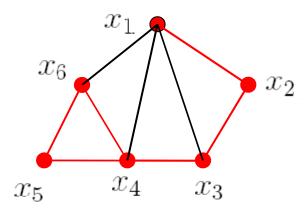
Alguns resultados sobre cadeias:

Proposição 2.2.7:

Num grafo simples G = (X, U) existe uma cadeia $x_0 - x_r$ se, e só se, existe uma cadeia $x_0 - x_r$ elementar.

Observação:



$$\begin{array}{c} \downarrow \qquad \downarrow \qquad \downarrow \\ x_1,x_2,\ x_3,x_4,x_5,x_6,x_4 \\ \textbf{Cadeia não elementar}\ x_1-x_4 \\ \downarrow \qquad \qquad \downarrow \\ x_1,x_2,\ x_3,x_4 \end{array}$$

Cadeia elementar $x_1 - x_4$

Alguns resultados sobre cadeias:

Proposição 2.2.7:

Num grafo simples G = (X, U) existe uma cadeia $x_0 - x_r$ se, e só se, existe uma cadeia $x_0 - x_r$ elementar.

Demonstração \Longrightarrow Se $x_0 = x_r$, a cadeia trivial x_0 é elementar. Suponhamos que $x_0 \neq x_r$. Seja L uma cadeia $x_0 - x_r$ e x um vértice arbitrário de L. Se x ocorre mais do que uma vez na cadeia L então elimine-se a subsequência de L compreendida entre a primeira e a última ocorrência de x, bem como uma dessas ocorrências. Obtém-se, ainda, uma cadeia $x_0 - x_r$, mas em que x já não aparece repetido.

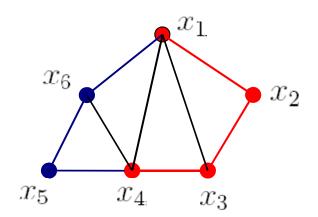
Repita-se este procedimento para todo o vértice que ocorra repetido em L. Obtém-se então uma cadeia sem vértices repetidos e, portanto, uma cadeia $x_0 - x_r$ elementar.

 \Leftarrow Imediato.

Proposição 2.2.8:

Sejam G = (X, U) um grafo simples e x_0 e x_r dois vértices distintos de G. Se em G existem duas cadeias $x_0 - x_r$ elementares distintas, então em G existe um ciclo.

Observação:



$$\left. \begin{array}{c} x_1, x_2, \ x_3, x_4 \\ x_1, x_6, x_5, x_4 \end{array} \right\} \begin{array}{c} \text{Cadeias} \ x_1 - x_4 \\ \\ \downarrow \\ x_1, x_2, \ x_3, x_4, x_5, x_6, x_1 \end{array} \begin{array}{c} \text{Ciclo} \end{array}$$

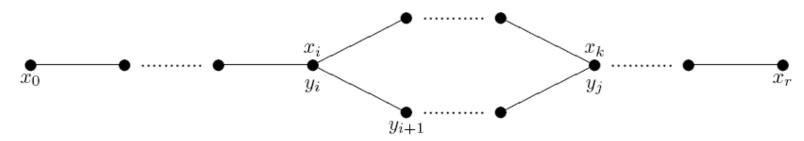
Proposição 2.2.8:

Sejam G = (X, U) um grafo simples e x_0 e x_r dois vértices distintos de G. Se em G existem duas cadeias $x_0 - x_r$ elementares distintas, então em G existe um ciclo.

Demonstração Sejam

$$L_1: x_0, x_1, x_2, \ldots, x_r$$
 e $L_2: x_0, y_1, y_2, \ldots, x_r$

duas cadeias $x_0 - x_r$ elementares distintas, existentes em G. Seja i o índice mínimo para o qual $x_{i+1} \neq y_{i+1}$ e j o índice mínimo tal que j > i e y_j é vértice de L_1 , isto é, $y_j = x_k \in L_1$.



Então,

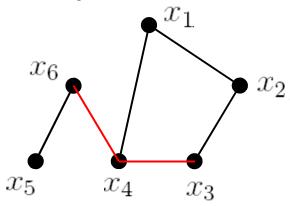
$$x_i, x_{i+1}, \ldots, x_k, y_{j-1}, \ldots, y_{i+1}, y_i$$

 \acute{e} um ciclo de G.

Proposição 2.2.9:

Seja $G = (X, \mathcal{U})$ um grafo simples sem ciclos. Se $u \in (X \otimes X) \setminus \mathcal{U}$ então G + u tem, no máximo, um ciclo.

Observação:



Acrescentando o arco $\{x_4,x_6\}$ continuamos sem ciclos, mas acrescentado $\{x_4,x_3\}$ passamos a ter um ciclo (no máximo um).

