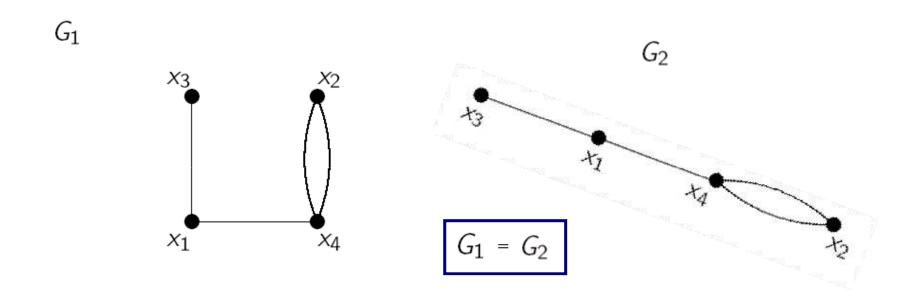
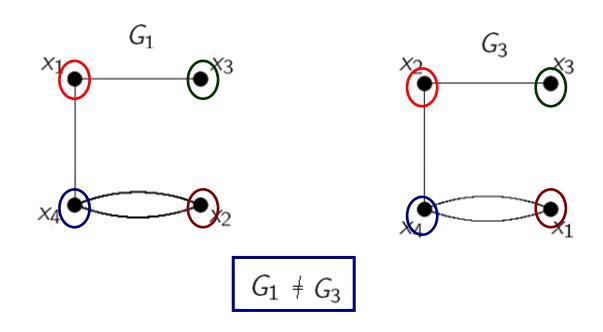
Multigrafos Isomorfos

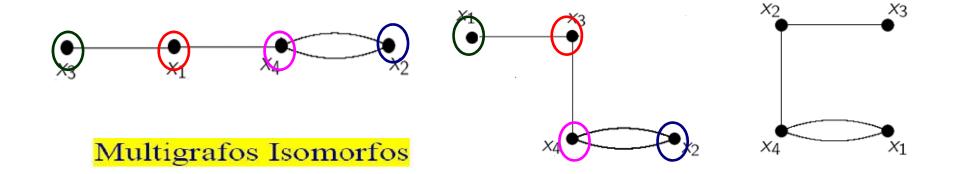
Duas representações de multigrafos podem parecer diferentes, mas representarem o mesmo multigrafo. É o caso dos multigrafos G_1 e G_2 ,



No entanto pode acontecer que duas representações de multigrafos pareçam semelhantes mas representarem multigrafos distintos. É o caso dos multigrafos G_1 e G_3 (enquanto que em G_1 os vértices x_1 e x_3 são adjacentes, em G_3 não o são),



Multigrafos Isomorfos



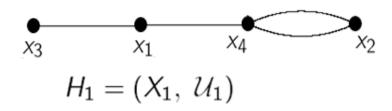
Definição 2.1.12:

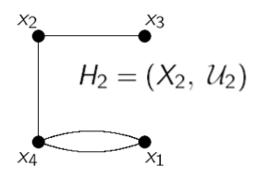
Sejam $H_1 = (X_1, U_1)$ e $H_2 = (X_2, U_2)$ multigrafos não orientados (respectivamente, multigrafos orientados). Diz-se que H_1 é isomorfo a H_2 se existe uma aplicação bijectiva

$$\varphi: X_1 \longrightarrow X_2$$
 (Isomorfismo)

tal que, para quaisquer x_i e $x_j \in X_1$, o número de arcos incidentes, em H_1 , nestes dois vértices (respectivamente, com extremidade inicial em x_i e extremidade final em x_j) seja igual ao número de arcos incidentes, no multigrafo H_2 , em $\varphi(x_i)$ e $\varphi(x_j)$ (respectivamente, com extremidade inicial em $\varphi(x_i)$ e extremidade final em $\varphi(x_i)$).

Exemplos:





H₁ e H₂ são multigrafos isomorfos

$$\varphi: X_1 \longrightarrow X_2$$

$$x_1 \longrightarrow x_2$$

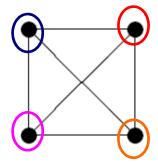
$$x_2 \longrightarrow x_1$$

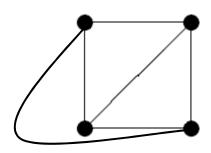
$$x_3 \longrightarrow x_3$$

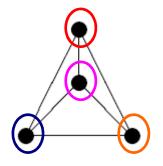
$$x_4 \longrightarrow x_4$$

bijecção que preserva a existência de arcos.

Os grafos simples







são isomorfos.

