
Database System Concepts, 6th Ed.!
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use "

Chapter 11: Indexing and Hashing"

©Silberschatz, Korth and Sudarshan"11.2"Database System Concepts - 6th Edition"

Bitmap Indices"

■  Bitmap indices are a special type of index designed for efficient
querying on multiple keys!

■  Records in a relation are assumed to be numbered sequentially
from, say, 0!
●  Given a number n it must be easy to retrieve record n!

! Particularly easy if records are of fixed size!
! Otherwise, a list of pointers might be used!

■  Applicable on attributes that take on a relatively small number
of discrete distinct values!
●  E.g. gender, country, state, …!
●  E.g. income-level (income broken up into a small number of

levels such as 0-9999, 10000-19999, 20000-50000, 50000-
infinity)!

■  A bitmap is simply an array of bits!

©Silberschatz, Korth and Sudarshan"11.3"Database System Concepts - 6th Edition"

Bitmap Indices (Cont.)"

■  In its simplest form a bitmap index on an attribute has a bitmap for
each value of the attribute!
●  Bitmap has as many bits as records!
●  In a bitmap for value v, the bit for a record is 1 if the record has the

value v for the attribute, and is 0 otherwise!

ID income_levelgender

76766

22222

12121

15151

58583

m

m

f

f

f

L1

L1

L2

L4

L3

record
number

1

0

2

3

4

m

f

Bitmaps for gender

10010

01101

Bitmaps for
income_level

L1

L2

L3

L4

L5

10100

01000

00001

00010

00000

©Silberschatz, Korth and Sudarshan"11.4"Database System Concepts - 6th Edition"

Bitmap Indices (Cont.)"

■  Bitmap indices are useful for queries on multiple attributes !
●  not particularly useful for single attribute queries!

■  Queries are answered using bitmap operations!
●  Intersection (and)!
●  Union (or)!
●  Complementation (not)!
●  Example query where gender = ‘m’ and income_level = ‘L1’!

■  Each operation takes two bitmaps of the same size and applies the operation on
corresponding bits to get the result bitmap!
●  E.g. 100110 AND 110011 = 100010!
 100110 OR 110011 = 110111  

 NOT 100110 = 011001!
●  Males with income level L1: 10010 AND 10100 = 10000!

!  Can then retrieve required tuples.!
!  Counting number of matching tuples is even faster, not even requiring

access to the records in the file!

©Silberschatz, Korth and Sudarshan"11.5"Database System Concepts - 6th Edition"

Bitmap Indices (Cont.)"

■  Bitmap indices generally very small compared with relation size!
●  E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space

used by relation. !
!  If number of distinct attribute values is 8, bitmap is only 1% of

relation size!
■  Deletion needs to be handled properly!

●  Existence bitmap to note if there is a valid record at a record location!
●  Needed for complementation!

! not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap!
■  Should keep bitmaps for all values, even null value!

●  To correctly handle SQL null semantics for NOT(A=v):!
!  intersect above result with (NOT bitmap-A-Null)!

©Silberschatz, Korth and Sudarshan"11.6"Database System Concepts - 6th Edition"

Efficient Implementation of Bitmap Operations"

■  Bitmaps are packed into words; a single word and (a basic CPU
instruction) computes and of 32 or 64 bits at once!
●  E.g. 1-million-bit maps can be and-ed with just 31,250 instruction!

■  Counting number of 1s can be done fast by a trick:!
●  Use each byte to index into a precomputed array of 256 elements

each storing the count of 1s in the binary representation!
! Can use pairs of bytes to speed up further at a higher memory

cost!
●  Add up the retrieved counts!

■  Bitmaps can be used instead of Tuple-ID lists at leaf levels of  
B+-trees, for values that have a large number of matching records!
●  Worthwhile if > 1/64 of the records have that value, assuming a

tuple-id is 64 bits!
●  Above technique merges benefits of bitmap and B+-tree indices!

