
Database System Concepts, 6th Ed.!
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use "

Chapter 12: Query Processing"

©Silberschatz, Korth and Sudarshan"12.2"Database System Concepts - 6th Edition"

Chapter 12: Query Processing"

■  Overview of query processing and optimisation !
■  Measures of Query Cost!
■  Selection Operation !
■  Sorting !
■  Join Operation !
■  Other Operations!
■  Evaluation of Expressions!
■  Intraquery parallelism (in chapter 18 of the book)!

©Silberschatz, Korth and Sudarshan"12.3"Database System Concepts - 6th Edition"

Basic Steps in Query Processing"

1. !Parsing and translation!
2. !Optimization!
3. !Evaluation!

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

©Silberschatz, Korth and Sudarshan"12.4"Database System Concepts - 6th Edition"

Basic Steps in Query Processing
(Cont.)"

■  Parsing and translation!
●  Translate the query into its internal form. !
●  This is then translated into relational algebra.!

!  (Extended) relational algebra is more compact, and differentiates
clearly among the various different operations!

●  Parser checks syntax, verifies relations!
●  This is a subject for compilers that we will ignore here!

■  Evaluation!
●  The query-execution engine takes a query-evaluation plan, executes

that plan, and returns the answers to the query.!
! The bulk of the problem lies in how to come up with a good

evaluation plan!!
! Query execution is “simply” executing a predefined plan (or

program)!

©Silberschatz, Korth and Sudarshan"12.5"Database System Concepts - 6th Edition"

Evaluation plan example"

salary

salary < 75000; use index 1

instructor

σ

π Evaluation primitive!

©Silberschatz, Korth and Sudarshan"12.6"Database System Concepts - 6th Edition"

Basic Steps in Query Processing :
Optimization"

■  A relational algebra expression may have many equivalent
expressions!

●  E.g., σsalary<75000(∏salary(instructor)) is equivalent to  
 ∏salary(σsalary<75000(instructor))!

■  Each relational algebra operation can be evaluated using one of
several different algorithms!
●  Correspondingly, a relational-algebra expression can be

evaluated in many ways. !
■  Annotated expression specifying detailed evaluation strategy is

called an evaluation-plan.!
●  E.g., can use an index on salary to find instructors with salary

< 75000,!
●  or can perform complete relation scan and discard instructors

with salary ≥ 75000!

©Silberschatz, Korth and Sudarshan"12.7"Database System Concepts - 6th Edition"

A more complex evaluation-plan"

©Silberschatz, Korth and Sudarshan"12.8"Database System Concepts - 6th Edition"

Basic Steps: Optimization (Cont.)"

■  Query Optimization: Amongst all equivalent evaluation plans choose
the one with lowest cost. !
●  Cost is estimated using statistical information from the  

 database catalog!
! e.g. number of tuples in each relation, size of tuples, etc.!

■  In this chapter we study!
●  How to measure query costs (to have a measure to be able to

evaluate and compare the various plans and algorithms)!
●  Algorithms for evaluating (main) relational algebra operations!
●  How to combine algorithms for individual operations in order to

evaluate a complete expression!
●  How these algorithms and combinations can be parallelised!

■  Later we will study how to optimize queries, that is, how to find an
evaluation plan with lowest estimated cost!

©Silberschatz, Korth and Sudarshan"12.9"Database System Concepts - 6th Edition"

Measures of Query Cost"

■  Cost is generally measured as total elapsed time for answering
query!
●  Many factors contribute to time cost!

! disk accesses, CPU, or even network communication!
■  Typically disk access is the predominant cost, and is also

relatively easy to estimate. Measured by taking into account!
●  Number of seeks * average-seek-cost!
●  Number of blocks read * average-block-read-cost!
●  Number of blocks written * average-block-write-cost!

! Cost to write a block is greater than cost to read a block !
–  data is read back after being written to ensure that the

write was successful!
! The cost of a seek is usually much higher than that of a

block transfer read or write (one order of magnitude)!

©Silberschatz, Korth and Sudarshan"12.10"Database System Concepts - 6th Edition"

Measures of Query Cost (Cont.)"

■  For simplicity we just use the number of block transfers from disk and
the number of seeks as the cost measures!
●  tT – time to transfer one block  

(0.1 ms for 4Kb blocks and 40 Mb/s transfer rate)!
●  tS – time for one seek (high-end disks 4 ms)!
●  Cost for b block transfers plus S seeks 

 b * tT + S * tS !
■  We do not include cost to writing output to disk in the cost formulae!
■  We ignore CPU costs for simplicity!

