
©Silberschatz, Korth and Sudarshan!11.17!Database System Concepts - 6th Edition!

B+-Tree Index Files!

■  Disadvantage of indexed-sequential files"
●  performance degrades as file grows, since many overflow

blocks get created. "
●  Periodic reorganization of entire file is required."

■  Advantage of B+-tree index files: "
●  automatically reorganizes itself with small, local, changes,

in the face of insertions and deletions. "
●  Reorganization of entire file is not required to maintain

performance."
■  (Minor) disadvantage of B+-trees: "

●  extra insertion and deletion overhead, space overhead."
■  Advantages of B+-trees outweigh disadvantages"

●  B+-trees are used extensively in DBMSs"

B+-tree indices are an alternative to indexed-sequential files."

©Silberschatz, Korth and Sudarshan!11.18!Database System Concepts - 6th Edition!

Example of B+-Tree!

©Silberschatz, Korth and Sudarshan!11.19!Database System Concepts - 6th Edition!

B+-Tree Index Files (Cont.)!

■  All paths from root to leaf are of the same length"
■  Each node that is not a root or a leaf has between !n/2" and

n children."
■  A leaf node has between !(n–1)/2" and n–1 values"
■  Special cases: "

●  If the root is not a leaf, it has at least 2 children."
●  If the root is a leaf (that is, there are no other nodes in

the tree), it can have between 0 and (n–1) values."

A B+-tree is a rooted tree satisfying the following properties:"

©Silberschatz, Korth and Sudarshan!11.20!Database System Concepts - 6th Edition!

B+-Tree Node Structure!

■  Typical node  
 
 
"
●  Ki are the search-key values "
●  Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes)."
■  The search-keys in a node are ordered "
" " K1 < K2 < K3 < . . . < Kn–1"

 (Initially assume no duplicate keys, address duplicates later)"
"
"
"

P1 K1 P2 Pn-1 Kn-1 Pn…

©Silberschatz, Korth and Sudarshan!11.21!Database System Concepts - 6th Edition!

Leaf Nodes in B+-Trees!

■  For i = 1, 2, . . ., n–1, pointer Pi points to a file record with
search-key value Ki, "

■  If Li, Lj are leaf nodes and i < j, Li’s search-key values are less
than or equal to Lj’s search-key values"

■  Pn points to next leaf node in search-key order"

Properties of a leaf node:"

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

leaf node
Pointer to next leaf nodeBrandt Califieri Crick

©Silberschatz, Korth and Sudarshan!11.22!Database System Concepts - 6th Edition!

Non-Leaf Nodes in B+-Trees!

■  Non leaf nodes form a multi-level sparse index on the leaf
nodes. For a non-leaf node with m pointers:"
●  All the search-keys in the subtree to which P1 points are

less than K1 "
●  For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which

Pi points have values >= Ki–1 and < Ki !

●  All the search-keys in the subtree to which Pn points have
values greater than or equal to Kn–1"

P1 K1 P2 Pn-1 Kn-1 Pn…

<" <" <"<=" <=" <="

©Silberschatz, Korth and Sudarshan!11.23!Database System Concepts - 6th Edition!

Example of B+-tree!

■  Leaf nodes must have between 3 and 5 values  
(!(n–1)/2" and n –1, with n = 6)."

■  Non-leaf nodes other than root must have between 3
and 6 children (!(n/2" and n with n =6)."

■  Root must have at least 2 children."

B+-tree for instructor file (n = 6)"

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

©Silberschatz, Korth and Sudarshan!11.24!Database System Concepts - 6th Edition!

Observations about B+-trees!

■  Since the inter-node connections are done by pointers,
“logically” close blocks need not be “physically” close."

■  The non-leaf levels of the B+-tree form a hierarchy of sparse
indices."

■  The B+-tree contains a relatively small number of levels"
! Level below root has at least 2* !n/2" values"
! Next level has at least 2* !n/2" * !n/2" values"
! .. etc, level at depth D has at least 2* !n/2"D"

●  If there are K search-key values in the file, the tree height is
no more than ! log!n/2"(K)""

●  thus searches can be conducted efficiently."
■  Insertions and deletions to the main file can be handled

efficiently, as the index can be restructured in logarithmic time
(as we shall briefly see, but more can be found in the book)."

©Silberschatz, Korth and Sudarshan!11.25!Database System Concepts - 6th Edition!

Queries on B+-Trees!
■  Find record with search-key value V.!

1.  C=root!
2.  While C is not a leaf node {"

1.  Let i be least value s.t. V ≤ Ki."
2.  If no such exists, set C = last non-null pointer in C "
3.  Else { if (V= Ki) Set C = Pi +1 else set C = Pi}"
}"

3.  Let i be least value s.t. Ki = V!
4.  If there is such a value i, follow pointer Pi to the desired record."
5.  Else no record with search-key value k exists."

