
Software Quality – Part 1
David Mendes

#44934
dj.mendes@campus.fct.unl.pt

Francisco Cunha

#45412
fjm.cunha@campus.fct.unl.pt

ABSTRACT
In this paper we present the analysis work that we did for two Java

projects of considerable size and complexity. Using different OO

metrics, tools and thresholds, we give an overview of the software

quality of these systems, diving deeper on unusual situations and

symptoms of code smell that we found along the way. As we com-

pare the two, we showcase how base architectural decisions trans-

late into the most notable differences between two projects of sim-

ilar dimension.

1. INTRODUCTION

Errors in software development are inevitable, but good develop-

ment practices on top of a solid architectural foundation could go a

long way to reduce them. On this paper, we showcase and analyze

two Java systems of non-trivial size nor complexity, Bootique and

JHotDraw. Using various well-known, battle-tested OO metrics

and tools, we present an overview of the quality of these systems.

Furthermore, we bring up design patterns and code smells, never

leaving out potential refactoring decisions.

SYSTEMS DESCRIPTION

1.1 Bootique (v0.25)

Figure 1 – Bootique – Framework for Runnable Java Apps

Bootique is designed to be a platform for developing modern Java

applications, making use of dependency injection and configuration

to create full container-less running Java apps. It allows the devel-

opment of fully functional apps (by module composition) that run

as if they were simple commands. One can use it to create not only

1 Bootique is a minimally opinionated platform for modern runna-

ble Java apps.: bootique/bootique. Bootique Project, 2018.

2 A. Adamchik, “Bootique: a Minimally Opinionated Platform for

Modern Java Apps,” Medium, 17-Feb-2016.

REST services, web apps and database migration tasks, but also

fully-fledged, multi-functional apps or even microservices.1 2

1.2 JHotDraw (v5.2)
JHotDraw is a Java GUI framework for technical and structured

two-dimensional graphics.3

Figure 2 – JHotDraw, Java GUI for 2D Graphics

2. SOFTWARE METRICS
According to Lanza et al. "Metrics are good at summarizing partic-

ular aspects of things and detecting outliers in large amounts of

data" [1], and even though they scale well, they cannot be seen as

definitive proof that a piece of code is "good" or "bad".

That said, including metrics assessments during development is a

reasonable way to make sure the produced code keeps a high level

of maintainability and fault-tolerance.

Our analysis aims not to see these metrics as the "holy-grail" of

software-quality. Though we take them in high consideration while

suggesting changes to the aforementioned systems, we always keep

in mind that they can't replace good taste and experience.

3. TOOLS / SOFTWARE USED
For reproducibility purposes, our analysis was made using OSX

(High Sierra) and Eclipse version 2018-09 (4.9.0), which are the

latest stable versions as of the time of writing

3“JHotDraw Start Page.” [Online]. Available:

https://www.jhotdraw.org/. [Accessed: 01-Oct-2018].

3.1 SourceMiner (v1.0.0)
"SourceMiner is a multiple view environment (MVE) designed and

implemented as an Eclipse plug-in to enhance software comprehen-

sion activities”.4 It enables the developer to understand, in a visual

and interactive manner, what are the pitfalls and quality issues with

their own software.

Its visual aiding features include Tree-Maps, Graphs and even ma-

trices that give information about a number of essential metrics, re-

garding software quality, from which we point out the McCabe

Complexity, Size, Coupling (Afferent / Efferent / Global). A few

more are present, all with the end goals of enabling a more complete

view of the system and tackling some blind-spots in the design of

applications.

3.2 Metrics (v1.3.8)
The Metrics plugin provides software quality metrics alongside de-

pendency analysis. Not only it provides values for each produced

metric (including mean and standard deviation), but it is also capa-

ble of creating graphs according to the program's dependencies.

This plugin can be integrated into an application's build cycle, to

warn the developer of possible problems ("range violations"). This

enables continuous monitoring of the state of the system, during

both development and maintenance phases. The plugin also enables

metrics exporting for further analysis and registry.5

3.3 inFusion (v7.2.7)
inFusion works as a standalone application, and like the previous

two, provides system metrics. inFusion is specifically tailored to-

wards object-oriented (OO) programming.

