Lógica Computacional

Aula Teórica 5: Semântica da Lógica Proposicional

António Ravara

Departamento de Informática

28 de Fevereiro de 2011

Análise de exemplos

Estratégia

Quer-se provar ou refutar uma afirmação de consequência semântica. Como fazer?

- Verifica-se primeiro se é falsa: alguma valoração não satisfaz o consequente mas satisfaz o antecedente. Se se encontrar tal valoração tem-se um contra-exemplo.
- Se não se encontra um contra-exemplo faz-se a prova.

$\overline{\{p \to q, r \to s, r \lor s\}} \models p \lor q?$

Considere-se V tal que V(p) = 0 = V(q) = V(r) e V(s) = 1.

Então
$$V \Vdash p \rightarrow q$$
, $V \Vdash r \rightarrow s$ e $V \Vdash r \lor s$, ou seja, $V \Vdash \{p \rightarrow q, r \rightarrow s, r \lor s\}$.

No entanto, $V \not\Vdash p \lor q$, logo $\{p \to q, r \to s, r \lor s\} \not\models p \lor q$.

Exercícios

$\{(\varphi \wedge \psi) o \delta, \gamma o \varphi\} \models \psi o (\gamma o \delta)?$

Considera-se por hipótese que para algum V se tem que

- $V \Vdash \{(\varphi \land \psi) \to \delta, \gamma \to \varphi\}$, mas que
- 2 $V \not \vdash \psi \rightarrow (\gamma \rightarrow \delta)$. De 1 obtém-se:
- **4** $V \Vdash \gamma \rightarrow \varphi$. De 2 obtém-se:
- \bullet $V \Vdash \psi$, mas $V \not \vdash \gamma \to \delta$, ou seja
- \bullet $V \Vdash \gamma$, mas
- $V \not\Vdash \delta$. De 4 e de 6 obtém-se:
- **3** $V \Vdash \varphi$. De 3, 5 e de 8 obtém-se:
- $V \Vdash \delta$, o que está em contradição com 7. Logo, $\{(\varphi \land \psi) \to \delta, \gamma \to \varphi\} \models \psi \to (\gamma \to \delta)$.

Consequência semântica vs. validade

Proposição

$$\{\varphi\} \models \psi \text{ se e s\'o se } \models \varphi \to \psi$$

Prova

Mostra-se primeiro que se $\{\varphi\} \models \psi$ então $\models \varphi \rightarrow \psi$.

Por hipótese, $\{\varphi\} \models \psi$, ou seja, para qualquer V tem se que se $V \Vdash \varphi$ então $V \Vdash \psi$; logo, por definição, $\models \varphi \rightarrow \psi$.

Mostra-se que $\models \varphi \rightarrow \psi$ implica $\{\varphi\} \models \psi$ de forma semelhante.

Teorema

Seja $n \in \mathbb{N}$. $\{\varphi_1, \dots, \varphi_n\} \models \psi$ se e só se $\models (\varphi_1 \wedge \dots \wedge \varphi_n) \rightarrow \psi$

Prova

Prova-se o sentido "só se" (o recíproco é semelhante). Por hipótese, $\{\varphi_1,\ldots,\varphi_n\} \models \psi$, ou seja, sempre que dado V é tal que $V \Vdash \{\varphi_1,\ldots,\varphi_n\}$ também $V \Vdash \psi$.

Se $V \not \Vdash \{\varphi_1, \dots, \varphi_n\}$, o resultado sai vacuosamente

Se $V \Vdash \{\varphi_1, \ldots, \varphi_n\}$, então para cada $i \in \{1, \ldots, n\}$ tem-se que $V \Vdash \varphi_i$; logo, $V \Vdash \varphi_1 \wedge \ldots \wedge \varphi_n$. Como por hipótese $V \Vdash \psi$, então $V \Vdash (\varphi_1 \wedge \ldots \wedge \varphi_n) \to \psi$, como se queria mostrar.

Algumas leis da lógica proposicional

Axiomas importantes

Prova

- $\{\bot\} \models \varphi$ vacuosamente, pois $\{\bot\}$ é um conjunto contraditório
- ② por hipótese, seja V tal que $V \Vdash \{\varphi \land \psi\}$, ou seja, $V \Vdash \varphi$ e $V \Vdash \psi$; então $\{\varphi \land \psi\} \models \varphi$ e $\{\varphi \land \psi\} \models \psi$
- **3** por hipótese, seja V tal que $V \Vdash \{\varphi\}$; logo $V \Vdash \varphi$ e tem-se também que $V \Vdash \varphi$ ou $V \Vdash \psi$; então $\{\varphi\} \models \varphi \lor \psi$ (o outro caso prova-se de forma semelhante)

Definição alternativa de consequência semântica

Observações

- A consequência semântica é uma relação $\models \subseteq 2^{F_P} \times F_P$
- Pode-se considerar uma definição alternativa, em que é uma relação binária entre fórmulas: |=1 ⊆ F_P × F_P
- Considere ambas as relações definidas da mesma forma: sempre que dada valoração satisfaz o primeiro elemento do par na relação (um conjunto de fórmulas ou uma fórmula) também satisfaz o segundo.

