
Database System Concepts, 6th Ed.!
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use "

Chapter 19: Distributed Databases"

©Silberschatz, Korth and Sudarshan"19.2"Database System Concepts - 6th Edition"

Chapter 19: Distributed Databases"

■  Heterogeneous and Homogeneous Databases!
■  Distributed Data Storage!
■  Distributed Transactions!
■  Commit Protocols!
■  Concurrency Control in Distributed Databases!
■  Availability!
■  Distributed Query Processing!
■  Heterogeneous Distributed Databases!
■  Directory Systems!

©Silberschatz, Korth and Sudarshan"19.3"Database System Concepts - 6th Edition"

Distributed Database System"

■  A distributed database system consists of loosely coupled sites that share
no physical component!

■  Database systems that run on each site are independent of each other!
■  Transactions may access data at one or more sites!

©Silberschatz, Korth and Sudarshan"19.4"Database System Concepts - 6th Edition"

Homogeneous Distributed Databases"

■  In a homogeneous distributed database!
●  All sites have identical software !
●  Are aware of each other and agree to cooperate in processing user

requests.!
●  Each site surrenders part of its autonomy in terms of right to change

schemas or software!
●  Appears to user as a single system!

■  In a heterogeneous distributed database!
●  Different sites may use different schemas and software!

! Difference in schema is a major problem for query processing!
! Difference in software is a major problem for transaction

processing!
●  Sites may not be aware of each other and may provide only  

limited facilities for cooperation in transaction processing!

©Silberschatz, Korth and Sudarshan"19.5"Database System Concepts - 6th Edition"

Distributed Data Storage"

■  Assume relational data model!
■  Replication!

●  System maintains multiple copies of data, stored in different sites,
for faster retrieval and fault tolerance.!

■  Fragmentation!
●  Relation is partitioned into several fragments stored in distinct sites!

■  Replication and fragmentation can be combined!
●  Relation is partitioned into several fragments: system maintains

several identical replicas of each such fragment.!

©Silberschatz, Korth and Sudarshan"19.6"Database System Concepts - 6th Edition"

Data Replication"
■  A relation or fragment of a relation is replicated if it is stored

redundantly in two or more sites.!
■  Full replication of a relation is the case where the relation is stored at all

sites.!
■  Fully redundant databases are those in which every site contains a copy

of the entire database.!

©Silberschatz, Korth and Sudarshan"19.7"Database System Concepts - 6th Edition"

Data Replication (Cont.)"

■  Advantages of Replication!
●  Availability: failure of site containing relation r does not result in

unavailability of r is replicas exist.!
●  Parallelism: queries on r may be processed by several nodes in parallel.!
●  Reduced data transfer: relation r is available locally at each site

containing a replica of r.!
■  Disadvantages of Replication!

●  Increased cost of updates: each replica of relation r must be updated.!
●  Increased complexity of concurrency control: concurrent updates to

distinct replicas may lead to inconsistent data unless special
concurrency control mechanisms are implemented.!
! One solution: choose one copy as primary copy and apply

concurrency control operations on primary copy"

©Silberschatz, Korth and Sudarshan"19.8"Database System Concepts - 6th Edition"

Data Fragmentation"

■  Division of relation r into fragments r1, r2, …, rn which contain
sufficient information to reconstruct relation r.!

■  Horizontal fragmentation: each tuple of r is assigned to one
or more fragments!

■  Vertical fragmentation: the schema for relation r is split into
several smaller schemas!
●  All schemas must contain a common candidate key (or

superkey) to ensure lossless join property.!
●  A special attribute, the tuple-id attribute may be added to

each schema to serve as a candidate key.!
!

©Silberschatz, Korth and Sudarshan"19.9"Database System Concepts - 6th Edition"

Horizontal Fragmentation of account Relation"

branch_name! account_number! balance!

Hillside!
Hillside!
Hillside!

A-305!
A-226!
A-155!

500!
336!
62!

account1 = σbranch_name=�Hillside��(account)!

branch_name! account_number! balance!

Valleyview!
Valleyview!
Valleyview!
Valleyview!

A-177!
A-402!
A-408!
A-639!

205!
10000!
1123!
750!

account2 = σbranch_name=�Valleyview��(account)!
!

©Silberschatz, Korth and Sudarshan"19.10"Database System Concepts - 6th Edition"

Vertical Fragmentation of employee_info Relation"

branch_name! customer_name! tuple_id!

Hillside!
Hillside!
Valleyview!
Valleyview!
Hillside!
Valleyview!
Valleyview!

Lowman!
Camp!
Camp!
Kahn!
Kahn!
Kahn!
Green!

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info)!