It also provides a very intuitive and detailed overview pyramid

analysis, alongside other interpretations of the systems complexity,

coupling and encapsulation.6

3.4 EclEmma (v3.1.1)
EclEmma is a code coverage plugin for Eclipse, a port of the orig-

inal EMMA library developed by Vlad Roubtsov.7 The tool pro-

vides a good set of features, from which we highlight the Coverage

Overview and the Source Highlighting. For more details, please re-

fer to the official website.8

EclEmma can be installed via the Eclipse Marketplace (simply

searching for 'EclEmma') or the update site9.

3.5 SonarLint (v4.0)
SonarLint is an open-source code linter that offers full integration

with Eclipse.10 There's often not a lot of remarkably different

4 “Sourceminer,” SourceForge. [Online]. Available: https://source-

forge.net/projects/sourceminer/. [Accessed: 01-Oct-2018].

5 “Metrics 1.3.6.” [Online]. Available: http://metrics.source-

forge.net/. [Accessed: 01-Oct-2018].

6 https://moodle.fct.unl.pt/mod/resource/view.php?id=290510

7 “EMMA: a free Java code coverage tool.” [Online]. Available:

http://emma.sourceforge.net/. [Accessed: 19-Oct-2018].

8 “EclEmma - Java Code Coverage for Eclipse.” [Online]. Availa-

ble: https://www.eclemma.org/. [Accessed: 19-Oct-2018].

9 “EclEmma - Installation.” [Online]. Available:

https://www.eclemma.org/installation.html. [Accessed: 19-Oct-

2018].

features among linters, and SonarLint is no exception. One thing

that's worth nothing is that although opinionated, SonarLint grants

a nice degree of configuration freedom, so that one can fine-tune

analysis settings as they wish.

As a fully-fledged static analysis tool, a linter can point out two

classes of issues. The first class is that of stylistic issues, such as no

closing semi-colon on declarations, or multiple instructions per

LoC. The second class regards the problematic issues, such as er-

rors, bugs and suspicious constructs. 11

3.6 JSpIRIT (v1.0) and JDeodorant (v5.0.68)
Both JSpIRIT12 and JDeodorant13 were used to detect code smells

automatically and recommend appropriate refactoring to resolve

them. Whilst the former supports the identification of some of the

most well-known code smells - following the detection strategies

presented by Lanza et al. [1] - the latter complements it with addi-

tional information on conditional type checking and duplicate code.

4. Bootique system analysis

4.1 inFusion

Figure 3 – Bootique’s Overview Pyramid created with inFusion

We used inFusion to generate our system's Overview Pyramid. The

three key metrics quantified by the Overview Pyramid are the Size

and Complexity (shown in yellow), Coupling (shown in blue) and

Inheritance (shown in green).

We will start our analysis with the Size and Complexity, conducted

in a top-down approach. At the higher level, we can tell that the

system's classes tend to be organized in rather fine-grained pack-

ages. In other words, we can see that there are few classes per pack-

age - on average, around six of them, as we can tell by the index.

The classes tend to be rather small themselves, containing, on av-

erage, three to four methods each, placing them comfortably on the

"Low" column of the thresholds proposed by Lanza et al. [1]

Methods are also short and simple, averaging seven to eight lines

of code each, the latter with a remarkably low cyclomatic complex-

ity.

10 “Fix code quality issues before they exist | SonarLint.” [Online].

Available: https://www.sonarlint.org. [Accessed: 20-Oct-2018].

11 “lint (software),” Wikipedia. 10-Aug-2018.

12 “JSpIRIT - Santiago Vidal.” [Online]. Available:

https://sites.google.com/site/santiagoavidal/projects/jspirit. [Ac-

cessed: 19-Oct-2018].

13 “JDeodorant | Eclipse Plugins, Bundles and Products - Eclipse

Marketplace.” [Online]. Available: https://market-

place.eclipse.org/content/jdeodorant. [Accessed: 19-Oct-2018].

Moving on to the coupling analysis, we can see that the system's

methods present low intensity but high dispersion. In other words,

the few methods that they tend to call are usually from many other

classes.

Class hierarchies tend to be rather sparse, i.e. there are mostly

standalone classes and few, flat inheritance relations. This can be

an indicative that the system's authors are opting for composition

over inheritance. Furthermore, inFusion did not detect the presence

of God nor Brain Classes.

Finally, inFusion also informs us that the system contains three data

classes. There are opposite views on this. While some "OO purists"

argue this is a code smell14, others favor it for relationship modeling

or ORM construction.

Upon further analysis of these classes we realized they are some-

what "special cases" of Data Classes.