●  Real systems do take CPU cost into account, but they are clearly less
significant!

■  Evaluating the cost of an algorithm for query processing is similar to the
ones learnt in “Algorithms and Data Structures” but here the measures are
quite different:!
●  the evaluation in terms of block transfers and seeks are substantially

different than in terms of number of execution steps.!

©Silberschatz, Korth and Sudarshan"12.11"Database System Concepts - 6th Edition"

Measures of Query Cost (Cont.)"

■  Several algorithms can reduce disk IO by using extra buffer
space !
●  Amount of real memory available to buffer depends on other

concurrent queries and OS processes, known only during
execution!
! We often use worst case estimates, assuming only the

minimum amount of memory needed for the operation is
available!

■  Required data may be buffer resident already, avoiding disk I/O!
●  But hard to take into account for cost estimation!

©Silberschatz, Korth and Sudarshan"12.12"Database System Concepts - 6th Edition"

Selection Operation (recall)"

■  Notation: σ p(r)!
●  p is the selection predicate!
●  Defined by σp(r) = {t | t ∈ r and p(t)}!
●  in which p is a formula of propositional calculus of terms

connected by: ∧ (and), ∨ (or), ¬ (not) 
Each term is of the form:!

●  <attribute> op <attribute> or <constant>!
●  where op can be one of: =, ≠, >, ≥. <. ≤!

■  Selection example: 
 σ branch-name=‘Perryridge’ (account)!

■  For recalling other operators, see documentation of “Bases de
Dados”.!

©Silberschatz, Korth and Sudarshan"12.13"Database System Concepts - 6th Edition"

Selection Operation"
■  File scan – search algorithms that locate and retrieve records that

fulfill a selection condition!
■  Algorithm A1 (linear search). Scan each file block and test all

records to see whether they satisfy the selection condition.!
●  Cost estimate = br block transfers + 1 seek!

! br denotes number of blocks containing records from relation r!
●  If selection is on a key attribute, can stop on finding record!

! Average cost = (br /2) block transfers + 1 seek!
●  Linear search can be applied regardless of !

! selection condition or!
! ordering of records in the file, or !
! availability of indices!

©Silberschatz, Korth and Sudarshan"12.14"Database System Concepts - 6th Edition"

Binary search"

■  Binary search generally does not make sense since data is not
stored consecutively except when there is an index available, but
binary search requires more seeks than index search!

■  Applicable only if the selection is an equality comparison on the
attribute on which file is ordered. !

■  Assuming that the blocks of a relation are stored contiguously, the
cost estimate (number of disk blocks to be scanned):!
●  cost of locating the first tuple by a binary search on the blocks!

!  ⎡log2(br)⎤ * (tT + tS)!
●  If there are multiple records satisfying selection!

! Add transfer cost of the number of blocks containing records
that satisfy selection condition !

■  If br is not too big, then most likely binary search doesn’t pay.!
●  Note that tS is several (say, 50) times bigger than tT!

■  Estimates on the size of the relation are needed to wisely choose
which of the two algorithms is better for a specific query at hands.!

©Silberschatz, Korth and Sudarshan"12.15"Database System Concepts - 6th Edition"

Selections Using Indices"

■  Index scan – search algorithms that use an index!
●  selection condition must be on search-key of index.!

■  A2 (primary index, equality on key). Retrieve a single record that
satisfies the corresponding equality condition, with hi the index height!
●  Cost = hi * (tT + tS) + (tT + tS) = (hi + 1) * (tT + tS)!

 
!
■  The height of a B+-tree is ⎡log⎡n/2⎤(K)⎤, where n is the number of index

entries per node and K is the number of search keys. Unless the
relation is small, this algorithms “pays off” when indexes are available!
●  E.g. for a relation r with 1.000.000 different search keys, and with

100 index entries per node, hi = 4. Usually root node is in memory.!
■  A3 (primary index, equality on nonkey) Retrieve multiple records. !

●  Records will be on consecutive blocks!
! Let b = number of blocks containing matching records!

●  Cost = hi * (tT + tS) + tS + tT * b!

Index search! Record retrieval!

©Silberschatz, Korth and Sudarshan"12.16"Database System Concepts - 6th Edition"

Selections Using Indices"

■  A4 (secondary index, equality on nonkey).!
●  Retrieve a single record if the search-key is a candidate key!

