Lógica Computacional

Aula Teórica 6: Semântica da Lógica Proposicional

António Ravara

Departamento de Informática

3 de Março de 2011

Expressividade

Os conectivos são independentes?

- Definiu-se a Lógica Proposicional com os símbolos proposicionais, o Falso (⊥), a disjunção (∨), a conjunção (∧) e a implicação (→)
- Outros operadores importantes (Verdade ⊤, negação ¬ e equivalência ↔) não são primitivos: foram definidos como abreviaturas
- Eram precisos todos os primitivos para se expressar as ideias básicas da lógica proposicional?
- Se se conseguir definir alguns como abreviaturas dos outros (mostrando que a semântica original e a da abreviatura são equivalentes), então pode-se prescidir deles como primitivos.
- Existirá um único conjunto mínimo?

Implicação como abreviatura

$$\varphi \to \psi \equiv \neg \varphi \vee \psi$$

Prova

Mostra-se primeiro que se para qualquer V se tem que $V \Vdash \varphi \to \psi$ então $V \Vdash \neg \varphi \lor \psi$.

Por hipótese, sempre que $V \Vdash \varphi$ também $V \Vdash \psi$.

Considera-se primeiro o caso em que $V \Vdash \neg \varphi$; por definição, também se tem que $V \Vdash \neg \varphi \lor \psi$.

Se $V \Vdash \varphi$ então por hipótese, $V \Vdash \psi$ e por definição, também se tem que $V \Vdash \neg \varphi \lor \psi$.

Mostra-se agora que se para qualquer V se tem que $V \Vdash \neg \varphi \lor \psi$ então $V \Vdash \varphi \to \psi$.

Por hipótese, $V \Vdash \neg \varphi \lor \psi$, ou seja, ou $V \Vdash \neg \varphi$ ou $V \Vdash \psi$. Considera-se primeiro o caso em que $V \Vdash \neg \varphi$; vacuosamente, também se tem que $V \Vdash \varphi \to \psi$.

Se $V \Vdash \psi$ então por definição, também se tem que $V \Vdash \varphi \to \psi$.

$$\varphi \vee \psi \equiv \neg (\neg \varphi \wedge \neg \psi)$$

Prova

Mostra-se o resultado usando o Teorema da substitutividade, o axioma da dupla negação e uma das leis de De Morgan.

$$\varphi \lor \psi \equiv \neg(\neg(\varphi \lor \psi))$$
 (pois $\gamma \equiv \neg\neg\gamma$)
 $\equiv \neg(\neg\varphi \land \neg\psi)$ (pela distribuição da negação)

Conjunção como abreviatura

Mostra-se da mesma forma que acima que

$$\varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$$

Conjunção

O conectivo de conjunção pode ser definido como abreviatura se se tiver disjunção e negação.

$$\varphi \wedge \psi \stackrel{\mathsf{abv}}{=} \neg (\neg \varphi \vee \neg \psi)$$

Disjunção

O conectivo de disjunção pode ser definido como abreviatura se se tiver conjunção e negação.

$$\varphi \vee \psi \equiv \neg (\neg \varphi \wedge \neg \psi)$$

Conclusão

Com negação (primitiva ou não), basta ter ou disjunção ou conjunção.

O que temos como primitivo

- Falso: ⊥
- Disjunção e conjunção: ∨,∧
- Implicação: →

O que definimos como abreviatura

- Negação: $\neg \varphi \stackrel{\mathsf{abv}}{=} \varphi \to \bot$
- Equivalência: $\varphi \leftrightarrow \psi \stackrel{\mathsf{abv}}{=} (\varphi \to \psi) \land (\psi \to \varphi)$

Conjunção ou disjunção: basta um deles

Pode-se ter menos conectivos, pois a conjunção (respectivamente a disjunção) pode ser definida à custa da negação e da disjunção (respectivamente a conjunção).

Basta ter como primitivos

- Falso: ⊥
- Implicação: →

O que sai como abreviatura

• Negação: $\neg \varphi \stackrel{\mathsf{abv}}{=} \varphi \to \bot$

• Verdade: $\top \stackrel{\mathsf{abv}}{=} \neg \bot$

• Disjunção: $\varphi \lor \psi \stackrel{\mathsf{abv}}{=} \neg \varphi \to \psi$

• Conjunção: $\varphi \wedge \psi \stackrel{\mathsf{abv}}{=} \neg (\neg \varphi \vee \neg \psi)$

• Equivalência: $\varphi \leftrightarrow \psi \stackrel{\mathsf{abv}}{=} (\varphi \to \psi) \land (\psi \to \varphi)$

Note-se que

Sem falso (\perp) temos que ter negação primitiva (não se consegue definir como abreviatura).

O falso sai como abreviatura se se tiver disjunção ou conjunção:

$$\bot \stackrel{\mathsf{abv}}{=} \varphi \land \neg \varphi$$

Implicação

O conectivo de implicação pode ser definido como abreviatura se se tiver disjunção e negação (primitiva): $\varphi \to \psi \stackrel{\mathrm{abv}}{=} \neg \varphi \lor \psi$

Basta ter como primitivos

- Negação: ¬
- Disjunção: ∨ (ou conjunção, ∧)

E como/quando juntar conectivos?

Note-se que

- Para provas por indução, convém ter o mínimo de conectivos.
 - O conjunto mais conveniente é $\{\bot, \to\}$, porque \bot é um operador constante, logo caso base.
- Para resolver exercícios, é útil ter o máximo de conectivos definidos, para evitar ter que expandir abreviaturas (usam-se directamente as definições).

Semântica da negação e equivalência

Satisfação

- Da negação: $V \Vdash \neg \varphi$, se não se tem que $V \Vdash \varphi$
- Da equivalência: $V \Vdash \varphi \leftrightarrow \psi$, se $V \Vdash \varphi$ se e só se $V \Vdash \psi$

Tabelas de verdade

p	$\neg p$	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$
0	1	0	1	1	1
1	0	0	0	1	0
0	1	1	1	0	0
1	0	1	1	1	1