From our research, each of them is used only within the package

where they were defined. Yet, many - if not all - of their methods

and constructor(s) are public instead of package-protected, and it's

not clear why.

On the instance variables Encapsulate Field was applied, as they

are private and only accessible via getter methods.

The absence of setter methods implies immutability after instantia-

tion; in other words, the data is not being mutated by other classes.

This indicates an application of the Remove Setting Method. Alt-

hough technically redundant, we argue that marking the private in-

stance variables with the final keyword would increase the authors’

intent, even in cases like this.

Most importantly, they seem to be used strictly as immutable Pa-

rameter Objects. And here's where it gets interesting: in cases like

this where the parameter object does not have any explicit opera-

tions of their own, aren't we actually introducing a Data Class smell

in favor of readability and conciseness? Whether that is fundamen-

tally a "good" or "bad" idea is something we can't answer for sure.

4.2 Metrics

Figure 4 – Software Quality Metrics captured by the Metrics

Plugin

4.2.1 Cyclomatic Complexity

On average, the Cyclomatic Complexity fits into the first level of

the McCabe threshold table. With a mean value of 1.533, we can

14 “Design Patterns and Refactoring.” [Online]. Available:

https://sourcemaking.com/. [Accessed: 01-Oct-2018].

15 “Telescoping Constructor Pattern alternatives | Vojtech

Ruzicka’s Programming Blog.” [Online]. Available:

understand that most functions are very simple, following a single

execution flow.

Despite this fact, there are some alarming outliers. The maximum

complexity found reports a value of 22. The function in question

presents a seriously big switch statement, which leads to a control

flow graph containing a great number of decision points. Even

though the number rings some alarms, there is no simple solution

to resolve the issue at hand, as the function needs to determine a

data type provided in the function argument by matching to all

known types (primitive and non-primitive) to provide the correct

answer.

4.2.2 High Number of Parameters
The number of parameters that our system's methods take in aver-

ages at 0.92. This is positive; we'll go in depth shortly. However,

we can see that there's at least one method that takes in seven pa-

rameters.

We argue that methods that take in a high number of parameters

introduce a considerable mental overhead for the programmer. Of-

tentimes, the order of the parameters is not logically ordered, mak-

ing those methods' calls difficult to reason about. Some languages,

such as Kotlin or Python, support named parameters to ease the

readability of such calls. Java, however, does not.

More so, the presence of such methods can be indicative of a code

smell.

On his book Clean Code [2], Robert C. Martin explains that the

optimal number of parameters for a function (or, in our case,

method) is zero (niladic function). One and two parameters are also

acceptable, but three or more should be avoided whenever possible.

The reasoning behind this is that a high number of parameters could

mean that a function/method is doing too much work, violating the

Single Responsibility Principle.

Typically, splitting it in multiple, smaller functions could be a way

to (indirectly) solve this problem. Alternatively, the encapsulation

of multiple parameters in a single domain-specific POJO could also

be helpful - the so-called Parameter Object pattern.

But in this project the methods that take in the biggest number of

parameters are class constructors. For these cases, we find the in-

troduction of the Builder pattern (referred by J. Bloch on his book,

Effective Java [3], not to be confused with the Gang of Four builder

pattern) to be a very viable refactoring choice. In fact, by applying

this creational pattern, one would be able to improve the semantics

and readability of those calls. 15

4.2.3 Nested Block Depth
Nested Block Depth analysis revealed that, on average, the depth

was 1.247 with a Standard Deviation as small as 0.727. Even con-

sidering the deviation, this fits into the category we would call

"Regular/Casual", in terms of nested block depth [4]. The biggest

outlier comes with a value of six. A value this high makes it so bugs

are more likely to appear and become harder to detect and resolve.

Furthermore, it also turns the code review and analysis much

harder, as one would need to keep track of the different indentation

levels to follow the execution flow. In this particular case, a solu-

tion to reduce the nested block depth would be to join nested

https://www.vojtechruzicka. com/avoid-telescoping-constructor-

pattern/. [Accessed: 20-Oct-2018].

conditionals into a single one, as some are mutually exclusive. By

doing so, one would achieve a flatter, more readable structure.

4.2.4 Classes and Methods
Out of the four most populated classes (27, 23, 23 and 20 methods,

respectively), the first three belong to the same package. In total,

these four hold almost 12% of Bootique's method count. Below that

it's balanced, with most classes holding three to six methods each.