1!
2!
3!
4!
5!
6!
7!

account_number! balance! tuple_id!

500!
336!
205!
10000!
62!
1123!
750!

1!
2!
3!
4!
5!
6!
7!

A-305!
A-226!
A-177!
A-402!
A-155!
A-408!
A-639!

deposit2 = Πaccount_number, balance, tuple_id (employee_info)!

©Silberschatz, Korth and Sudarshan"19.11"Database System Concepts - 6th Edition"

Advantages of Fragmentation"

■  Horizontal:!
●  allows parallel processing on fragments of a relation!
●  allows a relation to be split so that tuples are located where

they are most frequently accessed!
■  Vertical: !

●  allows tuples to be split so that each part of the tuple is
stored where it is most frequently accessed!

●  tuple-id attribute allows efficient joining of vertical fragments!
●  allows parallel processing on a relation!

■  Vertical and horizontal fragmentation can be mixed.!
●  Fragments may be successively fragmented to an arbitrary

depth.!

©Silberschatz, Korth and Sudarshan"19.12"Database System Concepts - 6th Edition"

Data Transparency"

■  Data transparency: Degree to which system user may remain unaware
of the details of how and where the data items are stored in a distributed
system!

■  Consider transparency issues in relation to:!
●  Fragmentation transparency!
●  Replication transparency!
●  Location transparency!

©Silberschatz, Korth and Sudarshan"19.13"Database System Concepts - 6th Edition"

Naming of Data Items - Criteria"

1. Every data item must have a system-wide unique name.!
2. It should be possible to find the location of data items efficiently.!
3. It should be possible to change the location of data items

transparently.!
4. Each site should be able to create new data items autonomously.!

©Silberschatz, Korth and Sudarshan"19.14"Database System Concepts - 6th Edition"

Centralized Scheme - Name Server"

■  Structure:!
●  name server assigns all names!
●  each site maintains a record of local data items!
●  sites ask name server to locate non-local data items!

■  Advantages:!
●  satisfies naming criteria 1-3!

■  Disadvantages:!
●  does not satisfy naming criterion 4!
●  name server is a potential performance bottleneck!
●  name server is a single point of failure!

©Silberschatz, Korth and Sudarshan"19.15"Database System Concepts - 6th Edition"

Use of Aliases"

■  Alternative to centralized scheme: each site prefixes its own site
identifier to any name that it generates i.e., site 17.account.!
●  Fulfills having a unique identifier, and avoids problems associated

with central control.!
●  However, fails to achieve network transparency.!

■  Solution: Create a set of aliases for data items; Store the mapping of
aliases to the real names at each site.!

■  The user can be unaware of the physical location of a data item, and
is unaffected if the data item is moved from one site to another.!

©Silberschatz, Korth and Sudarshan"19.16"Database System Concepts - 6th Edition"

Distributed Transactions  
and 2 Phase Commit"

©Silberschatz, Korth and Sudarshan"19.17"Database System Concepts - 6th Edition"

Distributed Transactions"

■  Transaction may access data at several sites.!
■  Each site has a local transaction manager responsible for:!

●  Maintaining a log for recovery purposes!
●  Participating in coordinating the concurrent execution of the

transactions executing at that site.!
■  Each site has a transaction coordinator, which is responsible for:!

●  Starting the execution of transactions that originate at the site.!
●  Distributing subtransactions at appropriate sites for execution.!
●  Coordinating the termination of each transaction that originates at

the site, which may result in the transaction being committed at all
sites or aborted at all sites.!

©Silberschatz, Korth and Sudarshan"19.18"Database System Concepts - 6th Edition"

Transaction System Architecture"

TM1 TMn

computer 1 computer n

TC1 TCn transaction
coordinator

transaction
manager

©Silberschatz, Korth and Sudarshan"19.19"Database System Concepts - 6th Edition"

System Failure Modes"

■  Failures unique to distributed systems:!
●  Failure of a site.!
●  Loss of massages!

! Handled by network transmission control protocols such as
TCP-IP!

●  Failure of a communication link!
! Handled by network protocols, by routing messages via

alternative links!
●  Network partition"

! A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them!
–  Note: a subsystem may consist of a single node !

■  Network partitioning and site failures are generally indistinguishable.!

©Silberschatz, Korth and Sudarshan"19.20"Database System Concepts - 6th Edition"

Commit Protocols"

■  Commit protocols are used to ensure atomicity across sites!
●  a transaction which executes at multiple sites must either be

committed at all the sites, or aborted at all the sites.!
●  not acceptable to have a transaction committed at one site and

aborted at another!
■  The two-phase commit (2PC) protocol is widely used !
■  The three-phase commit (3PC) protocol is more complicated and more

expensive, but avoids some drawbacks of two-phase commit protocol.
This protocol is not used in practice.!

