
Conceptual Architecture
of PostgreSQL

PopSQL
Andrew Heard, Daniel Basilio,

Eril Berkok, Julia Canella,
Mark Fischer, Misiu Godfrey

Principles and Key Mechanisms for

Research

 • Through extensive internet research, a conceptual architecture was

slowly pieced together

• The most helpful items found were

1.The PostgreSQL Developer's Handbook

2.How PostgreSQL Processes a Query by Bruce Momjian

3.PostgreSQL Documentation

• After the research was collected it was analyzed to determine

which architecture PostgreSQL employed.

• Research also showed interrelationships with components in the

system.

• Source code was also found and will be used to recover the

concrete architecture.

A General Overview

• PostgreSQL is an objected oriented architecture broken up into

three large subsystems. These subsystems are:

1.Client Server (also known as the Front End)

2.Server Processes

3.Database Control

• Within these subsystems, other architectures such as a hybrid pipe

and filter (in the Postgres Server process), implicit invocation (in

the Postmaster), client-server (with the Postmaster as the server),

and object oriented (in the database control) .

Diagram 1: Overall Conceptual Architecture of PostgreSQL

Client Server

• Comprised of two main parts: the client application and the client

interface library.

• Many different client applications, many of which run on different

OS's, some include: Mergeant, PGInhaler, SQirreL and more.

• Client interface library is the way that each of those applications

can talk to the Server because the client interface library will

convert to the proper SQL queries that the server can understand

and parse.

• This maximizes cohesion by the server not having to parse

different languages, but only understand SQL queries, which

makes the whole system faster.

Postmaster

• Is a daemon thread that runs constantly.

• Uses an implicit invocation architecture to listen for any and

all calls to the database.

• When it receives a call from a client, it creates a back-end

process (postgres server) to match it, using 1-1

correspondence.

• Once the process is created, it links the client and postgres

process so that they no longer have to communicate through

the postmaster.

General Architecture of Postgres Server

• Hybrid pipe and filter architecture.

• Each component references a shared repository of catalogs,

rules and tables.

• Postgres server is passed an SQL query and it is incrementally
transformed into result data.

Diagram 2: Conceptual Architecture of Back-end

Diagram 2: Conceptual Architecture of Postgres server

Parser

• Accepts an SQL query in the form of ASCII text.

• The lexer does pattern matching on the query to recognize

identifiers and keywords.

• The parser then assembles these into a parse tree.

• The parser checks that the SQL query has valid syntax but

does not understand the semantics.

• Traffic cop sends simple commands to the executor and

complex ones are sent to the planner / optimizer.

Planner / Optimizer

• SQL queries can be executed in many different orders and produce

the same results.

• The planner / optimizer will choose the best path or a reasonably

efficient one if too many possibilities exist.

• It will then pass on the path to the executor.

Executor

• Receives plan from planner / optimizer in the form of a tree.

• Extracts the necessary data tables.

• Recursively goes through the plan, and performs the necessary

action at each node.

• Pipe and filter, not batch processing.

• Returns output to client.

Data Storage

• Data storage is handled through an Access and

Storage subsystem.

• A Bootstrap subsystem is required the create the

initial template database

Diagram 3: Database Control Dependencies

Data Management

• The database is maintained by several independent (and

sometimes optional) subsystems initiated by the Postmaster upon

construction including:

• The Statistics Collector

• The Auto-Vacuum

• The Background Writer

• The Memory Management System

Diagram 3: Database Control Dependencies

Diagram 3: Database Control Dependencies

Statistics Collector

• Records table/index accesses of the database, usage of user-

defined functions, and commands being executed by server

processes.

• Information is passed from the collector via temporary files to

requesting processes.

• Processes submit relevant information to the collector periodically

to keep it up to date.

Auto-Vacuum

• The Auto-Vaccum is a collection of processes that scan tables in

the database(s) in order to release unused memory, update the

statistics, and prevent loss of data.

• The Auto-Vacuum relies on data received from the Statistics

Collector for proper table analysis.

Background Writer

• The Background Writer keeps the logs and backup information up

to date.

• The Writer maintains Write Ahead Logs, which record all changes

to the database since its last backup so that all data are secure.

• The standard output from every subsystem is passed to the

Background Writer to maintain these logs.

Access

• The Access Subsystem is in charge of:

o indexing

o scanning

o searching

o compiling and returning data

• PostgrSQL server processes retrieve data using the Access

Subsystem.

• Access subsytem can use a variety of indexing methods.

Storage

• Stored data is accessed through the Storage subsystem.

• In charge of maintaining a series of shared buffers.

• Allows for multiple accesses to the same tables using a

multiversion concurency controle model (MVCC).

• Maintains table locks and insures data concurrency.

Bootstrap

• The Bootstrap subsystem allows users to start the database in

bootstrap mode.

• Bootstrap mode does not allow for SQL queries.

• Bootstrap allows system catalogs to be created and filled from

scratch, whereas ordinary SQL commands require the catalogs to

exist already.

• Bootstrap is used by the installer to create the initial template

database.

Diagram 4: Use case of login and complex query

Diagram 5: Use case of creating a new database

Conclusion

• Overall architecture of PostgreSQL is object oriented and

repository.

• Front-end is a client-server architecture from the client library to

the Postgres server process and the postmaster uses implicit

invocation.

• Postgres server employs a hybrid pipe and filter/repository

architecture.

• The database control uses an object oriented architecture.

• In the future we will be able to study the source code to determine

the code-level dependencies, allowing us to form a concrete

architecture.