It's worth mentioning that around 6% of the system's Java files have

zero methods. We were intrigued by this and went for a deeper anal-

ysis. Interestingly, these files were very heterogeneous among each

other. For instance, files such as ConfigurationSource.java would

implement a Facade16, while others would serve as tag/marker in-

terfaces (PolymorphicConfiguration.java comes to mind). There

were also a couple of Enum classes (usually file-private) and a good

amount of Annotation classes.

4.2.5 Coupling Intensity (Calls / NoM)
With a small value of 0.94, we can understand that the system pre-

sents low coupling intensity, since each method calls only close to

1 other method on average.

4.2.6 Coupling Dispersion (Fanout / Calls)
From the information given by the Overview Pyramid, we can con-

clude that coupling dispersion is the main issue with the system.

The value of 0.81 means that for every five operation calls, four of

them are made to other classes. This indicates a high coupling dis-

persion; in other words, classes don’t really appear to be self-con-

tained, and thus, any change made to a method can have an unde-

sired ripple effect, one that can affect a great part of the system.

4.2.7 Static Attributes and Singletons
The plugin also informs us that around 18% of the system's attrib-

utes (read: variables and values) are static. Having such a large per-

centage of static variables could be a problem, and so we checked

the source code. Most of these static attributes were values (con-

stants), which is a good thing, but we stumbled upon a few single-

tons. The Singleton pattern is rather controversial in the OO com-

munity, and the adoption of Dependency Injection could be a viable

replacement, as it would loosen up the system's coupling and ease

testability. Nevertheless, the Singleton pattern surely has pros and

cons that should be weighted accordingly in a deeper analysis.

4.3 SourceMiner

Figure 5 – Bootique SourceMiner Analysis regarding McCabe

Complexity (Classes)

By analyzing the Tree-Map extracted with the SourceMiner plugin,

we can see that, in terms of complexity, the system is extremely

16 tutorialspoint.com, “Design Patterns Facade Pattern,” www.tuto-

rialspoint.com. [Online]. Available: https://www.tutori-

alspoint.com/design_pattern/facade_pattern.htm. [Accessed: 01-

Oct-2018].

well distributed. This confirms what we had already seen with the

Metrics tool. The system presents just a few outliers.

While comparing the complexity results given by the Metrics and

the SourceMiner plugin, we noticed some drastic differences in the

way they classify things. For example, the method that Metrics

classified as having the biggest complexity value (22), only showed

a complexity value of 2 in SourceMiner. Upon some analysis, we

concluded that while Metrics considers every outcome of a switch

as a different decision point - and thus, dramatically increases the

method complexity - SourceMiner does not linearly correlate the

switch statement cases to control decision points, explaining why

the overall complexity of the method is drastically reduced.

Figure 6 - Bootique SourceMiner Analysis regarding Coupling

(Classes)

The Tree-Map in figure 6 confirms the information we already had

in regard to coupling, via the Metrics plugin, as it clearly denotes

some worrying discrepancies that could be troublesome for the

maintainability of the project.

Diving deeper and bearing in mind the problem detected by the both

the Overview Pyramid and SourceMiner - coupling dispersion - we

did some further analysis on the coupling dynamics of this applica-

tion.

We used the Instability Index formulae to determine which classes

were the most unstable, and thus more prone to the creation of a

ripple effect that would break the application if a bug were to be

introduced there.

The instability Index - an indicator of the resilience to change - can

be calculated by dividing the Efferent Coupling by the Total Cou-

pling (sum of Afferent and Efferent).17

While a value closer to zero for this index indicates stability, a value

closer to one indicates instability. High instability means that, if a

bug were to be introduced, the potential to create a disastrous ripple

effect is much higher than on a section with low instability. With

this being said, it’s important to keep in mind that, as with most

other metrics and indexes, a high Instability Index is not a guarantee

of a need to refactor. Each case should be analyzed independently,

as one could argue that, sometimes, it could actually be a good de-

sign decision.

The class with the biggest instability index was the Application.op-

tionMetadata.java (0.86), a class that aims to create a descriptor for

a command-line option. This high value is understandable, given

the system’s functionality: this class is highly demanded by the

other parts of the system. Upon further code analysis, the code is

straightforward which should, in theory, decrease the chance of

bugs being introduced by this component. Still, a remark can be

made that, if there is a need to introduce significant changes in this

17 A. Erickson, “Using Metrics to Find Out if Your Code Base Will

Stand the Test of Time,” 2010.

class, the derived change to the system becomes, obviously, much

harder to trace.