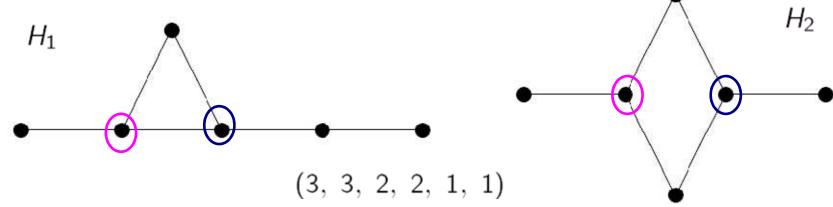
Conclusão: De acordo com a definição, se dois multigrafos são isomorfos, então

- (1) têm o mesmo número de vértices;
- (2) têm o mesmo número de arcos;
- (3) Se $\varphi: X_1 \longrightarrow X_2$ é a bijecção que os torna isomorfos então

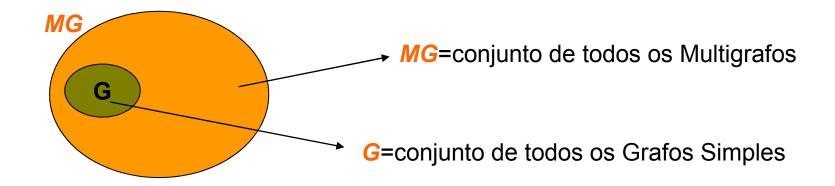
$$d_{H_1}(x) = d_{H_2}(\varphi(x)), \quad \forall x \in X_1$$

Têm a mesma sequência de graus

Questão: E a recíproca é verdadeira ?



A Sequência de graus de G_1 e G_2 é a mesma mas os grafos não são isomorfos



Considere em MG a relação binária definida por:

 $M_1 \sim M_2$ se e só se M_1 e M_2 são isomorfos, M_1, M_2 em MG

Relação de isomorfismo

Teorema 2.1.13:

A relação de isomorfismo de multigrafos e de multigrafos orientados é uma relação de equivalência.

Alguns tipos de grafos

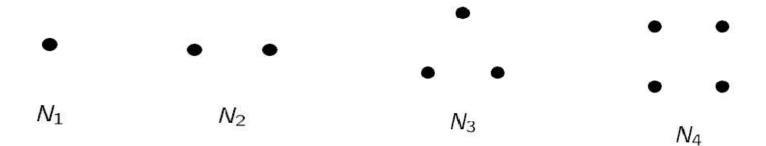
Seja G = (X, U) um grafo simples.

1 Grafo regular de grau r ou r-regular($r \in \mathbb{N}_0$):

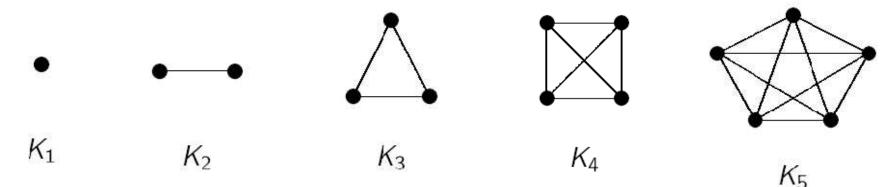
Se
$$d_G(x) = r$$
 para todo o $x \in X$

Caso particular: Grafos regulares de grau 0 (grafos nulos)

N_n
Grafo nulo
com n vértices



Caso particular: Grafos regulares com n vértices e grau n-1 (grafos completos)



Qual o número de arcos de K_n?

$$m = \binom{n}{2} = \frac{n(n-1)}{2}$$

(Usar o teorema do aperto de mão)

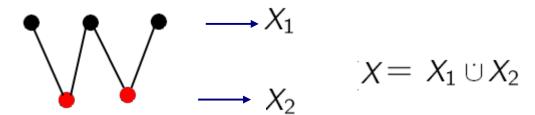
Qual o número de arcos de um grafo r-regular com n vértices?

n vértices cada um com grau r

$$m = \frac{n \times r}{2}$$

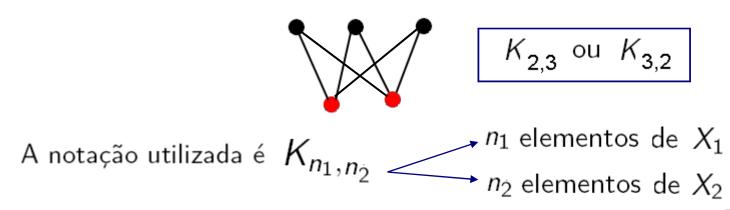
@ Grafo bipartidos

Diz-se que um grafo simples G = (X, U) é bipartido, com classes de vértices X_1 e X_2 , se $\{X_1, X_2\}$ é uma partição de X e cada arco de G tem uma extremidade num elemento de X_1 e a outra extremidade num elemento de X_2 .



