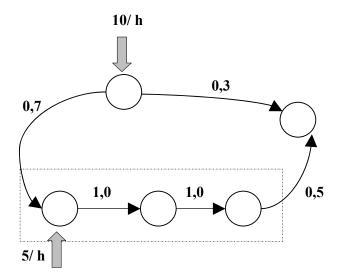


INTRODUÇÃO À INVESTIGAÇÃO OPERACIONAL

3° Teste


18 de dezembro de 2013 - Duração: 60 minutos

ATENÇÃO: QUALQUER FRAUDE DETETADA NESTA PROVA IMPLICARÁ A REPROVAÇÃO NO CORRENTE ANO LETIVO NESTA UNIDADE CURRICULAR E SERÁ PARTICIPADA AO CONSELHO EXECUTIVO PARA PROCEDIMENTO DISCIPLINAR.

I

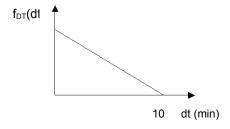
Considere o sistema de filas de espera (de tipo M/M/1 e M/M/s) que se esquematiza abaixo.

Os clientes, vindos do exterior, ou se dirigem ao setor A segundo um processo Poissoniano com taxa média igual a 5 clientes por hora, ou entram diretamente no setor D segundo um processo Poissoniano com taxa média de 10 clientes por hora. No esquema seguinte estão indicadas as possibilidades de transição entre setores e respetivas probabilidades:

As taxas médias de atendimento por servidor ($\boldsymbol{\mu}$) nos diferentes setores estão indicadas na tabela seguinte:

Setor	Α	В	С	D	E
μ (por h)	14,0	13,0	14,0	12,5	12,5

- **a)** Caraterize estatisticamente, justificando, o processo de saída de clientes do subsistema A, B e C.
- (1,0)
- **b)** Determine as taxas efetivas de chegadas de clientes a cada um dos setores A, B, C, D e E.
- (0,5)
- c) Proponha justificadamente o número de servidores por setor, determinando, para o cenário proposto, o tempo médio de permanência de um cliente no <u>subsistema A, B e C</u> e o tempo médio de permanência no <u>sistema total</u>. (1,3)
- d) Indique, sem efetuar cálculos, como poderia determinar a probabilidade de, num determinado momento, um único servidor do sistema total estar ocupado.


(0,7)

Resultados para filas de espera do tipo M/M/s:

λ	9	10	12	12	12	12	12
μ	12,5	12,5	12,5	13	13	14	14
s	1	1	2	1	2	1	2
L	2,571	4,000	1,247	12,000	1,173	6,000	1,050
W	0,286	0,400	0,104	1,000	0,098	0,500	0,088
P_0	0,280	0,200	0,351	0,077	0,368	0,143	0,400
P_1	0,202	0,160	0,337	0,071	0,340	0,122	0,343

II

Considere um processo de chegadas de clientes a uma loja caraterizado por intervalos de tempo entre chegadas consecutivas com distribuição, cuja função densidade de probabilidade se esquematiza abaixo.

Sabe-se ainda que, cada cliente que entra na loja adquire 1, 2 ou 3 artigos, com probabilidades de 20%, 30% e 50%, respetivamente.

Nota: Assuma que à invocação da rotina RANDOM é afetado um NPA U[0,1] à variável u.

- a) Utilizando o método da rejeição, elabore a rotina Intervalo que lhe permite gerar o intervalo de tempo entre duas chegadas consecutivas a este serviço.
 (1,3)
- b) Elabore a rotina NumArtigo que lhe permite determinar o número de artigos adquiridos por <u>um cliente</u>.
 (0,5)
- c) Elabore a rotina Ano que lhe permite determinar o número de artigos vendidos na loja durante <u>um ano</u>.

(0,7)