Demonstração Suponhamos que em G + u existiam pelo menos dois ciclos e sejam C_1 e C_2 dois desses ciclos. Se o arco u não pertencesse aos dois ciclos, então concluiríamos que (G + u) - u = G tinha um ciclo, o que é impossível.

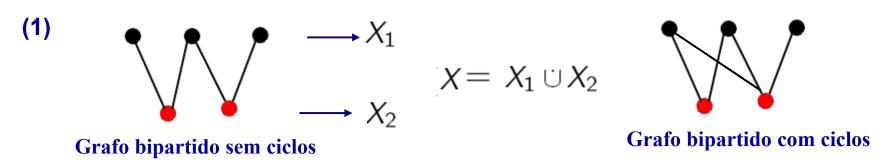
Portanto, $u = \{x, y\}$ é arco de C_1 e de C_2 . Então existiam duas cadeias x - y elementares distintas, não incluindo o arco u. Consequentemente, estas cadeias existiam também em G. Mas isto implicaria que G tinha um ciclo, o que é impossível.

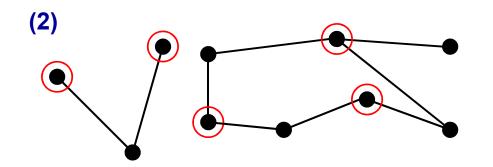
Portanto, em G + u existe, no máximo, um ciclo.

Teorema 2.2.10:

Um grafo simples, com $n \ge 2$ vértices, é bipartido se, e só se, não tem ciclos de comprimento ímpar.

Observação:



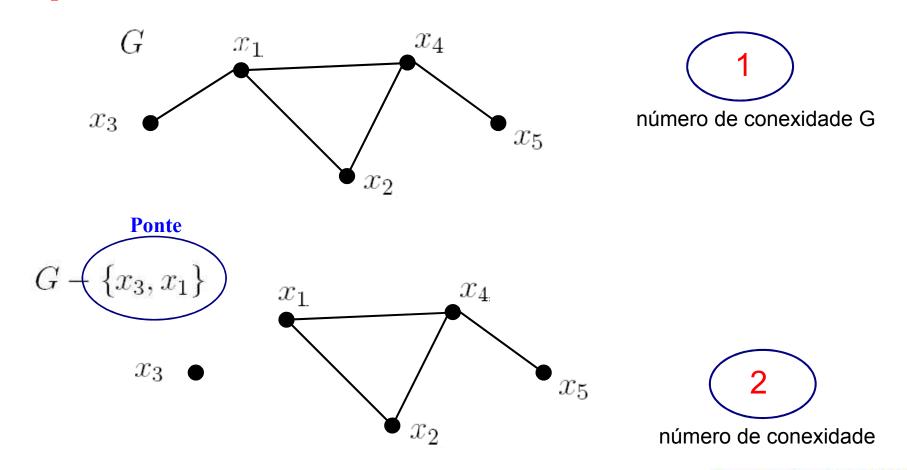


Como não tem ciclos de comprimento ímpar, pelo teorema sabe-se que o grafo é bipartido.

Definição 2.2.11:

Seja $G = (X, \mathcal{U})$ um grafo simples. Diz-se que $u \in \mathcal{U}$ é uma ponte de G se o número de conexidade de G — G is superior ao número de conexidade de G.

Exemplo:



Observação: Se G = (X, U) é um grafo simples com número de conexidade p e $u \in U$ é uma ponte, então G - u tem número de conexidade p + 1.

Proposição 2.2.11:

Seja G = (X, U) um grafo simples. Então $u \in U$ é uma ponte se, e só se, u não faz parte de nenhum ciclo.

Demonstração Dado que todo o arco de G tem extremidades, em vértices da mesma componente conexa, podemos supor que G é conexo.

 \Leftarrow Suponhamos que $u=\{x,\ y\}$ não é ponte. Então, G-u é conexo, pelo que existe uma cadeia elementar x-y, em G-u. Então,

$$x-y, \{x, y\}, x$$

é um ciclo em G ao qual u pertence.

das pontes

 \implies Suponhamos que $u=\{x,\ y\}$ faz parte de um ciclo,

$$x, y, y_1, \ldots, y_k, x$$
.

Sejam x_i , x_j vértices de G, $i \neq j$. Como G é conexo, existe uma cadeia elementar $x_i - x_j$. Se u não é arco desta cadeia, então a cadeia $x_i - x_j$, é cadeia em G - u. Se u é arco da cadeia, então $x_i - x_j$ é cadeia

$$x_i, \ldots, x, y, \ldots, x_j$$

pelo que,

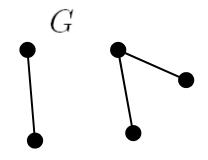
$$x_i, \ldots, x, y_k, \ldots, y_1, y, \ldots, x_j$$

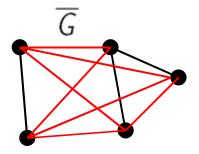
também é cadeia $x_i - x_j$, só que não inclui o arco u. Portanto, cadeia em G - u. Logo, G - u é conexo, ou seja, u não é ponte.

