Lógica Computacional

LEI FCT UNL, $2^{\rm o}$ Semestre 2010/2011

Teste 3 A, 21/5/2011

b distilled to diad distribution to data distribution dis	Justifique cuidadosamente todas as respostas	Duração:	2h00m
--	--	----------	-------

Identificação

Nome:

Número:

Grupo I (1+1 valores)

Represente as seguintes afirmações em lógica de primeira ordem:

- 1. Nenhum número par maior que 2 é primo.
- 2. Há só um número de contribuinte para cada cidadão.

Grupo II (3+3 valores)

Sejam $x,y,z\in X$ e $a\in SF_0.$ Considere ainda a seguinte fórmula.

$$\varphi \stackrel{\text{def}}{=} \exists x M(z, f(x)) \to \forall y \, Q(f(x), g(y, a))$$

- 1. Calcule os conjuntos das variáveis livre e mudas da fórmula.
- 2. Se cada termo em baixo for livre na fórmula para a variável referida, encontre a nova fórmula que resulta da substituição dessa variável por esse termo.
 - (a) Seja t = q(y), sendo a variável y.
 - (b) t = q(z), sendo a variável x.

Grupo III

(3+3+3 valores)

Considere a assinatura $\Sigma = (SF, SP)$ onde:

- $SF_0 = \{zero\}, SF_1 = \{suc\}, SF_2 = \{\oplus, \otimes\}$ e;
- $SP_2 = \{Leq\}.$

Considere também a estrutura de interpretação $Nat = (\mathbb{N}_0, I)$, sendo:

- I(zero) = 0;
- $I(suc): \mathbb{N}_0 \to \mathbb{N}_0$ tal que I(suc)(n) = n+1;
- $I(\oplus): \mathbb{N}_0^2 \to \mathbb{N}_0$ tal que $I(\oplus)(n,m) = n+m$;
- $I(\otimes): \mathbb{N}_0^2 \to \mathbb{N}_0$ tal que $I(\otimes)(n,m) = n \times m$;
- $I(Leq): \mathbb{N}_0^2 \to \{0,1\}$ tal que I(Leq)(n,m)=1 se $n \leq m$ e I(Leq)(n,m)=0 caso contrário.
- 1. Verifique semanticamente se:
 - (a) Nat $\models \forall x \exists y Leq(\oplus(suc(zero), x), \otimes(y, x))$
 - (b) $\{ \forall x \, P(x) \to \exists x \, Q(x) \} \models \forall x \, (P(x) \to Q(x))$
- 2. Mostre por indução natural que $\{\exists x \forall x_1 \cdots \forall x_n \varphi\} \models \forall x_1 \cdots \forall x_n \exists x \varphi$, para $n \geq 1$ e sendo φ uma fórmula de Lógica de Primeira Ordem.

Grupo IV (1+2 valores)

1. Considere que dada assinatura é tal que $f \in SF_1$, $P \in SP_1$, $= \in SP_2$, e seja $x \in X$. A expressão $\forall x \, (f(P(x)) = x)$ é uma fórmula da Lógica de primeira ordem? Justifique.

2. Defina indutivamente o conjunto das constantes de um termo de primeira ordem.