©Silberschatz, Korth and Sudarshan"19.21"Database System Concepts - 6th Edition"

Two Phase Commit Protocol (2PC)"

■  Assumes fail-stop model – failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.!

■  Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.!

■  The protocol involves all the local sites at which the transaction
executed!

■  Let T be a transaction initiated at site Si, and let the transaction
coordinator at Si be Ci!

©Silberschatz, Korth and Sudarshan"19.22"Database System Concepts - 6th Edition"

Phase 1: Obtaining a Decision"

■  Coordinator asks all participants to prepare to commit transaction Ti.!
●  Ci adds the records <prepare T> to the log and forces log to

stable storage!
●  sends prepare T messages to all sites at which T executed!

■  Upon receiving message, transaction manager at site determines if it
can commit the transaction!
●  if not, add a record <no T> to the log and send abort T message

to Ci!
●  if the transaction can be committed, then:!
●  add the record <ready T> to the log!
●  force all records for T to stable storage!
●  send ready T message to Ci!

©Silberschatz, Korth and Sudarshan"19.23"Database System Concepts - 6th Edition"

Phase 2: Recording the Decision"

■  T can be committed of Ci received a ready T message from all the
participating sites: otherwise T must be aborted.!

■  Coordinator adds a decision record, <commit T> or <abort T>, to the
log and forces record onto stable storage. Once the record stable
storage it is irrevocable (even if failures occur)!

■  Coordinator sends a message to each participant informing it of the
decision (commit or abort)!

■  Participants take appropriate action locally.!

©Silberschatz, Korth and Sudarshan"19.24"Database System Concepts - 6th Edition"

Handling of Failures - Site Failure"
When site Si recovers, it examines its log to determine the fate of!
transactions active at the time of the failure.!
■  Log contain <commit T> record: txn had completed, nothing to be done!
■  Log contains <abort T> record: txn had completed, nothing to be done!
■  Log contains <ready T> record: site must consult Ci to determine the

fate of T.!
●  If T committed, redo (T); write <commit T> record!
●  If T aborted, undo (T)!

■  The log contains no log records concerning T:!
●  Implies that Sk failed before responding to the prepare T message

from Ci !
●  since the failure of Sk precludes the sending of such a response,

coordinator C1 must abort T!
●  Sk must execute undo (T)!

©Silberschatz, Korth and Sudarshan"19.25"Database System Concepts - 6th Edition"

Handling of Failures- Coordinator Failure"

■  If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T�s fate:!

1.  If an active site contains a <commit T> record in its log, then T must be
committed.!

2.  If an active site contains an <abort T> record in its log, then T must be
aborted.!

3.  If some active participating site does not contain a <ready T> record in its
log, then the failed coordinator Ci cannot have decided to commit T. !
●  Can therefore abort T; however, such a site must reject any

subsequent <prepare T> message from Ci !
4.  If none of the above cases holds, then all active sites must have a <ready

T> record in their logs, but no additional control records (such as <abort
T> of <commit T>). !
●  In this case active sites must wait for Ci to recover, to find decision.!

■  Blocking problem: active sites may have to wait for failed coordinator to
recover.!

©Silberschatz, Korth and Sudarshan"19.26"Database System Concepts - 6th Edition"

Handling of Failures - Network Partition"
■  If the coordinator and all its participants remain in one partition, the

failure has no effect on the commit protocol.!
■  If the coordinator and its participants belong to several partitions:!

●  Sites that are not in the partition containing the coordinator think
the coordinator has failed, and execute the protocol to deal with
failure of the coordinator.!
! No harm results, but sites may still have to wait for decision

from coordinator.!
■  The coordinator and the sites are in the same partition as the

coordinator think that the sites in the other partition have failed, and
follow the usual commit protocol.!

! Again, no harm results!

©Silberschatz, Korth and Sudarshan"19.27"Database System Concepts - 6th Edition"

Recovery and Concurrency Control"

■  In-doubt transactions have a <ready T>, but neither a  
<commit T>, nor an <abort T> log record.!

■  The recovering site must determine the commit-abort status of such
transactions by contacting other sites; this can slow and potentially
block recovery.!

■  Recovery algorithms can note lock information in the log.!
●  Instead of <ready T>, write out <ready T, L> L = list of locks held

by T when the log is written (read locks can be omitted).!
●  For every in-doubt transaction T, all the locks noted in the  

<ready T, L> log record are reacquired.!
■  After lock reacquisition, transaction processing can resume; the

commit or rollback of in-doubt transactions is performed concurrently
with the execution of new transactions.!