4.4 EclEmma
After running the test cases for Bootique, EclEmma reported an un-

derwhelming code coverage of 38.6%. Untested third-party code is

unpredictable, potentially dangerous code that should be used with

caution. This would be a considerable "red flag", had the project

been tagged production-ready. And that's the key point we want to

highlight here: Bootique is not a finished product. As of the time of

writing, Bootique is on version 0.25. A work in progress like this

usually implies breaking changes and an overall unstable API, and

so test coverage will probably increase as the project matures to-

wards the Version 1.0 Milestone.18

4.5 JSpIRIT and JDeodorant
We analyzed the system with both tools and ended up with similar

results. Given that fact, we based our judgment on JSpIRIT as it

seemed to provide the more reasonable results, while maintaining

a fairly strict approach to system design.

JSpIRIT detected a total of 44 design flaws, distributed as follows:

• 26 Feature Envy

• 9 Dispersed Coupling

• 4 Intensive Coupling

• 2 Shotgun Surgery

• 2 Refused Parent Bequest

• 1 God Class

Given that the tool orders the smells by a "relevance" ranking (i.e.

how impactful they might be in the evolution and maintainability

of the program), we focused our attention on the ten most relevant

smells, as they can give us a more accurate overview of eventual

flaws at a higher level.

From this top ten, 60% of the flaws detected were Feature Envious

methods. Dispersed and Intensive Coupling also make an appear-

ance, holding 20% and 10% respectively. The remaining 10% be-

longs to a situation of Refused Parent Bequest, in fact marked as

the most relevant code smell in the Bootique system, peaking at

number one in the classification.

Bearing in mind these tools are very demanding, and after carefully

analyzing these, we came to the conclusion that the system is gen-

erally well built/designed. As with most things, some corrections

could be made to improve the overall design and maintainability of

the project. However, we can only "guess" some of the decisions

made in the project, as we are outsiders to its development, and so

it would be unreasonable to point out major architectural changes.

Following this note - and considering the overall quality of

Bootique - we decided to point out some of the good design patterns

that we were able to detect.

4.5.1 Facade Design Pattern
In the Bootique class, we detected a great usage of the Facade de-

sign pattern. In this specific case the construction of the object can

be made enabling an “AutoLoadModules” feature, meaning that the

18 “Software versioning,” Wikipedia. 18-Oct-2018.

19 “Bootique: Minimally Opinionated Framework for Runnable

Java.” [Online]. Available: https://bootique.io/docs/0/bootique-

docs/#_chapter_10_commands. [Accessed: 20-Oct-2018].

calling function doesn’t need to specify which modules it requires

to run the app. All the modules that the app needs are hidden from

the client request. This way we isolate the client from all the mod-

ules components and reduce its coupling with the module subsys-

tem.

Note that one can usually correlate the usage of the Facade pattern

with a higher-than-usual usage of foreign data (the modules, in this

specific case) and a higher functional complexity, due to the added

complexity of managing the subsystems. These two factors (that

are key to identify a God Class), seem to corroborate the fact that

JSpIRIT considers this class to be a God Class.

4.5.2 Builder
The developers of Bootique make some use of the builder pattern

throughout the project (e.g. JsonNodeConfigurationBuilder, Com-

mandManagerBuilder). This pattern is, among other things, a good

choice to avoid falling into the Telescoping Constructor (anti) pat-

tern, as mentioned in Effective Java, 2nd Edition [3]. It also en-

hances readability and creational flexibility.

4.5.3 Decorator
On the structural side of things, we must highlight the proper usage

of the Decorator pattern (not to be confused with the Adapter pat-

tern). Bootique provides a command decorator API; one starts out

by creating a decorator policy (with CommandDecorator) and fol-

lows up by "decorating" the main command with said policy.19

In practice, this pattern enhances object functionality without the

need to change their interfaces. Furthermore, it does so in a flexible

way, allowing the addition/removal of behaviors at runtime.20

4.5.4 Fluent Interfaces
One interesting thing that's worth mentioning is the presence of

what Evans and Fowler coined as Fluent Interface (though we've

also seen the term Semantic Facade being used).21 Often imple-

mented with Method Chaining, Fluent Interfaces strive to make

highly readable APIs, essentially creating Domain-Specific Lan-

guages within the interface.