! Cost = (hi + 1) * (tT + tS)!
●  Retrieve multiple records if search-key is not a candidate key!

! each of n matching records may be on a different block !
! Cost = (hi + n) * (tT + tS) !
–  Can be very expensive!!

©Silberschatz, Korth and Sudarshan"12.17"Database System Concepts - 6th Edition"

Selections Involving Comparisons"
■  Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using!

●  a linear file scan,!
●  or by using indices in the following ways:!

■  A5 (primary index, comparison). (Relation is sorted on A)!
! For σA ≥ V(r) use index to find first tuple ≥ v and scan relation

sequentially from there!
! For σA≤V (r) just scan relation sequentially till first tuple > v; do not

use index since it would require extra seeks on the index file!
■  A6 (secondary index, comparison). !

! For σA ≥ V(r) use index to find first index entry ≥ v and scan index
sequentially from there, to find pointers to records.!

! For σA≤V (r) just scan leaf pages of index finding pointers to
records, till first entry > v!

! In either case, retrieve records that are pointed to!
–  In worst-case requires an I/O for each record (a lot!)!
–  Linear file scan may be cheaper!!!!!

©Silberschatz, Korth and Sudarshan"12.18"Database System Concepts - 6th Edition"

Implementation of Complex Selections"

■  Conjunction: σθ1∧ θ2∧. . . θn(r) !
■  A7 (conjunctive selection using one index). !

●  Select a combination of θi and algorithms A1 through A6 that results in
the least cost for σθi (r).!

●  Test other conditions on tuple after fetching it into memory buffer.!
●  In this case the choice of the first condition is crucial!!

! One must use estimates to figure out which one is better.!
■  A8 (conjunctive selection using composite index). !

●  Use appropriate composite (multiple-key) index if available.!
■  A9 (conjunctive selection by intersection of identifiers). !

●  Requires indices with record pointers (rowids). !
●  Use corresponding index for each condition, and take intersection of all

the obtained sets of record pointers. !
●  Then fetch records from file!
●  If some conditions do not have appropriate indices, apply test in memory.!

©Silberschatz, Korth and Sudarshan"12.19"Database System Concepts - 6th Edition"

Algorithms for Complex Selections"

■  Disjunction:σθ1∨ θ2 ∨. . . θn (r). !
■  A10 (disjunctive selection by union of identifiers). !

●  Applicable if all conditions have available indices. !
! Otherwise use linear scan.!

●  Use corresponding index for each condition, and take union
of all the obtained sets of record pointers. !

●  Then fetch records from file!
■  Negation: σ¬θ(r)!

●  Use linear scan on file!
●  If very few records satisfy ¬θ, and an index is applicable to θ!

!  Find satisfying records using index and fetch from file!

©Silberschatz, Korth and Sudarshan"12.20"Database System Concepts - 6th Edition"

Sorting"

■  Sorting algorithms are important in query processing at least for two
reasons:!
●  The query itself may require sorting (order by clause)!
●  Some algorithms for other operations, like projection, join, set

operations and aggregation, require previously sorted relations!
■  To sort a relation:!

●  We may build an index on the relation, and then use the index to
read the relation in sorted order. !
! This only sorts the relation logically, not physically!
! May lead to one disk block access for each tuple.!

●  For relations that fit in memory sorting algorithms that you’ve
studied before, like quicksort, can be used. !

●  For relations that don’t fit in memory special algorithms are
required, that take into account the measures in terms of disc
transfers and seeks. External sort-merge is a good choice. !

©Silberschatz, Korth and Sudarshan"12.21"Database System Concepts - 6th Edition"

External Sort-Merge"

1.  Create sorted runs. Let i be 0 initially.  
 Repeatedly do the following till the end of the relation: 
 (a) Read M blocks of relation into memory 
 (b) Sort the in-memory blocks 
 (c) Write sorted data to run Ri; increment i. 
Let the final value of i be N!

2.  Merge the runs (next slide)…..!

Let M denote memory size (in pages/blocks). !

©Silberschatz, Korth and Sudarshan"12.22"Database System Concepts - 6th Edition"

External Sort-Merge (Cont.)"

2.  Merge the runs (N-way merge). We assume (for now) that N < M. !
1.  Use N blocks of memory to buffer input runs, and 1 block to

buffer output. Read the first block of each run into its buffer
page!

2.  repeat"
1.  Select the first record (in sort order) among all buffer

pages!
2.  Write the record to the output buffer. If the output buffer

is full write it to disk.!
3.  Delete the record from its input buffer page. 

