
©Silberschatz, Korth and Sudarshan!12.1!Database System Concepts - 6th Edition!

Merge-Join!
1.  Sort both relations on their join attribute (if not already sorted on

the join attributes)."
2.  Merge the sorted relations to join them"

1.  Join step is similar to the merge stage of the sort-merge
algorithm. "

2.  Main difference is handling of duplicate values in join
attribute — every pair with same value on join attribute must
be matched"

3.  Detailed algorithm in book" a 3
b 1
d 8

13d
f 7

m 5
q 6

a A
b G
c L
d N
m B

a1 a2 a1 a3
pr ps

r

s

©Silberschatz, Korth and Sudarshan!12.2!Database System Concepts - 6th Edition!

Merge-Join (Cont.)!

■  Can be used only for equi-joins and natural joins"
■  Each block needs to be read only once (assuming all tuples for any

given value of the join attributes fit in memory"
■  Thus the cost of merge join is:  

 br + bs block transfers + ⎡br / bb⎤ + ⎡bs / bb⎤ seeks"
●  + the cost of sorting if relations are unsorted."

■  hybrid merge-join: If one relation is sorted, and the other has a
secondary B+-tree index on the join attribute"
●  Merge the sorted relation with the leaf entries of the B+-tree . "
●  Sort the result on the addresses of the unsorted relation’s tuples"
●  Scan the unsorted relation in physical address order and merge

with previous result, to replace addresses by the actual tuples"
! Sequential scan more efficient than random lookup"

©Silberschatz, Korth and Sudarshan!12.3!Database System Concepts - 6th Edition!

Hash-Join!

■  Applicable for equi-joins and natural joins."
■  A hash function h is used to partition tuples of both relations "
■  h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the

common attributes of r and s used in the natural join. "
●  r0, r1, . . ., rn denote partitions of r tuples"

! Each tuple tr ∈ r is put in partition ri where i = h(tr [JoinAttrs]).!
●  r0,, r1. . ., rn denotes partitions of s tuples"

! Each tuple ts ∈s is put in partition si, where i = h(ts [JoinAttrs]).!

■  Note: In book, ri is denoted as Hri, si is denoted as Hsi and  
 n is denoted as nh. "

©Silberschatz, Korth and Sudarshan!12.4!Database System Concepts - 6th Edition!

Hash-Join (Cont.)!

■  General idea:"
●  Partition the relations according to the previous method"
●  Perform the join of each partition ri and si "

■  Note that r tuples in ri need only to be compared with s
tuples in si . Need not be compared with s tuples in any
other partition, since:"
●  an r tuple and an s tuple that satisfy the join condition

will have the same value for the join attributes."
●  If that value is hashed to some value i, the r tuple has

to be in ri and the s tuple in si.!

©Silberschatz, Korth and Sudarshan!12.5!Database System Concepts - 6th Edition!

Hash-Join (Cont.)!
0

1

2

3

4

0

1

2

3

4r

s

.

.

.

.

.

.

.

.

partitions
of r

partitions
of s

©Silberschatz, Korth and Sudarshan!12.6!Database System Concepts - 6th Edition!

Hash-Join Algorithm!

1. "Partition the relation s using hashing function h. When
partitioning a relation, one block of memory is reserved as
the output buffer for each partition."

2. "Partition r similarly."
3. "For each i:"

(a) "Load si into memory and build an in-memory hash index
on it using the join attribute. This hash index uses a
different hash function than the earlier one h."

(b) "Read the tuples in ri from the disk one by one. For each
tuple tr locate each matching tuple ts in si using the in-
memory hash index. Output the concatenation of their
attributes."

The hash-join of r and s is computed as follows."

Relation s is called the build input and r is called the probe input."

©Silberschatz, Korth and Sudarshan!12.7!Database System Concepts - 6th Edition!

Hash-Join algorithm (Cont.)!