Database System Concepts, 6th Ed.!
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use "

Hashing"

©Silberschatz, Korth and Sudarshan"11.8"Database System Concepts - 6th Edition"

Static Hashing"

■  A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block). !

■  In a hash file organization we obtain the bucket of a record directly
from its search-key value using a hash function.!

■  Hash function h is a function from the set of all search-key values K
to the set of all bucket addresses B.!

■  Hash function is used to locate records for access, insertion as well
as deletion.!

■  Records with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to
locate a record. !

©Silberschatz, Korth and Sudarshan"11.9"Database System Concepts - 6th Edition"

Example of Hash File Organization"

■  There are 10 buckets,!
■  The binary representation of the ith character is assumed to be the

integer i.!
■  The hash function returns the sum of the binary representations of

the characters modulo 10!
●  E.g. h(Music) = 1 h(History) = 2  

 h(Physics) = 3 h(Elec. Eng.) = 3!

 
Hash file organization of instructor file, using dept_name as key 
 (See figure in next slide.)!

©Silberschatz, Korth and Sudarshan"11.10"Database System Concepts - 6th Edition"

Example of Hash File Organization "

Hash file organization of instructor file, using dept_name as key
(see previous slide for details).!

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

bucket 7

45565

15151 Mozart Music 40000

80000
Wu12121 Finance 90000

76543 FinanceSingh

10101 Comp. Sci.Srinivasan
Katz Comp. Sci. 75000

92000

6500032343
58583

El Said
Califieri

History
History

80000
60000

Einstein
Gold
Kim

22222
33456
98345

Physics
Physics
Elec. Eng.

95000
87000
80000

Brandt83821 Comp. Sci.

76766 Crick Biology 72000

©Silberschatz, Korth and Sudarshan"11.11"Database System Concepts - 6th Edition"

Hash Functions"

■  Worst hash function maps all search-key values to the same bucket;
this makes access time proportional to the number of search-key
values in the file.!

■  An ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values.!

■  Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution of
search-key values in the file.!

■  Typical hash functions perform computation on the internal binary
representation of the search-key. !
●  For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo
the number of buckets could be returned.!

©Silberschatz, Korth and Sudarshan"11.12"Database System Concepts - 6th Edition"

Handling of Bucket Overflows"

■  Bucket overflow can occur because of !
●  Insufficient buckets !
●  Skew in distribution of records. This can occur due to two

reasons:!
! multiple records have same search-key value!
! chosen hash function produces non-uniform distribution of key

values!
■  Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using overflow buckets."

©Silberschatz, Korth and Sudarshan"11.13"Database System Concepts - 6th Edition"

Handling of Bucket Overflows (Cont.)"

■  Overflow chaining – the overflow buckets of a given bucket are
chained together in a linked list.!

■  Above scheme is called closed hashing. !
●  An alternative, called open hashing, which does not use overflow

buckets, is not suitable for database applications due to the cost of
delete operations!

overflow buckets for bucket 1

bucket 0

bucket 1

bucket 2

bucket 3

©Silberschatz, Korth and Sudarshan"11.14"Database System Concepts - 6th Edition"

Hash Indices"

■  Hashing can be used not only for file organization, but also for index-
structure creation. !

■  A hash index organizes the search keys, with their associated record
pointers, into a hash file structure.!

■  Strictly speaking, hash indices are always secondary indices !
●  if the file itself is organized using hashing, a separate primary

hash index on it using the same search-key is unnecessary. !
●  However, we use the term hash index to refer to both secondary

index structures and hash organized files. !

©Silberschatz, Korth and Sudarshan"11.15"Database System Concepts - 6th Edition"

Example of Hash Index"
bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

76766

45565
76543

10101

15151
33456

58583

83821

22222

98345

bucket 7
12121
32343

76766 Crick

76543 Singh
32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim
12121 Wu

Biology

Physics

Finance
History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.
Finance

72000

80000
60000
62000
40000
95000
87000

65000
75000
92000
80000
90000

hash index on instructor, on attribute ID!

