Probabilidades e Estatística

Responda, justificando adequadamente todas as respostas.

- (2.5) 1. Um programador escreve 70% dos seus programas em C++ e os restantes em Assembly. Sabe-se que 20% dos programas escritos em C++ e 35% dos programas escritos em Assembly são compilados (com êxito) na primeira tentativa.
 - (a) Qual a probabilidade de um programa, seleccionado aleatoriamente, compilar na primeira tentativa?
 - (b) Sabendo que um programa foi compilado à primeira tentativa, qual a probabilidade de ter sido escrito em Assembly?
- (4.0) 2. Uma turma com 20 alunos sujeita-se a uma prova de avaliação. A nota de cada aluno, é independente das restantes notas, e segue uma distribuição Normal com média μ e desvio padrão 2.
 - (a) Sabendo que a probabilidade de um aluno ter nota superior a 10 é aproximadamente igual a 0.6, determine μ . [Caso não consiga resolver esta alínea, considere no que se segue $\mu = 11$].
 - (b) Calcule o valor médio e a variância da classificação média obtida por esta turma de 20 alunos.
 - (c) Qual a probabilidade da nota média dos 20 alunos ser superior a 12?
 - (d) Qual é o número esperado de alunos da turma com nota superior a 10. Justifique.
- (4.0) 3. Admite-se que o tempo de vida de um certo tipo de lâmpada, em milhares de horas, é uma variável aleatória com **função de distribuição**:

$$F(x) = \begin{cases} 0, & x \le a; \\ 1 - (\frac{x}{a})^{-2}, & x > a; \end{cases} \quad a > 0.$$

- (a) Calcule o valor médio de X. [Caso não consiga resolver, considere no que se segue $E(X) = \frac{2}{5}a$.]
- (b) Determine o estimador de a, usando o método dos Momentos.

Considere a = 1 nas restantes alíneas.

- (c) Sejam $u_1 = 0.7152$ e $u_2 = 0.4773$ dois números pseudo-aleatórios da distribuição U(0,1). Calcule dois números pseudo-aleatórios da v.a. X, através do método da Transformação Inversa.
- (d) Considere a v.a. Y com distribuição Uniforme **discreta** de valor médio 3.5. Admitindo que E(XY) = 2 e V(X 1) = 1, calcule V(Z) com Z = Y X.
- (2.5) 4. Pretende-se estudar a possível relação, entre o comprimento x (em centímetros) de um filamento de uma lâmpada incandescente e o seu tempo de "vida" Y (em horas). Recolheu-se a amostra:

$$\begin{bmatrix} x & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.6 & 0.7 & 0.8 & 0.9 & 1 \\ y & 210 & 283 & 341 & 418 & 448 & 465 & 500 & 565 & 625 & 645 \end{bmatrix}$$

$$S_{xx} = 0.6 \qquad \sum y_i = 4500 \qquad \sum y_i^2 = 2207998 \qquad \sum x_i Y_i = 3029.6 \qquad n = 10$$

- (a) Estime os parâmetros do modelo de regressão linear simples.
- (b) Se aumentarmos o comprimento de um filamento de uma lâmpada em 0.5cm, qual prevê que seja o efeito desse aumento no seu tempo de "vida"?

(7.0) 5. Os dados abaixo indicados representam os tempos de reacção, em segundos, de indivíduos submetidos a determinado estímulo.

1.48	1.26	1.52	1.56	1.48	1.46	1.60	1.53	1.64	1.51
1.30	1.28	1.43	1.43	1.55	1.57	1.64	1.74	1.65	1.43
1.51	1.53	1.68	1.37	1.47	1.61	1.25	1.43	1.49	1.60

Observação:
$$n = 30$$
 $\sum x_i = 45$ $\sum x_i^2 = 67.9456$

- (a) i. Determine uma estimativa pontual da variância da população, σ^2 .
 - ii. Deduza e calcule um intervalo de confiança a 90% para σ . Indique eventuais pressupostos.
- (b) i. Seja p a proporção de indivíduos da população com tempo de reacção superior a 1.6. Calcule uma estimativa pontual deste parâmetro.
 - ii. Ficará surpreendido se lhe afirmarem que a proporção de indivíduos com tempo de reacção superior 1.6 é igual a 25%? Justifique claramente a sua resposta, através de um teste de hipóteses. Considere o nível de significância de 8%.
 - iii. Responda à alínea anterior usando o valor-p.
 - iv. O estimador pontual, usado para estimar a proporção é centrado? E é consistente?

FORMULÁRIO

	P(X = k) ou $f(x)$	E(X)	V(X)
U(n)	$\frac{1}{n}$, $k = 1, \dots, n$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$
Bin(n,p)	$\binom{n}{k} p^k (1-p)^{n-k}, k = 0, \dots, n, 0$	np	np(1-p)
G(p)	$p(1-p)^{k-1}$, $k = 1, 2,, 0$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
H(N,M,n)	$\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}, \max(0, n-N+M) \le x \le \min(M, n),$	$n\frac{M}{N}$	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$
$P(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, \dots, \ \lambda > 0$	λ	λ
U(a,b)	$\frac{1}{b-a}$, $a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$E(\lambda)$	$\lambda e^{-\lambda x}, x > 0, \lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

$$Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1) \quad T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1} \quad Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{a}{\sim} N(0, 1) \qquad Z = \frac{\overline{X} - \mu}{S/\sqrt{n}} \stackrel{a}{\sim} N(0, 1)$$

$$S^{2} = \frac{1}{n-1} \sum (X_{i} - \overline{X})^{2} = \frac{1}{n-1} \left(\sum X_{i}^{2} - n \overline{X}^{2} \right) \qquad Z = \frac{\hat{P} - p}{\sqrt{p(1-p)/n}} \stackrel{a}{\sim} N(0, 1)$$

$$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0, 1) \qquad X^{2} = \frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \qquad X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \stackrel{a}{\sim} \chi_{k-p-1}^{2}$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \qquad S_{xY} = \sum_{i=1}^{n} x_i Y_i - n\overline{x}\overline{Y} \qquad S_{YY} = \sum_{i=1}^{n} Y_i^2 - n\overline{Y}^2$$

$$SQ_E = S_{YY} - \frac{S_{xY}^2}{S_{xx}} \qquad R^2 = \frac{S_{xY}^2}{S_{xx}S_{YY}} \qquad \hat{\beta}_1 = \frac{S_{xY}}{S_{xx}} \qquad \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\sigma}^2 = \frac{SQ_E}{n-2} \qquad \frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2 \qquad T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}} \sim t_{n-2} \qquad T = \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\frac{\hat{\sigma}^2}{nS_{xx}} \sum_{i=1}^{n} x_i^2}} \sim t_{n-2}$$

$$T = \frac{\hat{\mu}_{Y|x_0} - \mu_{Y|x_0}}{\sqrt{\hat{\sigma}^2 \left(\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right)}} \sim t_{n-2}$$

$$T = \frac{Y_0 - \hat{Y}_0}{\sqrt{\hat{\sigma}^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right)}} \sim t_{n-2}$$