©Silberschatz, Korth and Sudarshan"19.28"Database System Concepts - 6th Edition"

Three Phase Commit (3PC)"
■  Assumptions:!

●  No network partitioning!
●  At any point, at least one site must be up.!
●  At most K sites (participants as well as coordinator) can fail!

■  Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.!
●  Every site is ready to commit if instructed to do so!

■  Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC!
●  In phase 2 coordinator makes a decision as in 2PC (called the pre-commit

decision) and records it in multiple (at least K) sites!
●  In phase 3, coordinator sends commit/abort message to all participating

sites,!
■  Under 3PC, knowledge of pre-commit decision can be used to commit despite

coordinator failure !
●  Avoids blocking problem as long as < K sites fail!

■  Drawbacks: !
●  higher overheads!
●  assumptions may not be satisfied in practice!

©Silberschatz, Korth and Sudarshan"19.29"Database System Concepts - 6th Edition"

Alternative Models of Transaction
Processing"

■  Notion of a single transaction spanning multiple sites is inappropriate
for many applications!
●  E.g. transaction crossing an organizational boundary!
●  No organization would like to permit an externally initiated

transaction to block local transactions for an indeterminate period!
■  Alternative models carry out transactions by sending messages!

●  Code to handle messages must be carefully designed to ensure
atomicity and durability properties for updates!
!  Isolation cannot be guaranteed, in that intermediate stages are

visible, but code must ensure no inconsistent states result due
to concurrency !

●  Persistent messaging systems are systems that provide
transactional properties to messages !
! Messages are guaranteed to be delivered exactly once!
! Will discuss implementation techniques later!

©Silberschatz, Korth and Sudarshan"19.30"Database System Concepts - 6th Edition"

Alternative Models (Cont.)"
■  Motivating example: funds transfer between two banks!

●  Two phase commit would have the potential to block updates on the
accounts involved in funds transfer!

●  Alternative solution:!
! Debit money from source account and send a message to other

site!
! Site receives message and credits destination account!

●  Messaging has long been used for distributed transactions (even
before computers were invented!)!

■  Atomicity issue!
●  once transaction sending a message is committed, message must

guaranteed to be delivered!
! Guarantee as long as destination site is up and reachable, code to

handle undeliverable messages must also be available !
–  e.g. credit money back to source account. !

●  If sending transaction aborts, message must not be sent !

©Silberschatz, Korth and Sudarshan"19.31"Database System Concepts - 6th Edition"

Error Conditions with Persistent
Messaging"

■  Code to handle messages has to take care of variety of failure situations
(even assuming guaranteed message delivery)!
●  E.g. if destination account does not exist, failure message must be

sent back to source site!
●  When failure message is received from destination site, or

destination site itself does not exist, money must be deposited back
in source account!
! Problem if source account has been closed!

–  get humans to take care of problem!
■  User code executing transaction processing using 2PC does not have to

deal with such failures!
■  There are many situations where extra effort of error handling is worth

the benefit of absence of blocking!
●  E.g. pretty much all transactions across organizations!

©Silberschatz, Korth and Sudarshan"19.32"Database System Concepts - 6th Edition"

Persistent Messaging and Workflows"
■  Workflows provide a general model of transactional processing

involving multiple sites and possibly human processing of certain
steps!
●  E.g. when a bank receives a loan application, it may need to!

! Contact external credit-checking agencies!
! Get approvals of one or more managers!

 and then respond to the loan application!
●  We study workflows in Chapter 25!
●  Persistent messaging forms the underlying infrastructure for

workflows in a distributed environment!
!

©Silberschatz, Korth and Sudarshan"19.33"Database System Concepts - 6th Edition"

Implementation of Persistent Messaging"
■  Sending site protocol. !

●  When a transaction wishes to send a persistent message, it writes a
record containing the message in a special relation
messages_to_send; the message is given a unique message
identifier.!

●  A message delivery process monitors the relation, and when a new
message is found, it sends the message to its destination. !

●  The message delivery process deletes a message from the relation
only after it receives an acknowledgment from the destination site. !
!  If it receives no acknowledgement from the destination site, after

some time it sends the message again. It repeats this until an
acknowledgment is received. !

!  If after some period of time, that the message is undeliverable,
exception handling code provided by the application is invoked
to deal with the failure.!

■  Writing the message to a relation and processing it only after the
transaction commits ensures that the message will be delivered if and
only if the transaction commits. !

©Silberschatz, Korth and Sudarshan"19.34"Database System Concepts - 6th Edition"

Implementation of Persistent Messaging
(Cont.)"

■  Receiving site protocol."
●  When a site receives a persistent message, it runs a transaction that

adds the message to a received_messages relation!
! provided message identifier is not already present in the relation !