©Silberschatz, Korth and Sudarshan"11.16"Database System Concepts - 6th Edition"

Deficiencies of Static Hashing"

■  In static hashing, function h maps search-key values to a fixed set of B
of bucket addresses. Databases grow or shrink with time. !
●  If initial number of buckets is too small, and file grows, performance

will degrade due to too much overflows.!
●  If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be underfull).!
●  If database shrinks, again space will be wasted.!

■  One solution: periodic re-organization of the file with a new hash
function!
●  Expensive, disrupts normal operations!

■  Better solution: allow the number of buckets to be modified dynamically. !

©Silberschatz, Korth and Sudarshan"11.17"Database System Concepts - 6th Edition"

Dynamic Hashing"

■  Good for database that grows and shrinks in size!
■  Allows the hash function to be modified dynamically!
■  Extendable hashing – one form of dynamic hashing !

●  Hash function generates values over a large range — typically b-bit
integers, with b = 32.!

●  At any time use only a prefix of the hash function to index into a
table of bucket addresses. !

●  Let the length of the prefix be i bits, 0 ≤ i ≤ 32. !

! Bucket address table size = 2i. Initially i = 0!
! Value of i grows and shrinks as the size of the database grows

and shrinks.!
●  Multiple entries in the bucket address table may point to a bucket

(why?)!
●  Thus, actual number of buckets is < 2i!

! The number of buckets also changes dynamically due to
coalescing and splitting of buckets. !

©Silberschatz, Korth and Sudarshan"11.18"Database System Concepts - 6th Edition"

General Extendable Hash Structure "

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next
slide for details)!

i i1

i2

i3

bucket 1

bucket 2

bucket 3

00..
01..
10..

11..

bucket address table

hash prefix

…

…

©Silberschatz, Korth and Sudarshan"11.19"Database System Concepts - 6th Edition"

Use of Extendable Hash Structure"

■  Each bucket j stores a value ij!
●  All the entries that point to the same bucket have the same values on

the first ij bits. !
■  To locate the bucket containing search-key Kj:!

1. !Compute h(Kj) = X!
2. !Use the first i high order bits of X as a displacement into bucket

address table, and follow the pointer to appropriate bucket!
■  To insert a record with search-key value Kj !

●  follow same procedure as look-up and locate the bucket, say j. !
●  If there is room in the bucket j insert record in the bucket. !
●  Else the bucket must be split and insertion re-attempted (next slide.)!

! Overflow buckets used instead in some cases (will see shortly)!
! !!

©Silberschatz, Korth and Sudarshan"11.20"Database System Concepts - 6th Edition"

Insertion in Extendable Hash Structure (Cont) "

■  If i > ij (more than one pointer to bucket j)!
●  allocate a new bucket z, and set ij = iz = (ij + 1)!
●  Update the second half of the bucket address table entries originally

pointing to j, to point to z!
●  remove each record in bucket j and reinsert (in j or z)!
●  recompute new bucket for Kj and insert record in the bucket (further

splitting is required if the bucket is still full)!
■  If i = ij (only one pointer to bucket j)!

●  If i reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket !

●  Else!
!  increment i and double the size of the bucket address table.!
!  replace each entry in the table by two entries that point to the

same bucket.!
!  recompute new bucket address table entry for Kj  

Now i > ij so use the first case above. !

To split a bucket j when inserting record with search-key value Kj:!