Proposição 2.2.12:

Um grafo simples G e o seu grafo complementar \overline{G} não podem ser ambos desconexos.

Observação:





Proposição 2.2.12:

Um grafo simples G e o seu grafo complementar \overline{G} não podem ser ambos desconexos.

Demonstração Suponhamos que G é desconexo e vejamos que G é conexo.

Sejam x_i , x_j dois vértices de G.

Se $x_i = x_j$, tem-se a cadeia trivial. Suponhamos que $x_i \neq x_j$. Se $\{x_i, x_j\}$ não é arco de G, então é arco de \overline{G} , pelo que x_i, x_j é cadeia $x_i - x_j$ em \overline{G} .

Se $\{x_i, x_j\}$ é arco de G, então x_i e x_j pertencem à mesma componente conexa de G. Como G é desconexo, existe um vértice x_k que não pertence à componente conexa de x_i e x_j , em G. Então, $\{x_i, x_k\}$ e $\{x_k, x_j\}$ não são arcos de G, pelo que o são de \overline{G} . Assim,

$$x_i, x_k, x_j$$

é cadeia $x_i - x_j$ em \overline{G} . Logo, \overline{G} é conexo.

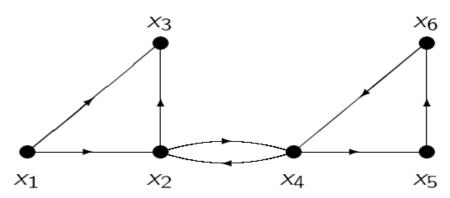
Se \overline{G} fosse desconexo, então por um raciocínio análogo, $\overline{\overline{G}}=G$ é conexo. Logo, G e \overline{G} não podem ser ambos desconexos.

Noção de caminho (multigrafos orientados):

Definição 2.2.13:

Num multigrafo orientado G = (X, U) chama-se caminho a uma sequência alternada de vértices e arcos de G, iniciada e terminada num vértice, tal que cada arco tem uma extremidade inicial no vértice que imediatamente o precede na sequência e extremidade final no vértice que imediatamente lhe sucede na sequência.

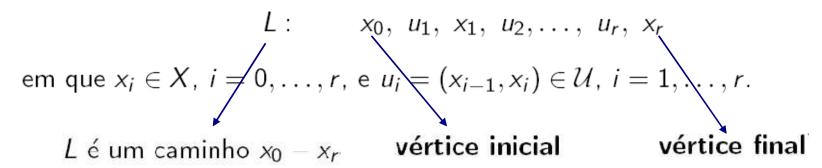
Exemplo: Seja $G = (X, \mathcal{U})$



$$L: x_1, (x_1, x_2), x_2, (x_2, x_4), x_4, (x_4, x_5), x_5$$
 Caminho (cadeia)

$$C: \quad x_1, \ (x_1, x_2), \ x_2, \ (x_4, x_2), \ x_4, \ (x_4, x_5), \ x_5 \qquad \begin{array}{c} \text{Cadeia que não \'e} \\ \text{um caminho} \end{array}$$

Trata-se de uma sequência da forma



As definições de caminho fechado/aberto, comprimento de um caminho, caminho simples, caminho elementar, ..., obtêm-se substituindo, nas correspondentes definições para cadeias, "cadeia" por "caminho".

Definição 2.2.14:

Um caminho simples, fechado e não trivial diz-se um circuito.

não repete arcos

Observações:

- ① Se L é um caminho $x_0 x_r$ num multigrafo orientado G então L é também uma cadeia $x_0 x_r$.
- ② Num grafo orientado pode existir um caminho $x_0 x_r$ e não existir nenhum caminho $x_r x_0$.

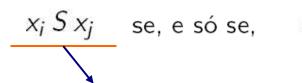
Num digrafo, um caminho fica completamente determinado se indicarmos apenas a subsequência dos seus vértices.

Definição 2.2.15:

Um multigrafo orientado G = (X, U) diz-se fortemente conexo se, para quaisquer dois vértices x_i e x_j , existem em G um caminho $x_i - x_j$ e um caminho $x_i - x_i$.

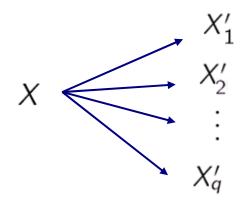
Componentes fortemente conexas de G

Seja G = (X, U) um multigrafo orientado e S a relação binária, definida em X, por: para quaisquer $x_i, x_i \in X$,



 $x_i S x_j$ se, e só se, existem em G um caminho $x_i - x_j$ e um caminho $x_i - x_i$.