●  After the transaction commits, or if the message was already present
in the relation, the receiving site sends an acknowledgment back to
the sending site.!
! Note that sending the acknowledgment before the transaction

commits is not safe, since a system failure may then result in loss
of the message.!

●  In many messaging systems, it is possible for messages to get
delayed arbitrarily, although such delays are very unlikely. !
! Each message is given a timestamp, and if the timestamp of a

received message is older than some cutoff, the message is
discarded. !

! All messages recorded in the received messages relation that are
older than the cutoff can be deleted.!

©Silberschatz, Korth and Sudarshan"19.35"Database System Concepts - 6th Edition"

Concurrency Control"

©Silberschatz, Korth and Sudarshan"19.36"Database System Concepts - 6th Edition"

Concurrency Control"

■  Modify concurrency control schemes for use in distributed environment.!
■  We assume that each site participates in the execution of a commit

protocol to ensure global transaction atomicity.!
■  We assume all replicas of any item are updated !

●  Will see how to relax this in case of site failures later!

©Silberschatz, Korth and Sudarshan"19.37"Database System Concepts - 6th Edition"

Single-Lock-Manager Approach"

■  System maintains a single lock manager that resides in a single
chosen site, say Si !

■  When a transaction needs to lock a data item, it sends a lock request
to Si and lock manager determines whether the lock can be granted
immediately!
●  If yes, lock manager sends a message to the site which initiated

the request!
●  If no, request is delayed until it can be granted, at which time a

message is sent to the initiating site!

©Silberschatz, Korth and Sudarshan"19.38"Database System Concepts - 6th Edition"

Single-Lock-Manager Approach (Cont.)"

■  The transaction can read the data item from any one of the sites at
which a replica of the data item resides.!

■  Writes must be performed on all replicas of a data item!
■  Advantages of scheme:!

●  Simple implementation!
●  Simple deadlock handling!

■  Disadvantages of scheme are:!
●  Bottleneck: lock manager site becomes a bottleneck!
●  Vulnerability: system is vulnerable to lock manager site failure.!

©Silberschatz, Korth and Sudarshan"19.39"Database System Concepts - 6th Edition"

Distributed Lock Manager"

■  In this approach, functionality of locking is implemented by lock
managers at each site!
●  Lock managers control access to local data items!

! But special protocols may be used for replicas!
■  Advantage: work is distributed and can be made robust to failures!
■  Disadvantage: deadlock detection is more complicated!

●  Lock managers cooperate for deadlock detection!
! More on this later!

■  Several variants of this approach!
●  Primary copy!
●  Majority protocol!
●  Biased protocol!
●  Quorum consensus!

©Silberschatz, Korth and Sudarshan"19.40"Database System Concepts - 6th Edition"

Primary Copy"

■  Choose one replica of data item to be the primary copy. !
●  Site containing the replica is called the primary site for that data

item!
●  Different data items can have different primary sites"

■  When a transaction needs to lock a data item Q, it requests a lock at
the primary site of Q.!
●  Implicitly gets lock on all replicas of the data item!

■  Benefit!
●  Concurrency control for replicated data handled similarly to

unreplicated data - simple implementation.!
■  Drawback!

●  If the primary site of Q fails, Q is inaccessible even though other
sites containing a replica may be accessible.!

©Silberschatz, Korth and Sudarshan"19.41"Database System Concepts - 6th Edition"

Majority Protocol"

■  Local lock manager at each site administers lock and unlock requests
for data items stored at that site.!

■  When a transaction wishes to lock an unreplicated data item Q
residing at site Si, a message is sent to Si �s lock manager.!
●  If Q is locked in an incompatible mode, then the request is delayed

until it can be granted.!
●  When the lock request can be granted, the lock manager sends a

message back to the initiator indicating that the lock request has
been granted.!

©Silberschatz, Korth and Sudarshan"19.42"Database System Concepts - 6th Edition"

Majority Protocol (Cont.)"
■  In case of replicated data!

●  If Q is replicated at n sites, then a lock request message must be
sent to more than half of the n sites in which Q is stored.!

●  The transaction does not operate on Q until it has obtained a lock
on a majority of the replicas of Q.!

●  When writing the data item, transaction performs writes on all
replicas.!

■  Benefit!
●  Can be used even when some sites are unavailable!

! details on how handle writes in the presence of site failure later!
■  Drawback!

●  Requires 2(n/2 + 1) messages for handling lock requests, and (n/2
+ 1) messages for handling unlock requests.!

●  Potential for deadlock even with single item - e.g., each of 3
transactions may have locks on 1/3rd of the replicas of a data.!