A notação utilizada é $G = (X_1 \cup X_2, \mathcal{U})$.

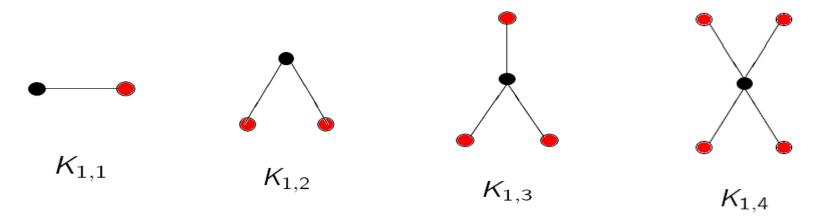
Caso particular: Grafos bipartidos completos



Qual o número de arcos de K_{n_1,n_2} ?

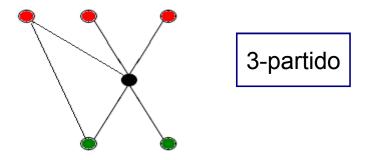
$$m = n_1 \times n_2$$

Dentro dos grafos bipartidos completos destacam-se os da forma $K_{1,n-1}$ (grafos estrelas)

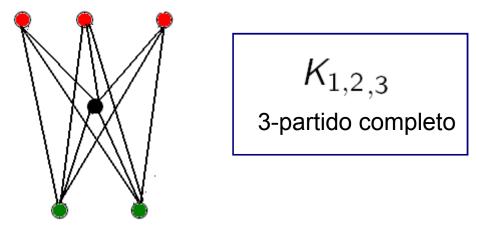


Grafo p-partido

Um grafo simples $G = (X, \mathcal{U})$ diz-se p-partido, com classes de vértices X_1, \ldots, X_p , se $\{X_1, \ldots, X_p\}$ é uma partição de X e nenhum elemento de \mathcal{U} tem ambas as extremidades em elementos da mesma classe.

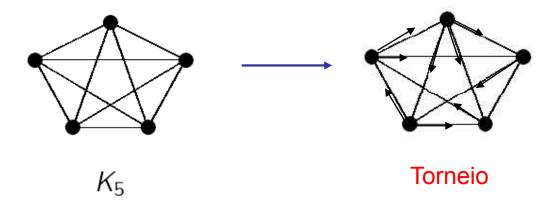


Um grafo p-partido, com $p \ge 2$, em que existe um arco unindo todo o par de vértices pertencentes a classes de vértices distintas diz-se um grafo p-partido completo.

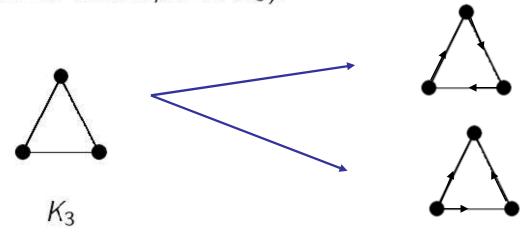


Se este grafo tiver n_1, \ldots, n_p elementos nas classes, representá-lo-emos por K_{n_1,\ldots,n_p} .

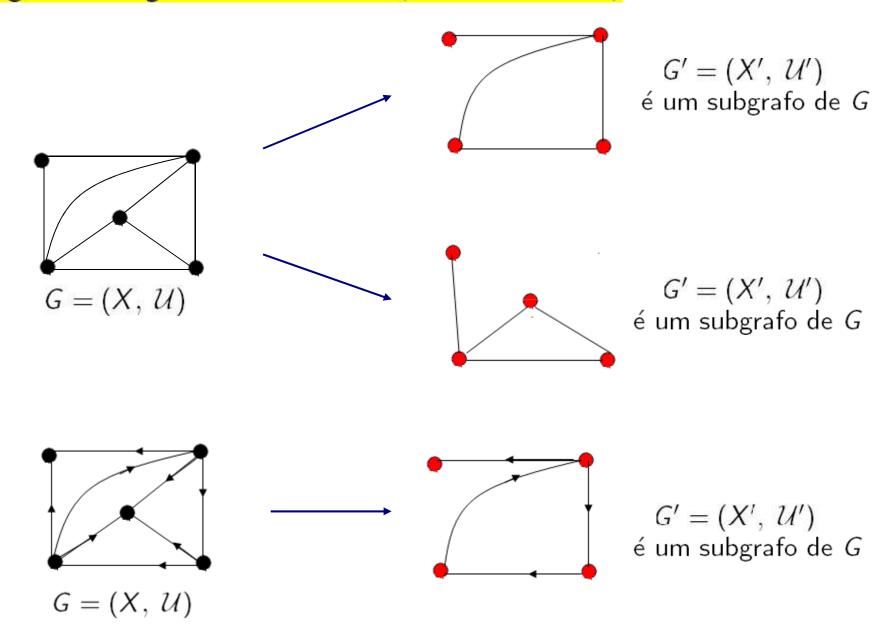
Nota: Chama-se torneio a todo o digrafo resultante da orientação de um grafo completo.