■  The value n and the hash function h is chosen such that each
si should fit in memory."
●  Typically n is chosen as ⎡bs/M⎤ * f where f is a “fudge

factor”, typically around 1.2"
●  The probe relation partitions si need not fit in memory"

■  Recursive partitioning required if number of partitions n is
greater than number of pages M of memory."
●  instead of partitioning n ways, use M – 1 partitions for s"
●  Further partition the M – 1 partitions using a different hash

function"
●  Use same partitioning method on r!
●  Rarely required: e.g., with block size of 4 KB, recursive

partitioning not needed for relations of < 1GB with memory
size of 2MB, or relations of < 36 GB with memory of 12 MB"

©Silberschatz, Korth and Sudarshan!12.8!Database System Concepts - 6th Edition!

Handling of Overflows!

■  Partitioning is said to be skewed if some partitions have significantly
more tuples than some others"

■  Hash-table overflow occurs in partition si if si does not fit in memory.
Reasons could be"
●  Many tuples in s with same value for join attributes"
●  Bad hash function"

■  Overflow resolution can be done in build phase"
●  Partition si is further partitioned using different hash function. "
●  Partition ri must be similarly partitioned."

■  Overflow avoidance performs partitioning carefully to avoid overflows
during build phase"
●  E.g. partition build relation into many partitions, then combine them"

■  Both approaches fail with large numbers of duplicates"
●  Fallback option: use block nested loops join on overflowed partitions"

©Silberschatz, Korth and Sudarshan!12.9!Database System Concepts - 6th Edition!

Cost of Hash-Join!

■  If recursive partitioning is not required: cost of hash join is 
 3(br + bs) +4 * nh block transfers + 
 2(⎡br / bb⎤ + ⎡bs / bb⎤) seeks!

■  If recursive partitioning required:"
●  number of passes required for partitioning build relation s to

less than M blocks per partition is ⎡log⎣M/bb⎦–1(bs/M)⎤"
●  best to choose the smaller relation as the build relation."
●  Total cost estimate is:  

 2(br + bs) ⎡log⎣M/bb⎦–1(bs/M)⎤ + br + bs block transfers +  
 2(⎡br / bb⎤ + ⎡bs / bb⎤) ⎡log⎣M/bb⎦–1(bs/M) ⎤ seeks!

■  If the entire build input can be kept in main memory no
partitioning is required"
●  Cost estimate goes down to br + bs."

©Silberschatz, Korth and Sudarshan!12.10!Database System Concepts - 6th Edition!

Example of Cost of Hash-Join!

■  Assume that memory size is 20 blocks"

■  bstudent= 100 and btakes = 400."
■  Student is to be used as build input. Partition it into five

partitions, each of size 20 blocks. This partitioning can be done
in one pass."

■  Similarly, partition takes into five partitions,each of size 80. This
is also done in one pass."

■  Therefore total cost, ignoring cost of writing partially filled
blocks:"
●  3(100 + 400) = 1500 block transfers + 

2(⎡100/3⎤ + ⎡400/3⎤) = 336 seeks (1.5 secs)"
●  Block nested loop: 40100 block transfers plus 200 seeks  

Index nested loop: 25100 block transfers and seeks 
Opt. block nested-loop: 2700 transfers plus 46 seeks (0.454 secs)"

student takes!

©Silberschatz, Korth and Sudarshan!12.11!Database System Concepts - 6th Edition!

Hybrid Hash–Join!

■  Useful when memory sized are relatively large, and the build
input is bigger than memory."

■  Main feature of hybrid hash join:!
 Keep the first partition of the build relation in memory. "
■  E.g. With memory size of 25 blocks, student can be partitioned

into five partitions, each of size 20 blocks."
●  Division of memory:"

! The first partition occupies 20 blocks of memory"
! 1 block is used for input, and 1 block each for buffering the other

4 partitions."
■  Takes is similarly partitioned into five partitions each of size 80"

●  the first is used right away for probing, instead of being written out"
■  Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for 

 hybrid hash join, instead of 1500 with plain hash-join."
■  Hybrid hash-join most useful if M >> " sb

©Silberschatz, Korth and Sudarshan!12.12!Database System Concepts - 6th Edition!

Complex Joins!

■  Join with a conjunctive condition:"
" "r θ1∧ θ 2∧... ∧ θ n s"
●  Either use nested loops/block nested loops, or"
●  Compute the result of one of the simpler joins r θi s"

! final result comprises those tuples in the intermediate result
that satisfy the remaining conditions"

""θ1 ∧ . . . ∧ θi –1 ∧ θi +1 ∧ . . . ∧ θn"
■  Join with a disjunctive condition !