©Silberschatz, Korth and Sudarshan"19.43"Database System Concepts - 6th Edition"

Biased Protocol"

■  Local lock manager at each site as in majority protocol, however,
requests for shared locks are handled differently than requests for
exclusive locks.!

■  Shared locks. When a transaction needs to lock data item Q, it simply
requests a lock on Q from the lock manager at one site containing a
replica of Q.!

■  Exclusive locks. When transaction needs to lock data item Q, it
requests a lock on Q from the lock manager at all sites containing a
replica of Q.!

■  Advantage - imposes less overhead on read operations.!
■  Disadvantage - additional overhead on writes!

©Silberschatz, Korth and Sudarshan"19.44"Database System Concepts - 6th Edition"

Quorum Consensus Protocol"

■  A generalization of both majority and biased protocols!
■  Each site is assigned a weight.!

●  Let S be the total of all site weights!
■  Choose two values read quorum Qr and write quorum Qw!

●  Such that Qr + Qw > S and 2 * Qw > S!
●  Quorums can be chosen (and S computed) separately for each

item !
■  Each read must lock enough replicas that the sum of the site weights

is >= Qr!
■  Each write must lock enough replicas that the sum of the site weights

is >= Qw!
■  For now we assume all replicas are written!

●  Extensions to allow some sites to be unavailable described later!

©Silberschatz, Korth and Sudarshan"19.45"Database System Concepts - 6th Edition"

Timestamping"

■  Timestamp based concurrency-control protocols can be used in
distributed systems!

■  Each transaction must be given a unique timestamp!
■  Main problem: how to generate a timestamp in a distributed fashion!

●  Each site generates a unique local timestamp using either a logical
counter or the local clock.!

●  Global unique timestamp is obtained by concatenating the unique
local timestamp with the unique identifier.!

site
identifier

global unique
identifier

local unique
timestamp

©Silberschatz, Korth and Sudarshan"19.46"Database System Concepts - 6th Edition"

Timestamping (Cont.)"

■  A site with a slow clock will assign smaller timestamps!
●  Still logically correct: serializability not affected!
●  But: �disadvantages� transactions!

■  To fix this problem!
●  Define within each site Si a logical clock (LCi), which generates

the unique local timestamp!
●  Require that Si advance its logical clock whenever a request is

received from a transaction Ti with timestamp < x,y> and x is
greater that the current value of LCi.!

●  In this case, site Si advances its logical clock to the value x + 1.!

©Silberschatz, Korth and Sudarshan"19.47"Database System Concepts - 6th Edition"

Replication with Weak Consistency"

■  Many commercial databases support replication of data with weak
degrees of consistency (I.e., without a guarantee of serializabiliy)!

■  E.g.: master-slave replication: updates are performed at a single
�master� site, and propagated to �slave� sites. !
●  Propagation is not part of the update transaction: its is decoupled!

! May be immediately after transaction commits!
! May be periodic!

●  Data may only be read at slave sites, not updated!
! No need to obtain locks at any remote site!

●  Particularly useful for distributing information!
! E.g. from central office to branch-office !

●  Also useful for running read-only queries offline from the main
database!

©Silberschatz, Korth and Sudarshan"19.48"Database System Concepts - 6th Edition"

Replication with Weak Consistency (Cont.)"

■  Replicas should see a transaction-consistent snapshot of the
database!
●  That is, a state of the database reflecting all effects of all

transactions up to some point in the serialization order, and no
effects of any later transactions. !

■  E.g. Oracle provides a create snapshot statement to create a
snapshot of a relation or a set of relations at a remote site!
●  snapshot refresh either by recomputation or by incremental update!
●  Automatic refresh (continuous or periodic) or manual refresh!

©Silberschatz, Korth and Sudarshan"19.49"Database System Concepts - 6th Edition"

Multimaster and Lazy Replication"

■  With multimaster replication (also called update-anywhere replication)
updates are permitted at any replica, and are automatically
propagated to all replicas!
●  Basic model in distributed databases, where transactions are

unaware of the details of replication, and database system
propagates updates as part of the same transaction!
! Coupled with 2 phase commit!

■  Many systems support lazy propagation where updates are
transmitted after transaction commits!
●  Allows updates to occur even if some sites are disconnected from

the network, but at the cost of consistency!

©Silberschatz, Korth and Sudarshan"19.50"Database System Concepts - 6th Edition"

Deadlock Handling"

Consider the following two transactions and history, with item X and
transaction T1 at site 1, and item Y and transaction T2 at site 2:!

T1: !write (X)!
!write (Y)!

T2: !write (Y)!
!write (X)!

X-lock on X!
write (X)! X-lock on Y!

write (Y)!
wait for X-lock on X!

