Uma relação de recorrência para uma sucessão $(a_n)_{n>0}$ é uma expressão que relaciona cada termo $\frac{a_n}{a_n}$ (a partir de certa ordem $\frac{p}{n}$) com alguns dos seus predecessores a_0, a_1, \dots, a_{n-1} . As condições iniciais são valores que são explicitamente dados para um número finito (p-1) de termos da sucessão.

"Resolver" uma relação de recorrência, sujeita a certas condições iniciais, é determinar uma "expressão explícita" para o termo geral da sucessão.

Exemplos

• A sucessão de Fibonacci $(f_n)_{n\geq 1}$ é definida pelas condições iniciais

$$f_1 = 1$$
 & $f_2 = 2$

e pela relação de recorrência $f_n = f_{n-1} + f_{n-2} \quad (n \ge 3)$:

1. 2. 3. 5. 8. 13. 21. 34. ...

Definição

Uma relação de recorrência linear homogénea de grau k (k > 1) com coeficientes constantes é uma expressão da forma

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k},$$

com c_1, \ldots, c_k constantes (reais) e $c_k \neq 0$.

Exemplos

- A expressão $f_n = f_{n-1} + f_{n-2}$ (utilizada na definição da sucessão de Fibonacci) é uma relação de recorrência linear homogénea de grau 2 com coeficientes constantes.
- A expressão $a_n = 2a_{n-1}$ é uma relação de recorrência linear homogénea de grau 1 com coeficientes constantes.
- A relação de recorrência $a_n = 3a_{n-1}a_{n-2}$ não é linear.
- A relação de recorrência $a_n = a_{n-1} + 3$ não é homogénea.
- A relação de recorrência $a_n = 3na_{n-1}$ não tem coeficientes constantes.

• Seja $(a_n)_{n\geq 1}$ a sucessão definida pela relação de recorrência

$$a_n = a_{n-1} + 3, \quad n \ge 2,$$

com a condição inicial $a_1 = 2$. Ora,

$$\begin{array}{rcl}
a_{n} & = & a_{n-1} + 3 \\
 & = & (a_{n-2} + 3) + 3 & = & a_{n-2} + 2 \cdot 3 \\
 & = & (a_{n-3} + 3) + 2 \cdot 3 & = & a_{n-3} + 3 \cdot 3 \\
 & \cdots & \cdots & \cdots & \cdots \\
 & = & (a_{n-k} + 3) + (k-1) \cdot 3 & = & a_{n-k} + k \cdot 3 \\
 & \cdots & \cdots & \cdots & \cdots & \cdots \\
 & = & a_{1} + (n-1) \cdot 3 & = & a_{n-k} + k \cdot 3 \\
 & = & 2 + 3(n-1),
\end{array}$$

i.e. $a_n = 2 + 3(n-1)$, para n > 1. (Prove formalmente esta igualdade, usando o Princípio de Indução.)

• Vamos resolver a relação de recorrência $a_n=2a_{n-1}$ sujeita à condição inicial $a_0 = 1$. Temos

$$a_n = 2a_{n-1} = 2 \cdot 2a_{n-2} = 2^2 a_{n-2} = 2^2 \cdot 2a_{n-3}$$

= $2^3 a_{n-3} = \dots = 2^k a_{n-k} = \dots = 2^n a_0$
= 2^n ,

i.e. $a_n = 2^n$, para $n \ge 0$. (Prove formalmente esta igualdade, usando o Princípio de Inducão.)

artamento de Matemática (FCT/UNL)

Observação

Uma relação de recorrência linear homogénea de grau 1 com coeficientes constantes é uma expressão (genericamente) da forma $a_n = ca_{n-1}$, com c uma constante (real) não nula. É fácil concluir que podemos resolver esta relação de recorrência sujeita à condição inicial $a_0 = a$ (constante). obtendo-se $a_n = ac^n$, $n \ge 0$ (exercício).

Lema

Seja $a_n=c_1a_{n-1}+c_2a_{n-2}$ $(c_1,c_2\in\mathbb{R})$ uma relação de recorrência linear homogénea de grau 2 com coeficientes constantes. Sejam S_n e T_n duas sucessões que satisfazem a relação de recorrência e sejam b e d duas constantes (reais). Então a sucessão $U_n = bS_n + dT_n$ também satisfaz a relação de recorrência.

