

Departamento de Informática Faculdade de Ciências e Tecnologia UNIVERSIDADE NOVA DE LISBOA

Mestrado em Engenharia Informática Segurança em Sistemas Informáticos Distribuídos 1º Semestre 2003/2004

Teste de Avaliação de Conhecimentos (Teste Nº 1 – 19/Abtril/2005)

Notas:

- O enunciado tem 5 questões, divididas em duas partes:
 - Parte sem consulta (Questões 1 e 2): 50 min
 - Parte com consulta (Questões, 3 e 4): 50 min
- Leia completamente e com atenção cada questão antes de responder. A interpretação do enunciado é um factor de avaliação.

	A preencher pelos alunos
Nº de aluno: Nome:	
Nº Total de páginas entregues:	(numere as páginas na forma Pág / TOTAL)

PARTE 1	PARTE 2
(sem consulta)	(com consulta)

Classificação (a preencher pelo docente):

1)	2)	3)	4)
a)	a)	a)	a)
b)	b)	b)	b)
c)	c)	c)	c)
d)	d)	d)	d)
e)	e)	e)	
		f)	
		g)	
		h)	

Questão 1)

- a) Em que âmbito se utilizam os algoritmos de cifra simétrica da família de cifra em cadeia (*Stream-Cypher*)? porque é que nesse âmbito não é adequado o uso de métodos criptográficos simétricos da família de cifra por blocos mesmo com base em diferentes modos, como por exemplo ECB, CBC ou OFB?
- b) Considere o código mostrado. Pretende-se que ao correr este programa se obtenha no ecrã a seguinte saída:

input : 000102030405060708090a0b0c0d0e0f

cipher: 61a1f886ff9bc709dd37cd9ce33adc6f bytes: 16
plain : 000102030405060708090a0b0c0d0e0f bytes: 16

Não pode modificar nada. Apenas pode preencher os espaços. Diga se é possível e no caso afirmativo apresente a sua implementação.

- c) Diga em que consiste o conceito de chave fraca, semi-fraca ou potencialmente fraca num algoritmo criptográfico simétrico e porque é que essas chaves devem ser evitadas. Justifique a resposta e tente clarificá-la o melhor possível a partir do conhecimento que tem sobre da estrutura da cifra de Feistel e sua utilização na implementação interna do método DES ou 3DES.
- d) Considere a tabela T1 na qual se apresentam tipologias de ataques (colunas) e suportes de serviços de segurança (linhas) num sistema distribuído. Coloque um "X" nos locais apropriados, de modo a indicar qual o suporte do serviço de segurança que está mais especificamente associado a contra-medidas em relação a cada um dos ataques mencionados.
- e) Faça o mesmo que fez na alínea a) mas agora para a tabela 2, onde se encontram mecanismos básicos de segurança (colunas) e serviços de segurança (linhas), indicando quais os mecanismos (colunas) que estão associados ou combinados para se construírem os serviços indicados (linhas).

TABELA 1	Ataque Tipo					
Serviço de suporte de segurança	Release of messages	Traffic Analysis	Masquerade	Reply	Tampering	Denial of Service
Peer Authentication						
Data Origin Athentication						
Access Control						
Data Confidentiality						
Traffic Flow Confidentiality						
Data Integrity						
Non Repudiation						
High Availability						

	Г					
Tabela 2	Mecanismo					
Serviço de suporte de segurança	Método de Cifra/Decifra	Assinaturas Digitais	Controlo de Acessos	Métodos de hashing	Modelos de Autenticação e distribuição de chaves	Certificação X509 e Cas (PKIs)
Peer Authentication						
Data Origin Athentication						
Access Control						
Data Confidentiality						
Traffic Flow Confidentiality						
Data Integrity						
Non Repudiation						
High Availability						

Questão 2) Responda a quatro das seguintes cinco perguntas. (Podem ser quaisquer).

- a) Apresente a pilha TCP/IP e refira pelo menos 5 suportes de protocolos ou serviços de segurança que estejam associados às diferentes camadas da pilha. A sua resposta deve indicar suportes para todos os níveis da pilha.
- b) Considere o quadro conceptual de referência OSI X.800:
 - B1) Qual a diferença entre os conceitos associados aos mecanismos conhecidos por "Autenticação" (Authentication Exchange) e "Controlo de Acessos" (Access-Control). Como e a qual dos mecanismos associa a funcionalidade de LOGON num sistema LINUX de um dos laboratórios no DI?
 - B2) Ainda com base no modelo e terminologia de mecanismos de segruabnça OSI X.800, qual a diferença entre os chamados mecanismos específicos de segurança (*specific security mechanisms*) e os mecanismos pervasivos de segurança (*pervasive security mechanisms*)?
- c) Um dos aspectos importantes discutidos ao nível da concepção e estruturação de serviços e suportes de segurança é conhecido pelo problema da prevenção de um atacante ter acesso indevido a um perímetro, camada ou serviço devidamente protegidos pelo facto de poder por em causa outro perímetro, camada ou serviço com nível de abstracção inferior no modelo de segurança considerado (the *layer-below* problem). Dê um exemplo de uma aplicação que se baseasse num mecanismo de autenticação e controlo de acessos que possa ser atacada por um processo associado à ideia subjacente.
- d) Explique qual a noção que está implícita a ataques do tipo "information leakage" pode usar na sua resposta um exemplo de estratégia de ataque que pudesse ilustrar ou estar associada à noção desse ataque.
- e) Está a construir um protocolo para distribuição de chaves simétricas 3DES para estabelecimento de um canal seguro entre dois sujeitos A e B. As chaves são distribuídas a partir de um centro de distribuição de chaves KDC (segundo o modelo de Needham-Schroeder com criptografia simétrica). Acontece porém que as chaves de longa duração partilhadas entre os sujeitos A e B e o KDC são chaves simétricas AES, usando blocos de 256 bits e chaves de 256 bits.
 - E1) Algum problema com a utilização do modelo de N-S? Justifique.
 - E2) Entre usar ECB e CBC como modo de cifra simétrica para AES no protocolo de N-S qual escolheria neste caso ? Justifique.