Figure 7 – Fluent Interface Design

(BQCoreModuleExtender#addCommand)

4.6 SonarLint
When employing a linter at a more advanced phase of a project

(which is the case here), the stylistic problems flagged will tend to

be highly opinionated, and therefore should not be taken as absolute

truths. That being said, adopting a linter (or maybe a formatter) at

the beginning of development is a great idea. They can usually be

20 “Decorator.” [Online]. Available: https://refactoring.guru/de-

sign-patterns/decorator. [Accessed: 20-Oct-2018].

21 “bliki: FluentInterface,” martinfowler.com. [Online]. Available:

https://martinfowler.com/bliki/FluentInterface.html. [Accessed:

20-Oct-2018].

tweaked to suit each team's preferences, enforcing a common, ho-

mogeneous code style.

SonarLint detected a wide variety of code smells and stylistic issues

- 192 to be exact – from which we highlight the most prominent.

4.6.1 Cognitive Complexity
Cognitive Complexity was introduced by SonarSource back in

2016 as a way to measure how difficult it is to understand the con-

trol flow of a method. It distantiates itself from Cyclomatic Com-

plexity by bringing a new light on measuring maintainability.

While Cyclomatic Complexity does a great job in covering testa-

bility, it comes short in reflecting how hard it is to understand a

given method - and therefore maintain it.

"It starts from the precedents set by Cyclomatic Complexity but

uses human judgement to assess how structures should be counted".
22

To further understand the concept, we suggest the reading of "Cog-

nitive Complexity, A new way of measuring understandability" by

SonarSource. 23

The method ConsoleAppender#foldToLines presented a Cognitive

Complexity of 26, which is way higher than the recommended

threshold of 15, as defined in the SonarLint tool. While analyzing

this method, we can immediately see why the cognitive complexity

is so high: the nesting goes four levels deep, which dramatically

increases the overall (Cognitive Complexity) score of the method.

We suggest using Extract Method in some of the method’s blocks

to improve understandability. These code blocks are heavily com-

mented, and their usage matches the Comments code smell, consid-

ering they’re clearly being used as a "deodorant". Augmented with

proper naming, the previously stated Extract Method strategy

would be a viable solution.

4.6.2 Variable Shadowing
Variable Shadowing occurs when we declare a variable in a given

scope, with a name that is already being used by another variable

in some outer scope.24

An example can be seen at Bootique.java#createJVMShutdown-

Hook, where the declaration of the local variable shutdownMan-

ager "hides" the upper definition of the global variable, making it

harder to understand which one is being used. This practice reduces

readability and can be avoided by simply changing the variable

name, usually in the inner-most scope.

22 “Cognitive Complexity™ | SonarSource.” [Online]. Available:

https://www.sonarsource.com/resources/white-papers/cognitive-

complexity.html. [Accessed: 20-Oct-2018].

23 ibid

24 “Variable Shadowing and Hiding in Java - DZone Java,”

dzone.com. [Online]. Available: https://dzone.com/articles/vari-

able-shadowing-and-hiding-in-java. [Accessed: 20-Oct-2018].

4.6.3 Switch Statements

Figure 8 Unsafe Switch

(DefaultHelpGenerator.java#printOptions)

This method contains a switch statement in which the cases match

an Enum. Yet, not all of the Enum constants are in the switch; this

could potentially not be a problem, if the remaining constants were

caught by the default case. But there is no default switch case,

which makes this a potentially dangerous piece of code, by defying

a basic rule of defensive programming.25 26 The obvious solution

would be to add a default case and deal with it accordingly.

4.6.4 Commented-Out code Blocks
This smell was detected in many classes and methods.

Commented-out blocks of code create visual noise and reduce read-

ability. Nowadays, with the use of version control tools, there is no

longer a justification to keep a codebase cluttered with dead com-

mented code.

4.6.4.1 Unnamed Exceptions
The use of generic exceptions prevents calling methods from han-

dling true, application-generated exceptions differently than the de-

fault java-built in exceptions. Custom exceptions should be created

to facilitate the detection and handling of the generated errors.

5. JHotDraw

5.1 inFusion

Figure 9 – JHotDraw Overview Pyramid created with inFusion

Like we did for Bootique, we used inFusion to generate an Over-

view Pyramid of JHotDraw.

25 Diego, “The Art of Defensive Programming,” WengVox, 25-

Dec-2016.