©Silberschatz, Korth and Sudarshan"11.21"Database System Concepts - 6th Edition"

Use of Extendable Hash Structure: Example"

!"#$%&'(" !"!"#$%&'("#

$%&'&() **+* ++*+ ++++ +*++ **+* ++** **++ ****
,&-./ 01%/ ++++ ***+ **+* *+** +**+ **++ *++* ++*+
2'31/ 24(/ *+** **++ +*+* ++** ++** *++* ++*+ ++++
5%46413 +*+* **++ +*+* **** ++** *++* +**+ ++++
7%89&:) ++** *+++ +++* ++*+ +*++ ++++ **++ +*+*
;<8%1 **++ *+*+ +*+* *++* ++** +**+ +++* +*++
=!)8%18 +**+ +*** **++ ++++ +**+ ++** **** ***+

©Silberschatz, Korth and Sudarshan"11.22"Database System Concepts - 6th Edition"

Example (Cont.)"

■  Initial Hash structure; bucket size = 2!

0 0

bucket 1bucket address table

hash prefix

©Silberschatz, Korth and Sudarshan"11.23"Database System Concepts - 6th Edition"

Example (Cont.)"

■  Hash structure after insertion of “Mozart”, “Srinivasan”,  
 and “Wu” records!

1 1

bucket address table

hash prefix

1

15151 Music 40000

10101
12121

Srinivasan 90000
Wu 90000

Mozart

Comp. Sci.
Finance

0!

1!

©Silberschatz, Korth and Sudarshan"11.24"Database System Concepts - 6th Edition"

Example (Cont.)"

■  Inserting Einstein Record (first we double the table…)!

2 1

2

bucket address table

hash prefix

15151 Music 40000Mozart

12121 Finance 90000Wu
22222 Einstein Physics 95000

00!

01!
10!

11!
1

10101
12121

Srinivasan 90000
Wu 90000

Comp. Sci.
Finance

©Silberschatz, Korth and Sudarshan"11.25"Database System Concepts - 6th Edition"

2 1

2

2

bucket address table

hash prefix

15151 Music 40000Mozart

12121 Finance 90000Wu

10101 Comp. Sci. 65000Srinivasan

22222 Einstein Physics 95000

Example (Cont.)"

■  Then (1st step), a new bucket is allocated (z), iz := ij := ij +1!

10101
12121

Srinivasan 90000
Wu 90000

Comp. Sci.
Finance

(Bucket j in algorithm)!

10101 Comp. Sci. 65000Srinivasan(Bucket z in algorithm)!

00!

01!
10!

11!

©Silberschatz, Korth and Sudarshan"11.26"Database System Concepts - 6th Edition"

!"#$%&'(" !"!"#$%&'("#

$%&'&() **+* ++*+ ++++ +*++ **+* ++** **++ ****
,&-./ 01%/ ++++ ***+ **+* *+** +**+ **++ *++* ++*+
2'31/ 24(/ *+** **++ +*+* ++** ++** *++* ++*+ ++++
5%46413 +*+* **++ +*+* **** ++** *++* +**+ ++++
7%89&:) ++** *+++ +++* ++*+ +*++ ++++ **++ +*+*
;<8%1 **++ *+*+ +*+* *++* ++** +**+ +++* +*++
=!)8%18 +**+ +*** **++ ++++ +**+ ++** **** ***+

Example (Cont.)"

■  Reintroduce entries in bucket j (rehash), and insert Einstein record:!

2 1

2

2

bucket address table

hash prefix

15151 Music 40000Mozart

12121 Finance 90000Wu

10101 Comp. Sci. 65000Srinivasan

22222 Einstein Physics 95000

00!

01!
10!

11!
(Bucket j in algorithm)!

©Silberschatz, Korth and Sudarshan"11.27"Database System Concepts - 6th Edition"

Example (Cont.)"
■  Hash structure after insertion of Gold and El Said records!

3

1

3

3

bucket address table

hash prefix

2

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
32343

Srinivasan
El Said

Comp. Sci.
History 60000

65000

000!
001!
010!
011!
100!
101!
110!
111!

©Silberschatz, Korth and Sudarshan"11.28"Database System Concepts - 6th Edition"

Example (Cont.)"
■  Hash structure after insertion of Katz record!