A menos de isomorfismo, há apenas dois torneios com 3 vértices (resultantes da orientação do K_3).



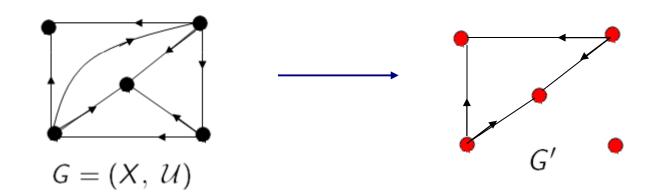
Subgrafos de grafos orientados (não orientados)



Diz-se que $G' = (X', \mathcal{U}')$ é um subgrafo do grafo orientado (respectivamente, não orientado) $G = (X, \mathcal{U})$ se $X \subseteq X'$ e $\mathcal{U}' \subseteq (X' \times X') \cap \mathcal{U}$ (respectivamente, $\mathcal{U}' \subseteq (X' \otimes X') \cap \mathcal{U}$).

De entre os subgrafos destacamos:

(1) Um grafo $G' = (X, \mathcal{U}')$ com $\mathcal{U}' \subseteq \mathcal{U}$ diz-se um grafo parcial de G.



Representa-se
$$G'$$
 por $G-\mathcal{U}''$ Arcos que se retiram a \mathcal{U}

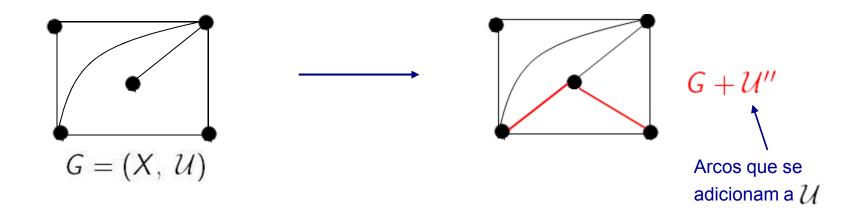
(2) Um grafo $G' = (X', U') \text{ com } X \subseteq X'$ diz-se um subgrafo de G gerado por X' se

$$\mathcal{U}' = (X' \otimes X') \cap \mathcal{U}$$
(caso G seja simples)
ou
 $\mathcal{U}' = (X' \times X') \cap \mathcal{U}$
(caso G seja orientado)



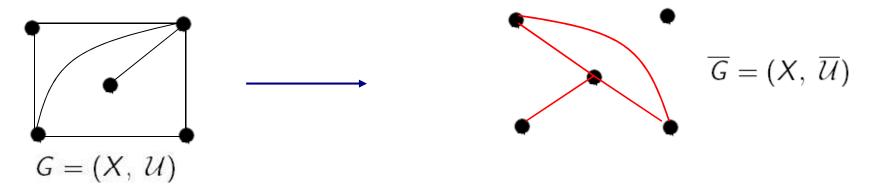
Representa-se
$$G'$$
 por $G-X''$. Arcos que se retiram a X

Grafos complementares



Se $G = (X, \mathcal{U})$ é um grafo orientado (respectivamente, não orientado) e $\mathcal{U}'' \subseteq (X \times X) \setminus \mathcal{U}$ (respectivamente, $\mathcal{U}'' \subseteq (X \otimes X) \setminus \mathcal{U}$) representamos por $G + \mathcal{U}''$ o grafo $(X, \mathcal{U} \cup \mathcal{U}'')$.

Grafo complementar de G



Seja $G=(X,\ \mathcal{U})$ um grafo simples. Chama-se grafo complementar de G e representa-se por \overline{G} , o grafo simples $\overline{G}=(X,\ \overline{\mathcal{U}})$ em que $\overline{\mathcal{U}}=(X\otimes X)\setminus \mathcal{U}$.

Digrafo complementar de G

Seja $G = (X, \mathcal{U})$ um digrafo. Chama-se digrafo complementar de G e representa-se por \overline{G} , o digrafo $\overline{G} = (X, \overline{\mathcal{U}})$ em que $\overline{\mathcal{U}} = (X \times X) \setminus (\mathcal{U} \cup \{(x,x) \mid x \in X\})$.