!! r θ1 ∨ θ2 ∨... ∨ θn s "
●  Either use nested loops/block nested loops, or"
● " Compute as the union of the records in individual joins r θ i s:!
!!(r θ1 s) ∪ (r θ2 s) ∪ . . . ∪ (r θn s) "

!

©Silberschatz, Korth and Sudarshan!12.13!Database System Concepts - 6th Edition!

Other Operations!

■  Duplicate elimination can be implemented via hashing or
sorting."
●  On sorting duplicates will come adjacent to each other, and all

but one set of duplicates can be deleted. "
●  Optimization: duplicates can be deleted during run generation

as well as at intermediate merge steps in external sort-merge."
●  Hashing is similar – duplicates will come into the same

bucket."
■  Projection:!

●  perform projection on each tuple "
●  followed by duplicate elimination. !

©Silberschatz, Korth and Sudarshan!12.14!Database System Concepts - 6th Edition!

Other Operations : Aggregation!

■  Aggregation can be implemented in a manner similar to duplicate
elimination."
●  Sorting or hashing can be used to bring tuples in the same

group together, and then the aggregate functions can be
applied on each group. !

●  Optimization: combine tuples in the same group during run
generation and intermediate merges, by computing partial
aggregate values"
! For count, min, max, sum: keep aggregate values on tuples

found so far in the group. "
–  When combining partial aggregate for count, add up the

aggregates"
! For avg, keep sum and count, and divide sum by count at

the end"

©Silberschatz, Korth and Sudarshan!12.15!Database System Concepts - 6th Edition!

Other Operations : Set Operations!

■  Set operations (∪, ∩ and ⎯): can either use variant of merge-join
after sorting, or variant of hash-join.!

■  E.g., Set operations using hashing:"
1.  Partition both relations using the same hash function"
2.  Process each partition i as follows. "

1.  Using a different hashing function, build an in-memory hash
index on ri."

2.  Process si as follows"
●  r ∪ s: "

1.  Add tuples in si to the hash index if they are not
already in it. "

2.  At end of si add the tuples in the hash index to the
result."

©Silberschatz, Korth and Sudarshan!12.16!Database System Concepts - 6th Edition!

Other Operations : Set Operations!

■  E.g., Set operations using hashing:"
1.  as before partition r and s, !
2.  as before, process each partition i as follows!

1.  build a hash index on ri"
2.  Process si as follows"
●  r ∩ s: "

1.  output tuples in si to the result if they are already
there in the hash index"

●  r – s: "
1.  for each tuple in si, if it is there in the hash index,

delete it from the index. "
2.  At end of si add remaining tuples in the hash

index to the result. "

©Silberschatz, Korth and Sudarshan!12.17!Database System Concepts - 6th Edition!

Other Operations : Outer Join!

■  Outer join can be computed either as "
●  A join followed by addition of null-padded non-participating

tuples."
●  by modifying the join algorithms."

■  Modifying merge join to compute r s"
●  In r s, non participating tuples are those in r – ΠR(r s)"
●  Modify merge-join to compute r s: !

! During merging, for every tuple tr from r that do not match
any tuple in s, output tr padded with nulls."

●  Right outer-join and full outer-join can be computed similarly."

©Silberschatz, Korth and Sudarshan!12.18!Database System Concepts - 6th Edition!

Other Operations : Outer Join!

■  Modifying hash join to compute r s"
●  If r is probe relation, output non-matching r tuples padded

with nulls"
●  If r is build relation, when probing keep track of which  

r tuples matched s tuples. At end of si output  
non-matched r tuples padded with nulls "

©Silberschatz, Korth and Sudarshan!12.19!Database System Concepts - 6th Edition!

Evaluation of Expressions!

■  So far: we have seen algorithms for individual operations"
■  Alternatives for evaluating an entire expression tree"

●  Materialization: generate results of an expression whose
inputs are relations or are already computed, materialize
(store) it on disk. Repeat."