26 “Defensive programming | TheCodingMachine Best practices.”

[Online]. Available: http://bestpractices.thecodingma-

chine.com/php/defensive_programming.html. [Accessed: 20-

Oct-2018].

Its classes are organized within a reasonable number of packages.

However, each class has, on average, eight to nine methods, which

is considered high according to the threshold proposed by Lanza et

al [1]. The methods themselves are small yet complex (i.e. have

many conditional branches).

Furthermore, despite having low intensity, they have high disper-

sion. In other words, the few methods that they tend to call are usu-

ally from many other classes. There's also a lot of inheritance going

on. The inheritance trees tend to be very deep, and the base-classes

have several directly derived sub-classes. This implies a very

tightly-coupled architecture, which is often harder to update, test

and maintain. Something to keep in mind.

inFusion also detected the presence of multiple disharmonies, but

to avoid repetition, we will only delve into the ones not yet covered.

ShortestDistanceConnector#findPoint was marked as a Brain

Method - and rightfully so, considering its use of many variables

and clear violation of the Proportion Rule (with roughly 100 LoC).

The multiple comments that precede blocks of code give clear hints

that Extract Method should be used to refactor the method.

Moreover, UngroupCommand#execute was detected to suffer from

Intensive Coupling. Checking with Lanza & Marinescu's [1] detec-

tion strategy, we confirmed that the method called too many meth-

ods from few unrelated classes and had few nested conditionals.

The coupling dispersion is relatively low, with 67% of the method's

calls being to methods of the same provider class, DrawingView.

Thus, defining a new, more complex serving method in that pro-

vider class would replace the need for multiple calls.

5.2 Metrics

Figure 10 – Software Quality Metrics captured by the Metrics

Plugin

5.2.1 Cyclomatic Complexity
The cyclomatic complexity in JHotDraw is generally good. The

low value of 1.479 means that most methods are simple, with a sin-

gle execution flow. Still, improvements can be made. The method

with the maximum value of complexity (13) has the goal of return-

ing the intersection point of two lines in space (each line being de-

fined by four points). The algorithm implemented in the method,

though functional, leaves a lot to be desired in terms of complexity,

as it contains a lot of conditional statements and verifications.

Our suggestion for reducing the complexity would be to replace the

implemented algorithm altogether with one that presents less con-

trol flow decision points.27 The referenced code has basically the

same functionality and follows a single execution flow. The only

change needed would be to return null when no intersection is

found which would only add one decision point and would bring

the total complexity to a value of two.

27 “Find the intersection of two lines - Rosetta Code.” [Online].

Available: https://rosettacode.org/wiki/Find_the_intersec-

tion_of_two_lines#Java. [Accessed: 01-Oct-2018].

5.2.2 High Number of Parameters
The number of parameters that JHotDraw's methods take in aver-

ages at 1.028. However, we can see that there's at least one method

that takes in eight parameters - just one more than Bootique.

But this time, the method that took in the most parameters was not

a constructor, but a "regular" method. More specifically, we're talk-

ing about a method that takes in eight parameters (the spatial coor-

dinates of four points, in total) to calculate the intersection point of

two lines.

Method Extraction - the pattern mentioned earlier, during the anal-

ysis of Bootique - could be a reasonable refactoring option. But this

scenario screams for the Parameter Object pattern. By creating a

Line object - essentially a wrapper for a couple of points in space -

we'd simply need to pass two parameters (the two lines) instead of

the original eight. This change would be straight-forward to imple-

ment, and we argue it would enhance readability and semantics.

5.2.3 Nested Block Depth
Nested Block Depth values are good on the overall scope of the

program. Indeed, a mean value of 1.069 with a standard deviation

of 0.664 emphasizes that. The biggest block depth of the entire pro-

gram comes with a value of five. This value is on the higher end of

the spectrum, but it’s reasonable, given the context of the problem

the method aims to solve.

5.2.4 Classes and Methods
The biggest package in JHotDraw contains roughly 32% - almost a

third! - of the entire system's classes. In contrast, the smallest four

packages hold only around 4%. Furthermore, inFusion also de-

tected the presence of the Shotgun Surgery28 code smell in nine

methods. Poor separation of concerns is often the root of this code

smell, and while we couldn't identify which particular methods had

this problem, they will eventually harm maintainability further

down the road.