3

1

3

3

bucket address table

hash prefix

3

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

32343 El Said History 60000

3

000!
001!
010!
011!
100!
101!
110!
111!

©Silberschatz, Korth and Sudarshan"11.29"Database System Concepts - 6th Edition"

Example (Cont.)"

3

bucket address table

hash prefix

2

3

3

3

22222
33456

Physics 95000
Physics 87000

Music
Biology

15151 40000
72000

Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

Crick76766

Singh76543 Finance

92000Comp. Sci.Brandt83821

32343
58583

El Said
Califieri

History
History

60000
62000

80000

3

And after insertion of !
eleven records!

000!
001!
010!
011!
100!
101!
110!
111!

1

©Silberschatz, Korth and Sudarshan"11.30"Database System Concepts - 6th Edition"

Example (Cont.)"

3

2

3

3

bucket address table

hash prefix

3

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

Crick Biology 7200076766

Singh76543 Finance

80000Elec. Eng.Kim98345

92000Comp. Sci.Brandt83821

32343
58583

El Said
Califieri

History
History

60000
62000

2

80000

3

And after insertion of !
Kim record in previous !
hash structure!

©Silberschatz, Korth and Sudarshan"11.31"Database System Concepts - 6th Edition"

Deletion in Extendable Hash Structure"

■  To delete a key value, !
●  locate it in its bucket and remove it. !
●  The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table). !
●  Coalescing of buckets can be done (can coalesce only with a

“buddy” bucket having same value of ij and same ij –1 prefix, if it is
present) !

●  Decreasing bucket address table size is also possible!
! Note: decreasing bucket address table size is an expensive

operation and should be done only if number of buckets becomes
much smaller than the size of the table !

©Silberschatz, Korth and Sudarshan"11.32"Database System Concepts - 6th Edition"

Extendable Hashing vs. Other Schemes"

■  Benefits of extendable hashing: !
●  Hash performance does not degrade with growth of file!
●  Minimal space overhead!

■  Disadvantages of extendable hashing!
●  Extra level of indirection to find desired record!
●  Bucket address table may itself become very big (larger than

memory)!
! Cannot allocate very large contiguous areas on disk either!
! Solution: B+-tree structure to locate desired record in bucket

address table!
●  Changing size of bucket address table is an expensive operation!

■  Linear hashing is an alternative mechanism !
●  Allows incremental growth of its directory (equivalent to bucket

address table)!
●  At the cost of more bucket overflows!

©Silberschatz, Korth and Sudarshan"11.33"Database System Concepts - 6th Edition"

Comparison of Ordered Indexing and Hashing"

■  Cost of periodic re-organization!
■  Relative frequency of insertions and deletions!
■  Is it desirable to optimize average access time at the expense of

worst-case access time?!
■  Expected type of queries:!

●  Hashing is generally better at retrieving records having a
specified value of the key.!

●  If range queries are common, ordered indices are to be
preferred!

■  In practice:!
●  PostgreSQL supports hash indices, but discourages use due to

poor performance!
●  Oracle supports static hash organization, but not hash indices!
●  SQLServer supports only B+-trees!

©Silberschatz, Korth and Sudarshan"11.34"Database System Concepts - 6th Edition"

Index Definition in SQL"

■  Create an index!
! !create index <index-name> on <relation-name> 

! ! !(<attribute-list>)!
E.g.: create index b-index on branch(branch_name)!

■  Use create unique index to indirectly specify and enforce the
condition that the search key is a candidate key is a candidate key.!
●  Not really required if SQL unique integrity constraint is supported!

■  To drop an index !
! ! !drop index <index-name>!

■  Most database systems allow specification of type of index, and
clustering.!

©Silberschatz, Korth and Sudarshan"11.35"Database System Concepts - 6th Edition"

Index Definition in Oracle"

■  Oracle supports B+-Tree indices as a default for the create index
SQL command!
●  B+-Tree indices are created by default for every primary key and

unique declaration!
■  A new non-null attribute row-id is added to all indices, so as to

guarantee that all search keys are unique.!
●  Indices are supported on!