Lema

Seja $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ $(c_1, c_2 \in \mathbb{R})$ uma relação de recorrência linear homogénea de grau 2 com coeficientes constantes. Seja r uma raiz da equação $x^2 - c_1 x - c_2 = 0$. Então, a sucessão $(r^n)_{n \in \mathbb{N}_0}$ satisfaz a relação de recorrência.

$$c_1 r^{n-1} + c_2 r^{n-2} = r^{n-2} (c_1 r + c_2)$$

= $r^{n-2} r^2 = r^n$,

como pretendido.

Teorema

Seja $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ $(c_1, c_2 \in \mathbb{R})$ uma relação de recorrência linear homogénea de grau 2 com coeficientes constantes tal que a equação

$$x^2 - c_1 x - c_2 = 0$$

admite duas raízes distintas r_1 e r_2 . Seja $(a_n)_{n\geq 0}$ a sucessão definida pela relação de recorrência sujeita às condições iniciais

$$a_0 = C_0$$
 e $a_1 = C_1$.

Então, existem constantes (reais) b e d tais que

$$a_n = b r_1^n + d r_2^n, \qquad n \ge 0.$$

Departamento de Matemática (FCT/UNL) Matemática D

1.5. Relações de recorrência

• Consideremos agora a relação de recorrência

$$b_n = 3b_{n-1} - 2b_{n-2}$$

sujeita às condições iniciais $b_0=200$ e $b_1=220$. Comecemos por analisar a equação

$$x^2 - 3x + 2 = 0,$$

cujas raízes (distintas) são x=1 e x=2. Pelo teorema anterior, temos $b_n=b+d\,2^n$, para $n\geq 0$, para certas constantes b e d tais que

$$\begin{cases} b+d=b_0=200 \\ b+2d=b_1=220, \end{cases} \text{ ou seja, } \begin{cases} b=180 \\ d=20. \end{cases}$$

Logo, $b_n = 180 + 20 \cdot 2^n$, para $n \ge 0$.

1.5 Relações de recorrência

Exemplos

Vamos resolver a relação de recorrência

$$a_n = 5a_{n-1} - 6a_{n-2}$$

sujeita às condições iniciais $a_0 = 7$ e $a_1 = 16$.

Comecemos por considerar a equação $x^2 - 5x + 6 = 0$, cujas raízes são x = 2 e x = 3.

Atendendo ao teorema anterior, temos

$$a_n = b 2^n + d 3^n, \quad n \ge 0,$$

para certas constantes b e d tais que

$$\begin{cases} b+d = a_0 = 7 \\ 2b+3d = a_1 = 16, \end{cases}$$

ou seja (resolvendo o sistema), b = 5 e d = 2.

Logo,
$$a_n = 5 \cdot 2^n + 2 \cdot 3^n$$
, para $n \ge 0$.

(10170112)

1.5. Relações de recorrência

Teorema

Seja $a_n=c_1a_{n-1}+c_2a_{n-2}$ $(c_1,c_2\in\mathbb{R})$ uma relação de recorrência linear homogénea de grau 2 com coeficientes constantes tal que a equação $x^2-c_1x-c_2=0$ admite uma raiz dupla r. Seja $(a_n)_{n\geq 0}$ a sucessão definida pela relação de recorrência sujeita às condições iniciais

$$a_0 = C_0$$
 e $a_1 = C_1$.

Então, existem constantes (reais) b e d tais que

$$a_n = b r^n + d n r^n, \qquad n \ge 0.$$

Exemplo

Vamos resolver a relação de recorrência $c_n=4c_{n-1}-4c_{n-2}$ sujeita às condições iniciais $c_0=1$ e $c_1=1$.

Comecemos por considerar a equação $x^2 - 4x + 4 = 0$, a qual possui x = 2 como raiz dupla. Atendendo ao teorema anterior, temos

$$c_n = b 2^n + d n 2^n, \quad n \ge 0,$$

para certas constantes b e d tais que $\left\{ \begin{array}{l} b=c_0=1\\ 2b+2d=c_1=1, \end{array} \right.$ ou seja (resolvendo o sistema), b=1 e $d=-\frac{1}{2}.$ Logo, $a_n=2^n-\frac{1}{2}\,n\,2^n=2^n-n2^{n-1},$ para $n\geq 0.$