Chapter 11: Indexing and Hashing

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Chapter 12: Indexing and Hashing

B Basic Concepts
B Ordered Indices
B B*-Tree Index Files
B-Tree Index Files
B Multiple-Key Access and Bitmap indices
B Hashing
Static Hashing
Dynamic Hashing
B Comparison of Ordered Indexing and Hashing
Index Definition in SQL
B Index Definition in Oracle

Database System Concepts - 6" Edition 11.2 ©Silberschatz, Korth and Sudarshan

B Indexing mechanisms used to speed up access to desired data.
E.g., author catalog in library
B Search Key - attribute to set of attributes used to look up records in a

file.

B An index file consists of records (called index entries) of the form

Basic Concepts

search-key

pointer

B Index files are typically much smaller than the original file

B Two basic kinds of indices:

Ordered indices: search keys are stored in sorted order
Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

Database System Concepts - 6" Edition

11.3

©Silberschatz, Korth and Sudarshan

Index Evaluation Metrics

Access time
Insertion time
Deletion time
Space overhead

Access types supported efficiently. E.g.,
records with a specified value in the attribute

or records with an attribute value falling in a specified range of
values.

This strongly influences the choice of index, and depends on
usage

Database System Concepts - 6" Edition 11.4 ©Silberschatz, Korth and Sudarshan

Ordered Indices

B In an ordered index, index entries are stored sorted on the search key
value. E.g., author catalog in library.

B Primary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.

Also called clustering index

The search key of a primary index is usually but not necessarily the
primary key.

B Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called
non-clustering index.

B Index-sequential file: ordered sequential file with a primary index.

Database System Concepts - 6" Edition 11.5 ©Silberschatz, Korth and Sudarshan

Dense Index Files

B Dense index — Index record appears for every search-key

value in the file.

B E.g. index on ID attribute of instructor relation (primary index)

Database System Concepts - 6" Edition

11.6

10101 ~ 10101 |Srinivasan | Comp. Sci. | 65000 >
12121 > 12121 |[|Wu Finance 90000 .

15151 - 15151 |Mozart Music 40000 _7
22222 ~ 22222 | Einstein Physics 95000 _7
32343 ~ 32343 | El Said History 60000 _7
33456 > 33456 |Gold Physics 87000 _7
45565 ~ 45565 |Katz Comp. Sci. | 75000 47
58583 ~ 58583 |Califieri History 62000 _‘7
76543 - 76543 |Singh Finance 80000 _7
76766 ~| 76766 |Crick Biology 72000 _7
83821 > 83821 |Brandt Comp. Sci. | 92000 _‘7
98345 >~ 98345 |Kim Elec. Eng. 80000 _7

©Silberschatz, Korth and Sudarshan

Dense Index Files (Cont.)

B Dense index on dept_name, with instructor file sorted on
dept_name (primary index)

Biology >~ 76766 | Crick BlOlOgy 72000 _7
Comp. Sci. - 10101 | Srinivasan| Comp. Sci. | 65000 -
Elec. Eng. N 45565 | Katz Comp. Sci. | 75000 -7
Finance \\ 83821 | Brandt Comp. Sci. | 92000 _7
History \\ 98345 | Kim Elec. Eng. 80000 _7
Music \ 12121 | Wu Finance 90000 | <
Physics \ \ 76543 | Singh Finance 80000 1
32343 |ElSaid | History | 60000 |l
58583 | Califieri | History 62000 | e
15151 | Mozart | Music 40000 | 1«
22222 | Einstein | Physics 95000 | 1«
33465 | Gold Physics 87000 _%_

Database System Concepts - 6" Edition 11.7 ©Silberschatz, Korth and Sudarshan

Sparse Index Files

B Sparse Index: contains index records for only some search-key

values.

Only applicable when records are sequentially ordered on
search-key (i.e. in primary index)

B To locate a record with search-key value K we:

Find index record with largest search-key value < K

Search file sequentially starting at the record to which the index

record points

Database System Concepts - 6" Edition

10101 ~ 10101 |Srinivasan| Comp. Sci.| 65000 2

32343 12121 |Wu Finance | 90000 |

76766 | \ 15151 |Mozart | Music 0000 | 1=
22222 |Einstein | Physics 95000 _7
32343 | El Said History 60000 _7
33456 |Gold Physics 87000 -7
45565 |Katz Comp. Sci.| 75000 _7
58583 |Califieri | History 62000 _7
76543 |Singh Finance 80000 -7
76766 |Crick Biology 72000 -7
83821 |Brandt Comp. Sci.| 92000 -7
98345 |Kim Elec. Eng. | 80000 _7

11.8

©Silberschatz, Korth and Sudarshan

Sparse Index Files (Cont.)

