabe-se que os estados da natureza indicados, dependem da evolução da economia nos próximos 2 anos. Deste modo, $\theta 1$ corresponde a um crescimento inferior a 0,5% nos próximos 2 anos; $\theta 2$ corresponde a um crescimento nos próximos 2 anos entre 0,5% e 1,5% e $\theta 3$ corresponde a um crescimento nos próximos 2 anos superior a 1,5%.
- O Gabinete de Estudos do Banco Nacional considera que o crescimento da economia nos próximos 2 anos é uma variável aleatória com a função densidade de probabilidade apresentada no gráfico seguinte.

b1) Determine a probabilidade de ocorrência de cada estado da natureza.

(1,0)


b2) Que decisão recomendaria ao gestor da empresa, no contexto de risco apresentado? Justifique.

Nota: <u>Se não resolveu b1</u>), assuma que $P(\theta 1) = 0.2$ e $P(\theta 2) = 0.5$. **(0,5)**

\mathbf{V}

Um pequeno posto de abastecimento localizado à entrada da Aldeia da Vitória está equipado com uma única bomba para fornecer combustível aos seus clientes, um pequeno café onde trabalha o dono do posto de abastecimento e um posto de lavagem automóvel, onde os clientes poderão lavar o seu próprio carro.

Os clientes vindos do exterior podem dirigir-se à bomba de combustível, ao posto de lavagem ou ao café. Todas as chegadas do exterior seguem uma distribuição de Poisson.

A taxa média de chegadas do exterior ao posto de combustível é de 10 clientes por hora. Após o abastecimento do veículo, 1/4 dos clientes vão tomar um café (deixando a bomba livre para o próximo cliente) e 1/6 dos clientes dirigem-se para a lavagem manual.

Assuma que de cada carro, apenas uma pessoa vai tomar café.

Há clientes que preferem efetuar primeiro a lavagem do seu carro, chegando ao sistema em média 1 cliente por hora. Após a lavagem, 2/3 dos clientes seguem para o abastecimento de combustível enquanto que 1/3 dos clientes vão tomar um café (deixando a lavagem livre).

O tempo que cada cliente demora a abastecer ou a lavar o seu veículo segue uma distribuição exponencial negativa de média 3 e 10 minutos, respetivamente.

Devido à localização do posto de abastecimento, alguns habitantes da Aldeia da Vitória gostam de lá ir apenas para beberem o seu café, ocorrendo estas chegadas com uma média de 6 habitantes por hora. O dono do café demora em média 2 minutos a servir um café, sendo o tempo de serviço exponencialmente distribuído.

a) Determine as taxas efetivas de chegada a cada um dos serviços deste posto de abastecimento.

(1,0)

b) Determine as taxas de ocupação da bomba de combustível, do posto de lavagem e do café.

Nota: Se não conseguiu responder à alínea a) assuma que:

$$\lambda_{\text{combustivel}} = 14$$
, $\lambda_{\text{lavagem}} = 2 \text{ e } \lambda_{\text{café}} = 12 \text{ clientes/hora.}$

(1,0)

c) Determine o número médio de clientes no posto de abastecimento.

(1,0)

d) Em média quantos minutos permanece um cliente no posto de abastecimento?

(0,5)

e) Determine a probabilidade de um cliente chegar ao posto de abastecimento e encontrá-lo vazio.

(1,0)

VI

Considere um processo de chegadas de clientes a um sistema com um único servidor, caraterizado por intervalos de tempo entre chegadas consecutivas com distribuição Triangular [3;7;11] (min.). Admita que o atendimento de cada cliente é efetuado em <u>duas etapas</u> com durações independentes e cada uma com distribuição Exponencial de valor médio igual a 15 min..

Nota: 1) X ~ Exponencial(λ) então $F_X(x) = 1 - e^{-\lambda \cdot x}$, $x \ge 0$

2) Utilize o formato hh, decimal e não hh:mm:ss.

a) Indique os instantes de chegada dos dois primeiros clientes. Utilize a sequência de NPA's Uniforme[0; 1] seguinte (leitura sequencial em linha),

NPA's U[0;1]: **0,896 0,987 0,569 0,248 0,413 0,693**

(1,0)

b) Utilizando a sequência de NPA's Uniforme[0; 1] apresentada abaixo, calcule o tempo de atendimento do primeiro cliente.

NPA's U[0;1]: 0,351 0,266 0,610 0,704 0,483 0,194

(1,0)

c) Indique justificando, o instante de tempo em que o servidor inicia o atendimento do 2º cliente.

(0,5)