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

©Silberschatz, Korth and Sudarshan!11.26!Database System Concepts - 6th Edition!

Handling Duplicates!

■  With duplicate search keys"
●  In both leaf and internal nodes, "

! we cannot guarantee that K1 < K2 < K3 < . . . < Kn–1"

! but can guarantee K1 ≤ K2 ≤ K3 ≤ . . . ≤ Kn–1"

●  Search-keys in the subtree to which Pi points "
! are ≤ Ki,, but not necessarily < Ki,"

! To see why, suppose same search key value V is
present in two leaf node Li and Li+1. Then in parent node
Ki must be equal to V"

©Silberschatz, Korth and Sudarshan!11.27!Database System Concepts - 6th Edition!

Handling Duplicates!

■  We modify find procedure as follows "
●  traverse Pi even if V = Ki"

● As soon as we reach a leaf node C check if C has
only search key values less than V!
! if so set C = right sibling of C before checking

whether C contains V!
■  Procedure printAll"

●  uses modified find procedure to find first
occurrence of V!

●  Traverse through consecutive leaves to find all
occurrences of V"

** Errata note: modified find procedure missing in first printing of 6th edition!

©Silberschatz, Korth and Sudarshan!11.28!Database System Concepts - 6th Edition!

Queries on B+-Trees (Cont.)!

■  If there are K search-key values in the file, the height of the tree is no
more than !log!n/2"(K)"."

■  A node is generally the same size as a disk block, typically 4
kilobytes"
●  and n is typically around 100 (40 bytes per index entry)."

■  With 1 million search key values and n = 100"
●  at most log50(1,000,000) = 4 nodes are accessed in a lookup, i.e.

at most 4 accesses to disk blocks are needed"
■  Contrast this with a balanced binary tree with 1 million search key

values — around 20 nodes are accessed in a lookup"
●  above difference is significant since every node access may need

a disk I/O, costing around 20 milliseconds"

©Silberschatz, Korth and Sudarshan!11.29!Database System Concepts - 6th Edition!

Updates on B+-Trees: Insertion!

1.  Find the leaf node in which the search-key value would appear"
2.  If the search-key value is already present in the leaf node"

1.  Add record to the file"
2.  If necessary add a pointer to the bucket."

3.  If the search-key value is not present, then "
1.  add the record to the main file (and create a bucket if

necessary)"
2.  If there is room in the leaf node, insert (key-value, pointer)

pair in the leaf node"
3.  Otherwise, split the node (along with the new (key-value,

pointer) entry) as discussed in the next slide."

©Silberschatz, Korth and Sudarshan!11.30!Database System Concepts - 6th Edition!

Updates on B+-Trees: Insertion (Cont.)!

■  Splitting a leaf node:"
●  take the n (search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first !n/2" in the original
node, and the rest in a new node."

●  let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split. "

●  If the parent is full, split it and propagate the split further up."
■  Splitting of nodes proceeds upwards till a node that is not full is found. "

●  In the worst case the root node may be split increasing the height
of the tree by 1. "

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams"
Next step: insert entry with (Califieri,pointer-to-new-node) into parent"

Adams Califieri CrickBrandt

©Silberschatz, Korth and Sudarshan!11.31!Database System Concepts - 6th Edition!

B+-Tree Insertion!

B+-Tree before and after insertion of “Adams”"

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Brandt Califieri Crick

©Silberschatz, Korth and Sudarshan!11.32!Database System Concepts - 6th Edition!

B+-Tree Insertion!

Srinivasan

Gold

Califieri Einstein

Mozart

Kim

Adams Brandt Einstein El Said Gold Katz Kim Lamport Mozart Singh Srinivasan WuCrickCalifieri

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

B+-Tree before and after insertion of “Lamport”"

©Silberschatz, Korth and Sudarshan!11.33!Database System Concepts - 6th Edition!

■  Splitting a non-leaf node: when inserting (k,p) into an already full
internal node N"
●  Copy N to an in-memory area M with space for n+1 pointers and n

keys"
●  Insert (k,p) into M"
●  Copy P1,K1, …, K !(n+1)/2"-1,P !(n+1)/2" from M back into node N"
●  Copy P!(n+1)/2"+1,K !(n+1)/2"+1,…,Kn,Pn+1 from M into newly allocated

node N’"
●  Insert (K !(n+1)/2",N’) into parent N"

■  Read pseudocode in book ERRATA !!

Crick"

Insertion in B+-Trees (Cont.)!

Adams Brandt Califieri Crick" Adams Brandt"

 Califieri" "

©Silberschatz, Korth and Sudarshan!11.34!Database System Concepts - 6th Edition!

Examples of B+-Tree Deletion!