Wait for X-lock on Y!

Result: deadlock which cannot be detected locally at either site!

©Silberschatz, Korth and Sudarshan"19.51"Database System Concepts - 6th Edition"

Centralized Approach"

■  A global wait-for graph is constructed and maintained in a single site;
the deadlock-detection coordinator!
●  Real graph: Real, but unknown, state of the system.!
●  Constructed graph:Approximation generated by the controller

during the execution of its algorithm .!
■  the global wait-for graph can be constructed when:!

●  a new edge is inserted in or removed from one of the local wait-
for graphs.!

●  a number of changes have occurred in a local wait-for graph.!
●  the coordinator needs to invoke cycle-detection.!

■  If the coordinator finds a cycle, it selects a victim and notifies all sites.
The sites roll back the victim transaction.!

©Silberschatz, Korth and Sudarshan"19.52"Database System Concepts - 6th Edition"

Local and Global Wait-For Graphs"

Local

Global

T2 T4T1 T2

T5 T3 T3

site S1 site S2

T1 T4

T5

T2

T3

©Silberschatz, Korth and Sudarshan"19.53"Database System Concepts - 6th Edition"

Example Wait-For Graph for False Cycles"

Initial state:! T1

T2

T2

T1

T3

S2

T1

T3

coordinator

S1

©Silberschatz, Korth and Sudarshan"19.54"Database System Concepts - 6th Edition"

False Cycles (Cont.)"

■  Suppose that starting from the state shown in figure,!
!1. T2 releases resources at S1 !

!  resulting in a message remove T1 → T2 message from the
Transaction Manager at site S1 to the coordinator)!

!2. And then T2 requests a resource held by T3 at site S2 !
!  resulting in a message insert T2 → T3 from S2 to the coordinator!

■  Suppose further that the insert message reaches before the delete
message !
●  this can happen due to network delays!

■  The coordinator would then find a false cycle !
! ! !T1 → T2 → T3 → T1!

■  The false cycle above never existed in reality.!
■  False cycles cannot occur if two-phase locking is used.!

©Silberschatz, Korth and Sudarshan"19.55"Database System Concepts - 6th Edition"

Unnecessary Rollbacks"

■  Unnecessary rollbacks may result when deadlock has indeed
occurred and a victim has been picked, and meanwhile one of the
transactions was aborted for reasons unrelated to the deadlock.!

■  Unnecessary rollbacks can result from false cycles in the global wait-
for graph; however, likelihood of false cycles is low.!

©Silberschatz, Korth and Sudarshan"19.56"Database System Concepts - 6th Edition"

Availability"

©Silberschatz, Korth and Sudarshan"19.57"Database System Concepts - 6th Edition"

Availability"

■  High availability: time for which system is not fully usable should be
extremely low (e.g. 99.99% availability) !

■  Robustness: ability of system to function spite of failures of
components!

■  Failures are more likely in large distributed systems!
■  To be robust, a distributed system must !

●  Detect failures!
●  Reconfigure the system so computation may continue!
●  Recovery/reintegration when a site or link is repaired!

■  Failure detection: distinguishing link failure from site failure is hard!
●  (partial) solution: have multiple links, multiple link failure is likely a

site failure!

©Silberschatz, Korth and Sudarshan"19.58"Database System Concepts - 6th Edition"

Reconfiguration"

■  Reconfiguration:!
●  Abort all transactions that were active at a failed site!

! Making them wait could interfere with other transactions since
they may hold locks on other sites!

! However, in case only some replicas of a data item failed, it
may be possible to continue transactions that had accessed
data at a failed site (more on this later) !

●  If replicated data items were at failed site, update system catalog
to remove them from the list of replicas. !
! This should be reversed when failed site recovers, but

additional care needs to be taken to bring values up to date!
●  If a failed site was a central server for some subsystem, an

election must be held to determine the new server!
! E.g. name server, concurrency coordinator, global deadlock

detector!

©Silberschatz, Korth and Sudarshan"19.59"Database System Concepts - 6th Edition"

Reconfiguration (Cont.)"

■  Since network partition may not be distinguishable from site failure,
the following situations must be avoided!
●  Two ore more central servers elected in distinct partitions!
●  More than one partition updates a replicated data item!

■  Updates must be able to continue even if some sites are down!
■  Solution: majority based approach!

●  Alternative of �read one write all available� is tantalizing but
causes problems!

©Silberschatz, Korth and Sudarshan"19.60"Database System Concepts - 6th Edition"

Majority-Based Approach"

■  The majority protocol for distributed concurrency control can be
modified to work even if some sites are unavailable!
●  Each replica of each item has a version number which is updated

when the replica is updated, as outlined below!
●  A lock request is sent to at least ½ the sites at which item replicas

are stored and operation continues only when a lock is obtained
on a majority of the sites!