Resultados

Definição alternativa de consequência semântica

Proposição: coincidência das definições

$$\{\varphi_1,\ldots,\varphi_n\}\models\psi$$
 se e só se $\varphi_1\wedge\cdots\wedge\varphi_n\models_1\psi$

Prova

$$\begin{cases}
\varphi_1, \dots, \varphi_n \} \models \psi & \text{se e s\'o se} \\
\models \varphi_1 \land \dots \land \varphi_n \to \psi & \text{se e s\'o se} \\
\{\varphi_1 \land \dots \land \varphi_n \} \models \psi & \text{se e s\'o se} \\
\varphi_1 \land \dots \land \varphi_n \models_1 \psi
\end{cases}$$

Chama-se então a ambas as relações "consequência semântica" e usa-se apenas o símbolo ⊨.

A consequência semântica é uma pré-ordem

Trivialmente, a consequência semântica é reflexiva.

Transitividade da consequência semântica

Se $\varphi \models \psi$ e $\psi \models \gamma$ então $\varphi \models \gamma$

Prova

Por hipótese, $\varphi \models \psi$ e $\psi \models \gamma$. Consideram-se dois casos: para dado V, ou $V \Vdash \varphi$ ou $V \not\Vdash \varphi$.

Suponha-se que $V \Vdash \varphi$; como por hipótese $\varphi \models \psi$, também $V \Vdash \psi$; como por hipótese $\psi \models \gamma$, também $V \Vdash \gamma$. Logo, sempre que $V \Vdash \varphi$ também $V \Vdash \gamma$, ou seja, $\varphi \models \gamma$.

Suponha-se agora que $V \not\models \varphi$. Então, $V \Vdash \varphi \rightarrow \gamma$, logo $\varphi \models \gamma$.

A ideia

Todas as fórmulas são diferentes?

- Há fórmulas sintaticamente diferentes que significam a mesma coisa (capturam a mesma asserção).
- Exemplo: "gosto de lógica" é equivalente a "não é verdade que não gosto de lógica".
- Sintaxe não é tudo: há várias formas de dizer a mesma coisa.
- Intuitivamente, se dada valoração arbitrária satisfaz uma fórmula se e só se satisfaz outra fórmula, então as fórmulas são equivalentes.

A definição

Equivalência lógica

Duas fórmulas $\varphi, \psi \in F_P$ dizem-se *logicamente equivalentes*, o que se denota por $\varphi \equiv \psi$, se se tem que $\varphi \Vdash \psi$ se e só se $\psi \Vdash \varphi$.

Proposição

A equivalência lógica é uma relação de equivalência.

Prova

Tem que se mostrar que é reflexiva, simétrica e transitiva. Como já mostrámos que é uma pré-ordem, basta provar que é simétrica. Note-se que a simetria sai por definição.

A consequência semântica é uma ordem parcial

- Um pré-ordem anti-simétrica diz-se uma ordem parcial
- A anti-simetria usa a igualdade (sintática); se se considerar em vez a igualdade semântica (equivalência lógica), tem-se uma "anti-simetria" semântica

Prova

Mostrou-se que a consequência semântica é uma pré-ordem.

Por definição de equivalência lógica, se $\varphi \models \psi$ e $\psi \models \varphi$ então $\varphi \equiv \psi$; logo, a consequência semântica é anti-simétrica.

Axiomas importantes

Algumas leis da lógica proposicional

- Dupla negação: $\neg\neg\varphi\equiv\varphi$
- Absurdo: $\varphi \land \neg \varphi \equiv \bot$
- Leis de De Morgan:

$$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi \ \mathsf{e} \ \neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$$

- Distributividade:
 - $\varphi \to (\psi \to \delta) \equiv (\varphi \to \psi) \to (\varphi \to \delta)$
 - $\varphi \lor (\psi \land \delta) \equiv (\varphi \lor \psi) \land (\varphi \lor \delta)$
 - $(\varphi \wedge \psi) \vee \delta \equiv (\varphi \vee \delta) \wedge (\psi \vee \delta)$
 - $\varphi \wedge (\psi \vee \delta) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \delta)$
 - $(\varphi \lor \psi) \land \delta \equiv (\varphi \land \delta) \lor (\psi \land \delta)$
- Contra-recíproco: $\varphi \equiv \psi$ se e só se $\neg \psi \equiv \neg \varphi$
- Monoides comutativos idempotentes:
 - (F_P, \vee, \perp) , sendo \top o elemento absorvente.
 - (F_P, \wedge, \top) , sendo \bot o elemento absorvente.

Leis axiomáticas

Provas

$\varphi \wedge \neg \varphi \equiv \bot$

Viu-se já que $\varphi \land \neg \varphi$ é contraditória, *i.e.*, nenhuma valoração a satisfaz; este é também o caso de \bot , logo, vacuosamente, para qualquer valoração V se tem que $V \Vdash \varphi \land \neg \varphi$ se e só se $V \Vdash \bot$.

$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$

Tem que se mostrar que, para dado V se tem que $V \Vdash \neg(\varphi \land \psi)$ se e só se $V \Vdash \neg \varphi \lor \neg \psi$.