■  Deleting “Srinivasan” causes merging of under-full leaves"

Before and after deleting “Srinivasan”"

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart Singh Wu

Califieri

Gold

MozartEinstein

©Silberschatz, Korth and Sudarshan!11.35!Database System Concepts - 6th Edition!

Examples of B+-Tree Deletion (Cont.)!

Deletion of “Singh” and “Wu” from result of previous example"

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart

Califieri Einstein Kim

Gold

■  Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling"

■  Search-key value in the parent changes as a result"

©Silberschatz, Korth and Sudarshan!11.36!Database System Concepts - 6th Edition!

Example of B+-tree Deletion (Cont.)!

Before and after deletion of “Gold” from earlier example"

■  Node with Gold and Katz became underfull, and was merged with its sibling "
■  Parent node becomes underfull, and is merged with its sibling"

●  Value separating two nodes (at the parent) is pulled down when merging"
■  Root node then has only one child, and is deleted"

Adams Brandt Einstein El Said Katz Kim Mozart

GoldCalifieri

Califieri

Einstein

Crick

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart

Califieri Einstein Kim

Gold

©Silberschatz, Korth and Sudarshan!11.37!Database System Concepts - 6th Edition!

Updates on B+-Trees: Deletion!

■  Find the record to be deleted, and remove it from the main file and
from the bucket (if present)"

■  Remove (search-key value, pointer) from the leaf node if there is no
bucket or if the bucket has become empty"

■  If the node has too few entries due to the removal, but the entries in
the node and a sibling do not fit into a single node, then redistribute
pointers:"
●  Redistribute the pointers between the node and a sibling such that

both have more than the minimum number of entries."
●  Update the corresponding search-key value in the parent of the

node."

©Silberschatz, Korth and Sudarshan!11.38!Database System Concepts - 6th Edition!

Updates on B+-Trees: Deletion!

■  Otherwise, if the node has too few entries due to the removal, and the
entries in the node and a sibling fit into a single node, then merge
siblings:"
●  Insert all the search-key values in the two nodes into a single node

(the one on the left), and delete the other node."
●  Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted

node, from its parent, recursively using the above procedure."
■  The node deletions may cascade upwards till a node which has !n/2"

or more pointers is found. "
■  If the root node has only one pointer after deletion, it is deleted and

the sole child becomes the root. "

©Silberschatz, Korth and Sudarshan!11.39!Database System Concepts - 6th Edition!

Non-Unique Search Keys!

■  Alternatives to scheme described earlier"
●  Buckets on separate block (bad idea)"
●  List of tuple pointers with each key"

! Extra code to handle long lists"
! Deletion of a tuple can be expensive if there are many

duplicates on search key (why?)"
! Low space overhead, no extra cost for queries"

●  Make search key unique by adding a record-identifier"
! Extra storage overhead for keys"
! Simpler code for insertion/deletion"
! Widely used (e.g. Oracle always assumes this by adding

row-id)"

©Silberschatz, Korth and Sudarshan!11.40!Database System Concepts - 6th Edition!

B+-Tree File Organization!

■  Index file degradation problem is solved by using B+-Tree indices."
■  Data file degradation problem is solved by using B+-Tree File

Organization."
■  The leaf nodes in a B+-tree file organization store records, instead of

pointers."
■  Leaf nodes are still required to be half full"

●  Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number of
pointers in a nonleaf node."

■  Insertion and deletion are handled in the same way as insertion and
deletion of entries in a B+-tree index."

■  May be used to store big objects (those that do not fit into a single
record)"

©Silberschatz, Korth and Sudarshan!11.41!Database System Concepts - 6th Edition!

B+-Tree File Organization (Cont.)!

■  Good space utilization important since records use more space than
pointers. "

■  To improve space utilization, involve more sibling nodes in redistribution
during splits and merges"
●  Involving 2 siblings in redistribution (to avoid split / merge where

possible) results in each node having at least entries"
"

Example of B+-tree File Organization"

! "3/2n

©Silberschatz, Korth and Sudarshan!11.42!Database System Concepts - 6th Edition!

Other Issues in Indexing!

■  Record relocation and secondary indices!
●  If a record moves, all secondary indices that store record pointers

have to be updated "
●  Node splits in B+-tree file organizations become very expensive"
●  Solution: use primary-index search key instead of record pointer in

secondary index"
! Extra traversal of primary index to locate record"
–  Higher cost for queries, but node splits are cheap"

! Add record-id if primary-index search key is non-unique"

©Silberschatz, Korth and Sudarshan!11.43!Database System Concepts - 6th Edition!

Indexing Strings!

■  Variable length strings as keys"
●  Variable fanout"
●  Use space utilization as criterion for splitting, not number of

pointers"
■  Prefix compression!