If the buffer page becomes empty then 
 read the next block (if any) of the run into the buffer. !

3.  until all input buffer pages are empty:!

©Silberschatz, Korth and Sudarshan"12.23"Database System Concepts - 6th Edition"

External Sort-Merge (Cont.)"

■  If N ≥ M, several merge passes are required.!
●  In each pass, contiguous groups of M - 1 runs are merged. !
●  A pass reduces the number of runs by a factor of M -1, and

creates runs longer by the same factor. !
! E.g. If M=11, and there are 90 runs, one pass reduces

the number of runs to 9, each 10 times the size of the
initial runs!

●  Repeated passes are performed till all runs have been
merged into one.!

■  Note that, in practice, this is only required fore really huge
relations:!
●  Consider 4Gb memory and 4Kb blocks (i.e. 1M blocks fit in

memory)!
●  For a 2nd pass to be needed, there should be over 1M runs,

i.e. 4000Tb (since each run can be circa 4Gb).!

©Silberschatz, Korth and Sudarshan"12.24"Database System Concepts - 6th Edition"

Example: External Sorting Using Sort-Merge"

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

M=3!

©Silberschatz, Korth and Sudarshan"12.25"Database System Concepts - 6th Edition"

External Merge Sort (Cont.)"

■  Cost analysis (as corrected in the ERRATA):!
●  1 block per run leads to too many seeks during merge!

!  Instead use bb buffer blocks per run!
è read/write bb blocks at a time!

! Can merge ⎣M/bb⎦–1 runs in one pass!
●  Total number of merge passes required: ⎡log ⎣M/bb⎦–1(br/M)⎤.!
●  Block transfers for initial run creation as well as in each pass is 2br!

!  for final pass, we don’t count write cost !
–  we ignore final write cost for all operations since the output

of an operation may be sent to the parent operation without
being written to disk!

! Thus total number of block transfers for external sorting: 
! !br (2 ⎡log ⎣M/bb⎦–1 (br / M)⎤ + 1) !!

●  Seeks: next slide!

©Silberschatz, Korth and Sudarshan"12.26"Database System Concepts - 6th Edition"

External Merge Sort (Cont.)"

■  Cost of seeks!
●  During run generation: one seek to read each run and one

seek to write each run!
!  2 ⎡br / M⎤!

●  During the merge phase!
! Need 2 ⎡br / bb⎤ seeks for each merge pass !
–  except the final one which does not require a write!

! Total number of seeks: 
 2 ⎡br / M⎤ + ⎡br / bb⎤ {2 (⎡log⎣M/bb⎦–1(br / M)⎤ -1)+1} 
 =  
 2 ⎡br / M⎤ + ⎡br / bb⎤ (2 ⎡log⎣M/bb⎦–1(br / M)⎤ -1)!

©Silberschatz, Korth and Sudarshan"12.27"Database System Concepts - 6th Edition"

Join Operation"

■  Several different algorithms to implement joins, ignoring for the
time being the parallel ones:!
●  Nested-loop join!
●  Block nested-loop join!
●  Indexed nested-loop join!
●  Merge-join!
●  Hash-join!

■  As for selection, choice based on cost estimate!
■  Examples use the following information!

●  Number of records of student: 5,000 takes: 10,000!
●  Number of blocks of student: 100 takes: 400!

©Silberschatz, Korth and Sudarshan"12.28"Database System Concepts - 6th Edition"

Nested-Loop Join"

■  The simplest algorithm that can be used always (like linear
search for selection)!

■  To compute the theta join r θ s 
for each tuple tr in r do begin 
"for each tuple ts in s do begin 
" "test pair (tr,ts) to see if they satisfy the join condition θ  
! !if they do, add tr • ts to the result. 
!end  
end!

■  r is called the outer relation and s the inner relation of the join.!
■  Requires no indices and can be used with any kind of join

condition.!
■  Quite expensive in general, since it examines every pair of tuples

in the two relations. !

©Silberschatz, Korth and Sudarshan"12.29"Database System Concepts - 6th Edition"

Nested-Loop Join (Cont.)"

■  In the worst case, if there is enough memory only to hold one block of each
relation, the estimated cost is  
 nr * bs + br block transfers, plus 
 nr + br seeks!

■  In general, it is much better to have the smaller relation as the outer
relation!
●  The number of block transfers is multiplied by the number of tuples of

the outer relation!
●  The number of seeks only depends on the outer relation!