Mostra-se primeiro que sempre que $V \Vdash \neg (\varphi \land \psi)$ também $V \Vdash \neg \varphi \lor \neg \psi$. Considera-se por hipótese que $V \Vdash \neg (\varphi \land \psi)$; então $V \not\Vdash \varphi \land \psi$, ou seja, ou $V \not\Vdash \varphi$ ou $V \not\Vdash \psi$, *i.e.*, por definição, $V \Vdash \neg \varphi \lor \neg \psi$.

Mostra-se o recíproco de forma semelhante.

Lei do contra-recíproco

$\varphi \to \psi \equiv \neg \psi \to \neg \varphi$

Prova-se o sentido $\{\varphi \to \psi\} \models \neg \psi \to \neg \varphi$ (o recíproco é semelhante).

Por hipótese, considera-se dado V tal que $V \Vdash \varphi \to \psi$. Tem-se então que $V \Vdash \varphi$ ou $V \not\models \varphi$.

Se $V \Vdash \varphi$ então $V \Vdash \psi$, logo $V \not\models \psi$ e como $V \not\models \varphi$, também $V \Vdash \neg \psi \to \neg \varphi$.

Se $V \not\Vdash \varphi$ então sai logo que $V \Vdash \neg \psi \rightarrow \neg \varphi$.

"Iguais por iguais"

Intuição

- Um mecanismo fundamental do raciocínio lógico (ou mesmo algébrico) é o de substituir "iguais por iguais".
- Exemplos:
 - como 1+1=2, então 1+1+1=3 é equivalente a 2+1=3;
 - se para $p, q, r \in P$ se tem que V(p) = V(q), então $p \lor r \equiv q \lor r$.
- Como usar este facto intuitivo na lógica?

Teorema da Substitutividade

Suponha-se que $\varphi \equiv \psi$, assuma-se que γ é uma fórmula que contém φ como subfórmula e que γ' é obtido de γ substituindo ocorrrências de φ por ψ . Então $\gamma \equiv \gamma'$.

"Iguais por iguais"

Prova do teorema por indução na estrutura de γ

- Casos base:
 - $\gamma=p$, para algum $p\in P$. A única subfórmula é o próprio γ , logo $\varphi=\gamma$ e $\psi=\gamma'$. Como por hipótese $\varphi\equiv\psi$, e a equivalência é reflexiva, conclui-se por transitividade que $\gamma\equiv\gamma'$ (ou seja $\gamma\equiv\varphi\equiv\psi\equiv\gamma'$).
 - O caso $\gamma = \bot$ sai de igual forma.
- Caso $\gamma=\gamma_1\vee\gamma_2$ (os restantes são semelhantes). Por hipótese de indução, para $i\in\{1,2\}$ tem-se que $\gamma_i\equiv\gamma_i'$ se este último é obtido de γ_i substituindo ocorrências de φ por ψ . Como por hipótese φ é subfórmula de γ , há 3 casos a considerar: $\varphi=\gamma$ ou $\varphi\in {\sf SBF}(\gamma_i)$ (com $i\in\{1,2\}$). O primeiro prova-se de forma semelhante aos casos base; considera-se então, sem perda de generalidade, que $\varphi\in {\sf SBF}(\gamma_1)$; logo, como a equivalência é preservada pelos operadores da lógica, $\gamma'=\gamma_1'\vee\gamma_2$, e conclui-se que $\gamma\equiv\gamma'$.

António Ravara Lógica Computacional

Um resultado central

A equivalência lógica é uma congruência

Teorema: os operadores da lógica preservam a equivalência

 $\mathsf{Seja} \, * \in \{ \lor, \land, \rightarrow \}. \,\, \mathsf{Se} \,\, \varphi \equiv \psi \,\, \mathsf{ent} \, \widetilde{\mathsf{ao}} \,\, \varphi * \gamma \equiv \psi * \gamma \,\, \mathsf{e} \,\, \gamma * \varphi \equiv \gamma * \psi.$

Prova

Vai-se mostrar o caso $\varphi \lor \gamma \equiv \psi \lor \gamma$. O recíproco sai por comutatividade (e os casos restantes são semelhantes).

Por hipótese $\varphi \equiv \psi$; mostra-se primeiro que $\{\varphi \lor \gamma\} \models \psi \lor \gamma$ (a prova do recíproco é semelhante). Seja V tal que $V \Vdash \varphi \lor \gamma$; então, $V \Vdash \varphi$ ou $V \Vdash \gamma$.

Se $V \Vdash \varphi$, como $\varphi \equiv \psi$ também $V \Vdash \psi$, logo $V \Vdash \psi \lor \gamma$.

Se $V \Vdash \gamma$ então $V \Vdash \psi$ ou $V \Vdash \gamma$, logo $V \Vdash \psi \lor \gamma$.

Um resultado central

A equivalência lógica é uma congruência

Teorema

A relação binária \equiv sobre fórmulas da lógica proposicional, é uma congruência.

Prova

É uma relação de equivalência, preservada pelos operadores da lógica, e substitutiva.