●  Read operations look at all replicas locked, and read the value
from the replica with largest version number!
! May write this value and version number back to replicas with

lower version numbers (no need to obtain locks on all replicas
for this task)!

©Silberschatz, Korth and Sudarshan"19.61"Database System Concepts - 6th Edition"

Majority-Based Approach"

■  Majority protocol (Cont.)!
●  Write operations!

!  find highest version number like reads, and set new version
number to old highest version + 1!

! Writes are then performed on all locked replicas and version
number on these replicas is set to new version number!

●  Failures (network and site) cause no problems as long as !
! Sites at commit contain a majority of replicas of any updated data

items!
! During reads a majority of replicas are available to find version

numbers!
! Subject to above, 2 phase commit can be used to update replicas!

●  Note: reads are guaranteed to see latest version of data item!
●  Reintegration is trivial: nothing needs to be done!

■  Quorum consensus algorithm can be similarly extended!

©Silberschatz, Korth and Sudarshan"19.62"Database System Concepts - 6th Edition"

Read One Write All (Available)"

■  Biased protocol is a special case of quorum consensus!
●  Allows reads to read any one replica but updates require all

replicas to be available at commit time (called read one write all)!
■  Read one write all available (ignoring failed sites) is attractive, but

incorrect!
●  If failed link may come back up, without a disconnected site ever

being aware that it was disconnected!
●  The site then has old values, and a read from that site would

return an incorrect value!
●  If site was aware of failure reintegration could have been

performed, but no way to guarantee this!
●  With network partitioning, sites in each partition may update same

item concurrently!
! believing sites in other partitions have all failed!

©Silberschatz, Korth and Sudarshan"19.63"Database System Concepts - 6th Edition"

Site Reintegration"

■  When failed site recovers, it must catch up with all updates that it
missed while it was down!
●  Problem: updates may be happening to items whose replica is

stored at the site while the site is recovering!
●  Solution 1: halt all updates on system while reintegrating a site!

! Unacceptable disruption!
●  Solution 2: lock all replicas of all data items at the site, update to

latest version, then release locks!
! Other solutions with better concurrency also available!

©Silberschatz, Korth and Sudarshan"19.64"Database System Concepts - 6th Edition"

Comparison with Remote Backup"

■  Remote backup (hot spare) systems (Section 17.10) are also
designed to provide high availability !

■  Remote backup systems are simpler and have lower overhead!
●  All actions performed at a single site, and only log records shipped!
●  No need for distributed concurrency control, or 2 phase commit!

■  Using distributed databases with replicas of data items can provide
higher availability by having multiple (> 2) replicas and using the
majority protocol!
●  Also avoid failure detection and switchover time associated with

remote backup systems!

©Silberschatz, Korth and Sudarshan"19.65"Database System Concepts - 6th Edition"

Coordinator Selection"

■  Backup coordinators!
●  site which maintains enough information locally to assume the role

of coordinator if the actual coordinator fails !
●  executes the same algorithms and maintains the same internal

state information as the actual coordinator fails executes state
information as the actual coordinator !

●  allows fast recovery from coordinator failure but involves overhead
during normal processing.!

■  Election algorithms!
●  used to elect a new coordinator in case of failures !
●  Example: Bully Algorithm - applicable to systems where every site

can send a message to every other site.!

©Silberschatz, Korth and Sudarshan"19.66"Database System Concepts - 6th Edition"

Bully Algorithm"

■  If site Si sends a request that is not answered by the coordinator within
a time interval T, assume that the coordinator has failed Si tries to
elect itself as the new coordinator.!

■  Si sends an election message to every site with a higher identification
number, Si then waits for any of these processes to answer within T.!

■  If no response within T, assume that all sites with number greater than
i have failed, Si elects itself the new coordinator.!

■  If answer is received Si begins time interval T�, waiting to receive a
message that a site with a higher identification number has been
elected.!

©Silberschatz, Korth and Sudarshan"19.67"Database System Concepts - 6th Edition"

Bully Algorithm (Cont.)"

■  If no message is sent within T�, assume the site with a higher number
has failed; Si restarts the algorithm.!

■  After a failed site recovers, it immediately begins execution of the
same algorithm.!

■  If there are no active sites with higher numbers, the recovered site
forces all processes with lower numbers to let it become the
coordinator site, even if there is a currently active coordinator with a
lower number.!

©Silberschatz, Korth and Sudarshan"19.68"Database System Concepts - 6th Edition"

Trading Consistency for Availability"