●  Key values at internal nodes can be prefixes of full key"
! Keep enough characters to distinguish entries in the

subtrees separated by the key value"
–  E.g. “Silas” and “Silberschatz” can be separated by

“Silb”"
●  Keys in leaf node can be compressed by sharing common

prefixes"

©Silberschatz, Korth and Sudarshan!11.44!Database System Concepts - 6th Edition!

Bulk Loading and Bottom-Up Build!

■  Inserting entries one-at-a-time into a B+-tree requires ≥ 1 IO per entry "
●  assuming leaf level does not fit in memory"
●  can be very inefficient for loading a large number of entries at a time

(bulk loading)"
■  Efficient alternative 1:"

●  sort entries first (using efficient external-memory sort algorithms
discussed later in Section 12.4)"

●  insert in sorted order"
!  insertion will go to existing page (or cause a split)"
! much improved IO performance, but most leaf nodes half full"

■  Efficient alternative 2: Bottom-up B+-tree construction!
●  As before sort entries"
●  And then create tree layer-by-layer, starting with leaf level"

! details as an exercise"
●  Implemented as part of bulk-load utility by most database systems"

©Silberschatz, Korth and Sudarshan!11.45!Database System Concepts - 6th Edition!

B-Tree Index Files!

■  Similar to B+-tree, but B-tree allows search-key values to
appear only once; eliminates redundant storage of search
keys."

■  Search keys in nonleaf nodes appear nowhere else in the B-
tree; an additional pointer field for each search key in a
nonleaf node must be included."

■  Generalized B-tree leaf node  
 
"

■  Nonleaf node – pointers Bi are the bucket or file record
pointers. 
"

P1 K1 P2 Pn-1 Kn-1 Pn…

P1 B1 K1 P2 B2 K2 … Pm-1 Bm-1 Km-1 Pm

(a)

(b)

©Silberschatz, Korth and Sudarshan!11.46!Database System Concepts - 6th Edition!

B-Tree Index File Example!

B-tree (above) and B+-tree (below) on same data"

Brandt Califieri Crick El Said Gold Kim Mozart Srinivasan Wu

Einstein Katz Singh

Einstein
record

Katz
record

Singh
record

Brandt
record

Califieri
record ... and soon for other records...

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Brandt Califieri Crick

©Silberschatz, Korth and Sudarshan!11.47!Database System Concepts - 6th Edition!

B-Tree Index Files (Cont.)!

■  Advantages of B-Tree indices:"
●  May use less tree nodes than a corresponding B+-Tree."
●  Sometimes possible to find search-key value before reaching leaf

node."
■  Disadvantages of B-Tree indices:"

●  Only small fraction of all search-key values are found early "
●  Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees

typically have greater depth than corresponding B+-Tree"
●  Insertion and deletion more complicated than in B+-Trees "
●  Implementation is harder than B+-Trees."

■  Typically, advantages of B-Trees do not out weigh disadvantages. "

©Silberschatz, Korth and Sudarshan!11.48!Database System Concepts - 6th Edition!

Multiple-Key Access!

■  Use multiple indices for certain types of queries."
■  Example: "

select ID!
from instructor!
where dept_name = “Finance” and salary = 80000"

■  Possible strategies for processing query using indices on
single attributes:"
1."Use index on dept_name to find instructors with

department name Finance; test salary = 80000 !
2.!Use index on salary to find instructors with a salary of

$80000; test dept_name = “Finance”."
3."Use dept_name index to find pointers to all records

pertaining to the “Finance” department. Similarly use index
on salary. Take intersection of both sets of pointers
obtained."

©Silberschatz, Korth and Sudarshan!11.49!Database System Concepts - 6th Edition!

Indices on Multiple Keys!

■  Alternatively, use composite search keys that are search
keys containing more than one attribute"
●  E.g. (dept_name, salary)"

■  Lexicographic ordering: (a1, a2) < (b1, b2) if either "
●  a1 < b1, or "
●  a1=b1 and a2 < b2"

©Silberschatz, Korth and Sudarshan!11.50!Database System Concepts - 6th Edition!

Indices on Multiple Attributes!

■  With the where clause  
 where dept_name = “Finance” and salary = 80000  
the index on (dept_name, salary) can be used to fetch only records
that satisfy both conditions."
●  Using separate indices in less efficient — we may fetch many

records (or pointers) that satisfy only one of the conditions."
■  Can also efficiently handle  

 where dept_name = “Finance” and salary < 80000"
■  But cannot efficiently handle  

 where dept_name < “Finance” and balance = 80000"
●  May fetch many records that satisfy the first but not the second

condition"

Suppose we have an index on combined search-key"
"(dept_name, salary)."

©Silberschatz, Korth and Sudarshan!11.51!Database System Concepts - 6th Edition!

Other Features!

■  Covering indices!
●  Add extra attributes to index so (some) queries can avoid fetching

the actual records"
! Particularly useful for secondary indices "
–  Why?"

●  Can store extra attributes only at leaf"