5.2.5 Coupling Intensity (Calls / NoM)
Though JHotDraw doubles the coupling intensity of Bootique, it

still maintains a low coupling intensity (2.17), which means its

methods call only close to two other methods, on average.

5.2.6 Coupling Dispersion (Fanout / Calls)
The JHotDraw system presents a high value of coupling dispersion

(0.67). In other words, two out of three operation calls are made to

other classes.

5.3 SourceMiner

Figure 11 - JHotDraw SourceMiner Analysis regarding

McCabe Complexity (Classes)

28 “The Shotgun Surgery Code Smell - DZone Java,” dzone.com.

[Online]. Available: https://dzone.com/articles/code-smell-shot-

surgery [Accessed: 01-Oct-2018].

Figure 12 - JHotDraw SourceMiner Analysis regarding Cou-

pling (Classes)

5.4 Sonar Lint

5.4.1 Collapsible If Statements

Figure 13 – Collapsible If Statements

(AttributeFigure.java#getAttribute)

This method clearly presents collapsible if statements. Collapsing

said if statements would improve code readability by reducing the

adjacent nesting.

5.4.2 Duplicated Code
AbstractFigure#figures and AbstractFigure#decompose

These methods have the exact same implementation, and both are

used in different scenarios. Duplicated code is terrible when it

comes to maintainability. To solve this issue, one of the methods

could be removed and a renaming could be considered (one that

would comply with all of its usage scenarios).

5.4.3 Resource Not Properly Closed

Figure 14 - Resource not properly closed

(SerializationStorageFormat.java#store)

We detected a possibly application-breaking bug related to the im-

proper closing of resources (ObjectOutput, in this case).

The ObjectOutput class implements the AutoClosable interface29,

and therefore the resource should have been created using a "try-

catch" block. Why? Because the object would be closed automati-

cally if it were to fall in the catch statement. The way it is done right

now - throwing an exception - implies that it would be handled by

the caller (or somewhere up, for that matter), but the resource would

remain open, possibly leading to leaks.

6. CONCLUSION
Despite being similar in size, the two systems analyzed are funda-

mentally different when it comes to architecture. Bootique's class

packaging is much more fine-grained than the one of JHotDraw. In

fact, the former's fine-grained approach to organization and separa-

tion of concerns goes all the way down to its methods - remarkably

simple and with little complexity. JHotDraw's methods, on the

other hand, tend to have somewhat high levels of complexity,

which could difficult further development and maintainability.

Another key difference between the two is their use of inheritance.

While JHotDraw makes heavy use of inheritance mechanisms (with

large breadth and depth), Bootique seems to prefer composition.

This leads to a type of architecture that is usually much looser and,

therefore, easier to test, update and maintain.

Bootique employs a great deal of battle-tested design patterns and

doesn’t seem to suffer from major code smells. JHotDraw uses

some similar patterns, focusing heavily on the Observer pattern for

its inter-procedural communication. Yet it suffers from more (and

more varied) code smells, making it potentially more difficult to

evolve in the future, in comparison to Bootique. We’d like to rein-

force, though, that sometimes design decisions that may seem

“odd” and/or lead to apparent smells have not-so-obvious purposes

that are unknown to the external observer. On this matter, practice,

experience and some degree of familiarity make perfect.

Last but not least, we need to point out how JHotDraw provides a

great deal of in-code documentation, in contrast to Bootique.

There is always room for improvements and refactoring in a soft-

ware project, and neither Bootique nor JHotDraw are exceptions.

In terms of software quality, we consider both systems to be on the

higher end of the spectrum, ranking Bootique slightly above.

REFERENCES
[1] Lanza, M. and Marinescu, R. “Object-oriented metrics in prac-

tice: using software metrics to characterize, evaluate, and im-

prove the design of object-oriented systems”. Springer Sci-

ence & Business Media, 2007.

[2] R. C. Martin, Clean Code: A Handbook of Agile Software

Craftsmanship, 1 edition. Upper Saddle River, NJ: Prentice

Hall, 2008.

[3] J. Bloch, Effective Java, 2nd ed. Upper Saddle River, NJ: Ad-

dison-Wesley, 2008.

[4] T. G. S. Filó, M. A. S. Bigonha, and K. A. M. Ferreira, “A

Catalogue of Thresholds for Object-Oriented Software Met-

rics,” p. 3, 2015.

29 “AutoCloseable (Java Platform SE 7).” [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/lang/AutoClosea-

ble.html. [Accessed: 20-Oct-2018].