! attributes, and attribute lists;!
! on results of functions over attributes!
! or using structures external to Oracle (domain indices)!

■  Bitmap indices are also supported, but for that an explicit declaration
is needed:  
 
create bitmap index <index-name>  
on <relation-name> (<attribute-list>) !

©Silberschatz, Korth and Sudarshan"11.36"Database System Concepts - 6th Edition"

Hashing in Oracle"

■  Hash indices are not supported !
■  However (limited) static hash file organisation is supported for

partitions  
create table ... partition by hash(<attribute-list>)  
 partitions <N>  
 stored in (<tables>) !

■  Index files can also be partitioned using hash function  
 
create index ... global partition by hash(<attribute-list>)  
partitions <N> !
●  This creates a global indexed partitioned by the hash function  
!

■  (Global) indexing over hash partitioned table is also possible !
■  Hashing may also be used to organise clusters in multitable clusters !

Database System Concepts, 6th Ed.!
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use "

End of Chapter"

©Silberschatz, Korth and Sudarshan"11.38"Database System Concepts - 6th Edition"

Figure 11.01"
10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

©Silberschatz, Korth and Sudarshan"11.39"Database System Concepts - 6th Edition"

Figure 11.15 "

©Silberschatz, Korth and Sudarshan"11.40"Database System Concepts - 6th Edition"

Partitioned Hashing"

■  Hash values are split into segments that depend on each
attribute of the search-key.!
! !(A1, A2, . . . , An) for n attribute search-key!

■  Example: n = 2, for customer, search-key being  
(customer-street, customer-city)!
! !search-key value !hash value  

!(Main, Harrison) !101 111  
!(Main, Brooklyn) !101 001  
!(Park, Palo Alto) !010 010  
!(Spring, Brooklyn) !001 001  
!(Alma, Palo Alto) !110 010!

■  To answer equality query on single attribute, need to look up
multiple buckets. Similar in effect to grid files. !

©Silberschatz, Korth and Sudarshan"11.41"Database System Concepts - 6th Edition"

Grid Files"

■  Structure used to speed the processing of general multiple search-
key queries involving one or more comparison operators.!

■  The grid file has a single grid array and one linear scale for each
search-key attribute. The grid array has number of dimensions
equal to number of search-key attributes.!

■  Multiple cells of grid array can point to same bucket!
■  To find the bucket for a search-key value, locate the row and column

of its cell using the linear scales and follow pointer!

©Silberschatz, Korth and Sudarshan"11.42"Database System Concepts - 6th Edition"

Example Grid File for account"

©Silberschatz, Korth and Sudarshan"11.43"Database System Concepts - 6th Edition"

Queries on a Grid File"

■  A grid file on two attributes A and B can handle queries of all following
forms with reasonable efficiency !
●  (a1 ≤ A ≤ a2)!
●  (b1 ≤ B ≤ b2)!
●  (a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2),.!

■  E.g., to answer (a1 ≤ A ≤ a2 ∧ b1 ≤ B ≤ b2), use linear scales to find
corresponding candidate grid array cells, and look up all the buckets
pointed to from those cells.!

©Silberschatz, Korth and Sudarshan"11.44"Database System Concepts - 6th Edition"

Grid Files (Cont.)"

■  During insertion, if a bucket becomes full, new bucket can be created
if more than one cell points to it. !
●  Idea similar to extendable hashing, but on multiple dimensions!
●  If only one cell points to it, either an overflow bucket must be

created or the grid size must be increased!
■  Linear scales must be chosen to uniformly distribute records across

cells. !
●  Otherwise there will be too many overflow buckets.!

■  Periodic re-organization to increase grid size will help.!
●  But reorganization can be very expensive.!

■  Space overhead of grid array can be high.!
■  R-trees (Chapter 23) are an alternative !