S é relação de equivalência



q = número de conexidade forte

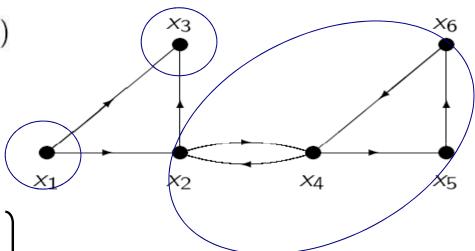
= classe de equivalência para S

Sejam X_1', \ldots, X_q' as suas classes de equivalência.

Ao número q chama-se número de conexidade forte de G.

Os subgrafos gerados por X'_1, \ldots, X'_q dizem-se as **componentes** fortemente conexas de G e representam-se, respectivamente, por S_1, \ldots, S_q .

Exemplo: Seja $G = (X, \mathcal{U})$



$$[x_1]_S = \{x_1\}$$

$$[x_2]_S = \{x_2, x_4, x_5, x_6\}$$

$$[x_3]_S = \{x_3\}$$

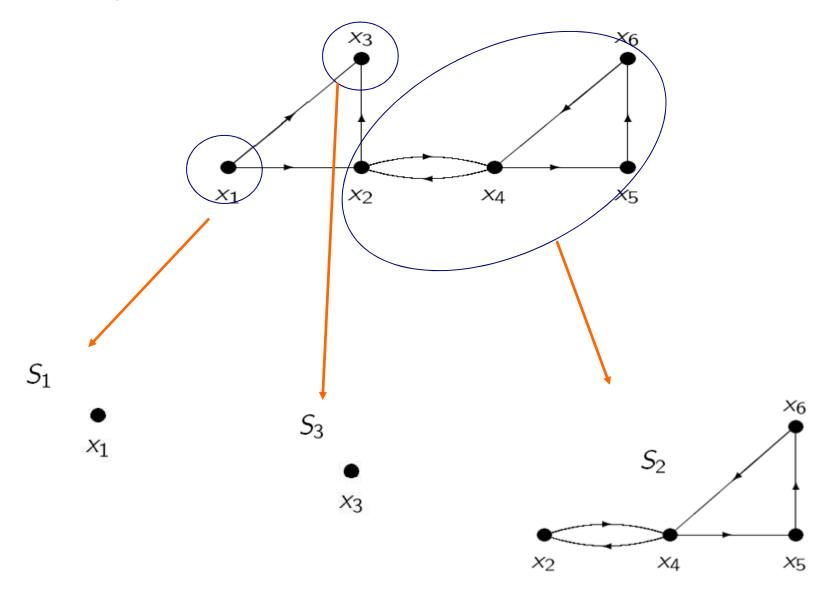
Classes de equivalência da relação S

A relação S origina uma partição de X em 3 classes de equivalência:

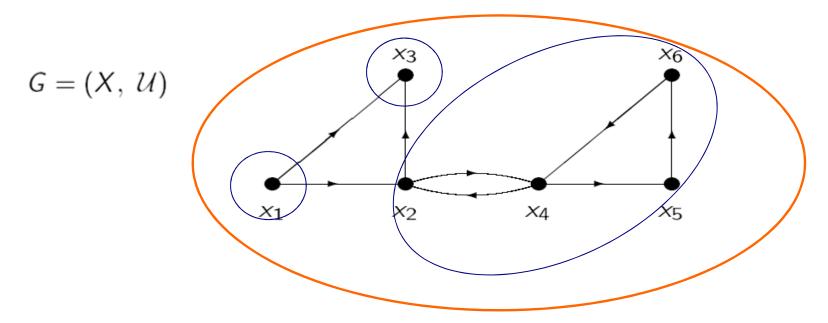
$$X_1' = \{x_1\}; \ X_2' = \{x_2, \ x_4, \ x_5, \ x_6\} \ e \ X_3' = \{x_3\}.$$

Número de conexidade forte = 3

Assim, as componentes fortemente conexas de G são:



Comparação entre as componentes conexas e as componentes fortemente conexas:



Para G = (X, U) temos : 1 componente conexa;

3 componentes fortemente conexas;

Proposição 2.2.15:

Seja G = (X, U) um multigrafo orientado. Então:

- (i) Um arco de G pode n\(\tilde{a}\)o pertencer a nenhuma componente fortemente conexa;
- (ii) Um arco de G n\(\tilde{a}\)o pode pertencer a mais do que uma componente fortemente conexa;
- (iii) Um arco de G pertence a uma componente fortemente conexa se, e só se, faz parte de um circuito.

Proposição 2.2.16:

Seja G um digrafo. Se G é desconexo então o seu digrafo complementar \overline{G} é fortemente conexo.