B Compared to dense indices:

Less space and less maintenance overhead for insertions and
deletions.

Generally slower than dense index for locating records.

B Good tradeoff: sparse index with an index entry for every block in file,
corresponding to least search-key value in the block.

>
>

data
\| block 0

data
block 1

Database System Concepts - 6" Edition 11.9 ©Silberschatz, Korth and Sudarshan

Secondary Indices Example

40000

60000

ANIEAN

62000

\

65000

72000

75000

80000

87000

90000

92000

95000

/NN

10101 | Srinivasan | Comp. Sci. | 65000 —P
12121 | Wu Finance 90000 —>
15151 | Mozart Music 40000 —
22222 | Einstein | Physics 95000 _>
32343 | El Said History 60000 _>
33456 | Gold Physics 87000 _>
45565 |Katz Comp. Sci. | 75000 _>
58583 | Califieri | History 62000 _>
76543 | Singh Finance 80000 _P
76766 | Crick Biology 72000 _>
83821 |Brandt Comp. Sci. | 92000 _>
98345 | Kim Elec. Eng. | 80000 _ZJ_

Secondary index on salary field of instructor

B Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value.

B Secondary indices have to be dense

Database System Concepts - 6" Edition

11.10

©Silberschatz, Korth and Sudarshan

Primary and Secondary Indices

B Indices offer substantial benefits when searching for records.

B BUT: Updating indices imposes overhead on database
modification --when a file is modified, every index on the file

must be updated,

B Sequential scan using primary index is efficient, but a
sequential scan using a secondary index is expensive

Each record access may fetch a new block from disk

Block fetch requires about 5 to 10 milliseconds, versus
about 100 nanoseconds for memory access

Database System Concepts - 6" Edition 1.1 ©Silberschatz, Korth and Sudarshan

Multilevel Index

If primary index does not fit in memory, access becomes
expensive.

B Solution: treat primary index kept on disk as a sequential file
and construct a sparse index on it.

outer index — a sparse index of primary index
inner index — the primary index file

M If even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.

B Indices at all levels must be updated on insertion or deletion
from the file.

Database System Concepts - 6" Edition 11.12 ©Silberschatz, Korth and Sudarshan

Multilevel Index (Cont.)

index g data i
—N\block 0 \| block 0
index —h data
block 1 lock 1
outer index .

inner index

Database System Concepts - 6" Edition 11.13 ©Silberschatz, Korth and Sudarshan

<= -/p
i

— - Index Update: Deletion

10101 ~ 10101 |Srinivasan| Comp. Sci.| 65000 4
32343 12121 [Wu Finance 90000 .
76766 | \ 15151 |Mozart | Music 40000 1
22222 |Einstein | Physics 95000 -
32343 |El Said History 60000 -
H If deleted re.COI'd W_aS the i 33456 |Gold Physics 87000 -

only record in the file with its 45565 |Katz Comp. Sci.| 75000
particular search-key value, 58583 galif}ileri History | 62000 |
. 76543 |Sing Finance 80000 -
the Searc_h-key is deleted 76766 |Crick | Biology | 72000 | 4
from the index also. 83821 |Brandt | Comp.Sci.| 92000 | -
98345 |Kim Elec. Eng. | 80000 a

vavavvvvvv

B Single-level index entry deletion:

Dense indices — deletion of search-key is similar to file record

deletion.
Sparse indices —

» if an entry for the search key exists in the index, it is

deleted by replacing the entry in the index with the next
search-key value in the file (in search-key order).

» If the next search-key value already has an index entry, the

entry is deleted instead of being replaced.

Database System Concepts - 6" Edition

11.14

©Silberschatz, Korth and Sudarshan

- Index Update: Insertion
B Single-level index insertion:

Perform a lookup using the search-key value appearing in
the record to be inserted.

Dense indices — if the search-key value does not appear in
the index, insert it.

Sparse indices — if index stores an entry for each block of
the file, no change needs to be made to the index unless a
new block is created.

» If a new block is created, the first search-key value
appearing in the new block is inserted into the index.

B Multilevel insertion and deletion: algorithms are simple
extensions of the single-level algorithms

Database System Concepts - 6" Edition 11.15 ©Silberschatz, Korth and Sudarshan

,.;é.a Secondary Indices

e

B Frequently, one wants to find all the records whose values in
a certain field (which is not the search-key of the primary
index) satisfy some condition.

Example 1: In the instructor relation stored sequentially by
ID, we may want to find all instructors in a particular

department

Example 2: as above, but where we want to find all
instructors with a specified salary or with salary in a
specified range of values

B We can have a secondary index with an index record for
each search-key value

Database System Concepts - 6" Edition 11.16 ©Silberschatz, Korth and Sudarshan