■  However, if the smaller relation is small enough to fit in memory, one
should use it as the inner relation!!
●  Reduces cost to br + bs block transfers and 2 seeks!

■  The choice of the inner and outer relation strongly depends on the
estimate of the size (cardinality) of each relation!

©Silberschatz, Korth and Sudarshan"12.30"Database System Concepts - 6th Edition"

Nested-Loop Join (Example)"

■  Assuming worst case memory availability cost estimate is!
●  with student as outer relation:!

! 5000 * 400 + 100 = 2,000,100 block transfers,!
! 5000 + 100 = 5100 seeks !

●  with takes as the outer relation !
! 10000 * 100 + 400 = 1,000,400 block transfers and 10,400

seeks!
■  If smaller relation (student) fits entirely in memory, the cost estimate

will be 500 block transfers.!
■  Instead of iterating over records, one could iterate over blocks. This

way instead of nr * bs + br we would have br * bs + br block transfers!
■  This is the basis of the usually preferable block nested-loop join

algorithm (details in the next slide)!

©Silberschatz, Korth and Sudarshan"12.31"Database System Concepts - 6th Edition"

Block Nested-Loop Join"

■  Variant of nested-loop join in which every block of inner
relation is paired with every block of outer relation.!

!!for each block Br of r do begin 
" "for each block Bs of s do begin 
" " "for each tuple tr in Br do begin 
" " " "for each tuple ts in Bs do begin 
" " " " "Check if (tr,ts) satisfy the join condition  
! ! ! ! !if they do, add tr • ts to the result. 
! ! ! !end  
" " "end  
" "end  
"end"

©Silberschatz, Korth and Sudarshan"12.32"Database System Concepts - 6th Edition"

Block Nested-Loop Join (Cont.)"

■  Worst case estimate: br * bs + br block transfers + 2 * br seeks!
●  Each block in the inner relation s is read once for each block in the

outer relation!
■  Best case (when smaller relation fits into memory):  

br + bs block transfers + 2 seeks.!
■  Improvements to nested loop and block nested loop algorithms:!

●  In block nested-loop, use M — 2 disk blocks as blocking unit for
outer relations, where M = memory size in blocks; use remaining two
blocks to buffer inner relation and output!

! Cost = ⎡br / (M-2)⎤ * bs + br block transfers + 2 ⎡br / (M-2)⎤ seeks!
●  If equi-join attribute forms a key or inner relation, stop inner loop on

first match!
●  Scan inner loop forward and backward alternately, to make use of

the blocks remaining in buffer (with LRU replacement)!
●  Use index on inner relation if available to faster obtain the tuples that

match the current tuple of the outer relation!

©Silberschatz, Korth and Sudarshan"12.33"Database System Concepts - 6th Edition"

Indexed Nested-Loop Join"

■  Index lookups can replace file scans if!
●  join is an equi-join or natural join and!
●  an index is available on the inner relation’s join attribute!

! Can construct an index just to compute a join.!
■  For each tuple tr in the outer relation r, use the index to look up

tuples in s that satisfy the join condition with tuple tr.!
■  Worst case: buffer has space for only one block of r, and, for each

tuple in r, we perform an index lookup on s.!
■  Cost of the join: br (tT + tS) + nr * c!

●  Where c is the cost of traversing index and fetching all matching s
tuples for one tuple or r!

●  c can be estimated as cost of a single selection on s using the join
condition!

■  If indices are available on join attributes of both r and s, 
use the relation with fewer tuples as the outer relation.!

©Silberschatz, Korth and Sudarshan"12.34"Database System Concepts - 6th Edition"

Example of Nested-Loop Join Costs"

■  Compute student takes, with student as the outer relation.!
■  Let takes have a primary B+-tree index on the attribute ID, which contains 20

entries in each index node.!
■  Since takes has 10,000 tuples, the height of the tree is 4, and one more access

is needed to find the actual data!
■  student has 5000 tuples!
■  Cost of block nested-loop join!

●  400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks (4.81 secs)!
!  assuming worst case memory !
!  may be significantly less with more memory!

■  Cost of indexed nested-loop join!
●  100 + 5000 * 5 = 25,100 block transfers and seeks (102,91 secs)!

●  CPU cost likely to be less than that for block nested loops join!

●  However in terms of time for transfers and seeks, in this case using the
index does not pay (this is so because the relations are small)!