●  Pipelining: pass on tuples to parent operations even as an
operation is being executed"

■  We study above alternatives in more detail"

©Silberschatz, Korth and Sudarshan!12.20!Database System Concepts - 6th Edition!

Materialization!

■  Materialized evaluation: evaluate one operation at a time,
starting at the lowest-level. Use intermediate results materialized
into temporary relations to evaluate next-level operations."

■  E.g., in figure below, compute and store  
 
 
then compute the store its join with instructor, and finally compute
the projection on name. !

)("Watson" departmentbuilding =σ

Π

σ

name

building = “Watson”

department

instructor

©Silberschatz, Korth and Sudarshan!12.21!Database System Concepts - 6th Edition!

Materialization (Cont.)!

■  Materialized evaluation is always applicable"
■  Cost of writing results to disk and reading them back can be

quite high"
●  Our cost formulas for operations ignore cost of writing

results to disk, so"
! Overall cost = Sum of costs of individual operations +  

 cost of writing intermediate results to
disk"

■  Double buffering: use two output buffers for each operation,
when one is full write it to disk while the other is getting filled"
●  Allows overlap of disk writes with computation and reduces

execution time"

©Silberschatz, Korth and Sudarshan!12.22!Database System Concepts - 6th Edition!

Pipelining!

■  Pipelined evaluation : evaluate several operations
simultaneously, passing the results of one operation on to the next."

■  E.g., in previous expression tree, don’t store result of 
 
 "
●  instead, pass tuples directly to the join.. Similarly, don’t store

result of join, pass tuples directly to projection. "
■  Much cheaper than materialization: no need to store a temporary

relation to disk."
■  Pipelining may not always be possible – e.g., sort, hash-join. "
■  For pipelining to be effective, use evaluation algorithms that

generate output tuples even as tuples are received for inputs to the
operation. "

■  Pipelines can be executed in two ways: demand driven and
producer driven "

)("Watson" departmentbuilding =σ

©Silberschatz, Korth and Sudarshan!12.23!Database System Concepts - 6th Edition!

Pipelining (Cont.)!

■  In demand driven or lazy evaluation"
●  system repeatedly requests next tuple from top level operation"
●  Each operation requests next tuple from children operations as

required, in order to output its next tuple"
●  In between calls, operation has to maintain “state” so it knows what to

return next"
■  In producer-driven or eager pipelining"

●  Operators produce tuples eagerly and pass them up to their parents"
! Buffer maintained between operators, child puts tuples in buffer,

parent removes tuples from buffer"
!  if buffer is full, child waits till there is space in the buffer, and then

generates more tuples"
●  System schedules operations that have space in output buffer and can

process more input tuples"

■  Alternative name: pull and push models of pipelining"
"

©Silberschatz, Korth and Sudarshan!12.24!Database System Concepts - 6th Edition!

Pipelining (Cont.)!

■  Implementation of demand-driven pipelining"
●  Each operation is implemented as an iterator implementing the

following operations"
! open()!
–  E.g. file scan: initialize file scan"

»  state: pointer to beginning of file"
–  E.g.merge join: sort relations;"

»  state: pointers to beginning of sorted relations"
!  next()!
–  E.g. for file scan: Output next tuple, and advance and store

file pointer"
–  E.g. for merge join: continue with merge from earlier state

till  
next output tuple is found. Save pointers as iterator state."

! close()!

©Silberschatz, Korth and Sudarshan!12.25!Database System Concepts - 6th Edition!

Evaluation Algorithms for Pipelining!

■  Some algorithms are not able to output results even as they get
input tuples"
●  E.g. merge join, or hash join"
●  intermediate results written to disk and then read back"

■  Algorithm variants to generate (at least some) results on the fly, as
input tuples are read in"
●  E.g. hybrid hash join generates output tuples even as probe relation

tuples in the in-memory partition (partition 0) are read in"
●  Double-pipelined join technique: Hybrid hash join, modified to

buffer partition 0 tuples of both relations in-memory, reading them as
they become available, and output results of any matches between
partition 0 tuples"
! When a new r0 tuple is found, match it with existing s0 tuples,

output matches, and save it in r0"
! Symmetrically for s0 tuples"

Database System Concepts, 6th Ed."
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use !

End of Chapter!