Questão 3)

Usando criptografia assimétrica e tendo como pressuposto que as chaves públicas de cada sujeito ou principal podem ser obtidas de forma segura e adequada, é possível estabelecer diferentes tipos de autenticação, normalmente definidos com base em diferentes níveis ou fases: autenticação unilateral ou a uma fase (*one way authentication*), autenticação bilateral em duas fases (*two way authentication*) e autenticação em 3 fases (*three-way authentication*). Considere o protocolo seguinte que ilustra a utilização sucessiva das 3 fases a seguir exemplificados e responda às questões das diversas alíneas.

Kab e Kba são sementes para derivação de chaves simétricas com base em algum gerador para um certo algoritmo criptográfico simétrico.

Fase 1: One Way Authentication

A>B: A {ta, ra, IDB, signedDataA, {Kab}KpubB}

Ta: timestamp gerado por A IDB: identificador de B

Kab chave de sessão proposta por A

- a) Neste round o que proporia que constituísse a parte SignedDataA da mensagem no pressuposto que vai utilizar na prática RSA com chaves de 512 bytes ?
- b) Justifique porque é que B atesta neste round a autenticidade de A e da origem da mensagem em A, e que condições estão subjacentes à aceitação de Kab como uma chave simétrica para que B possa trocar mensagens confidenciais com A.
- c) Justifique se B até esta fase tem hipóteses de garantir a autenticidade de B.

Fase 2: One Way Authentication

B>A: B {tb, rb, IDA, ra+1, signedDataB, {Kba}KpubA}

tb: timestamp gerado por B IDA: identificador de A

Kba chave de sessão proposta por B

- d) Neste round o que proporia que constituísse a parte SignedDataB da mensagem (vai usar RSA com chaves de 512 bytes)
- e) Justifique porque é que A atesta neste *round* a autenticidade de B e da origem da mensagem em B, e que condições estão subjacentes à aceitação de Kba como uma chave simétrica para que A possa trocar mensagens confidenciais com B.
- f) Na sua opinião Kab e Kba poderão ser iguais ou não ? Que diferença faria ? Justifique.

Fase 3: Three-Way Authentication

A>B: { rb+1 }Kba

- g) Esta mensagem já não acrescenta nada ao protocolo de autenticação mútua ? Tente identificar o interesse desta mensagem no contexto da completude do protocolo de autenticação.
- h) Proponha outro formato para esta última mensagem ter o mesmo efeito mas sem que se use cifra simétrica nem as chaves Kba ou Kab. Justifique a resposta.

Questão 4)

Para responder a esta questão tem que considerar o contexto de realização do trabalho prático nº 1 e reflectir nas respostas a partir da sua implementação.

a) Considera que a sua implementação do protocolo de autenticação e distribuição de chaves de sessão para as salas de chat (seja com base no protocolo de N-S com criptografia simétrica ou com base em eventual variantes de extensão do tipo PBEncryption ou geração de chaves com OneTimePads (ou sementes patilhadas – correspondendo às implementações de diferentes grupos) está bem protegida contra ataques de "message replying" e de "message tampering"? Justifique a sua resposta com base no suporte e na concretização prática do suporte que concebeu e que vise garantir defesas contra esses ataques.

Sugestão: apresente a sua implementação o mais detalhada possível num diagrama temporal e diga concretamente como e onde se encontram as defesas contra esses ataques. (No caso de não o ter feito, proponha como deveria ser melhorada a especificação do seu trabalho para a defesa ser mais eficaz). Faça uso da terminologia habitual para representar as mensagens do protocolo.

b) A partir da especificação inicial (geral) do protocolo de N-S com criptografia assimétrica, diga como implementou na prática o protocolo (apresentando a especificação mais detalhada tal como foi realizada na prática), justificando as suas opções de concepção a partir da apresentação geral do protocolo de N-S.

Sugestão: apresente a sua implementação o mais detalhadamente possível num diagrama temporal. Faça uso da terminologia habitual para representar as mensagens do protocolo.

c) Um dos requisitos do trabalho é que a implementação fosse completamente configurável no que diz respeito à utilização da "suite" criptográfica a usar em cada sala. (Tal podia ser feito por configuração explícita ou por parâmetros passados aos programas, em vez da suite criptográfica ser estaticamente definida no código a compilar).

Com base na implementação prática que fez, um dos parâmetros que deveriam fazer parte daquela "suite" está associado ao modo de cifra simétrica, sendo assim o modo válido, definido para cada sessão. Assim, o modo de cifra é utilizado dentro de cada sessão, em toda a comunicação confidencial protegida por cifra simétrica.

Justifique em que medida o modo de cifra configurado para uma sessão tem ou não vantagens face aos outros modos de cifra que foram estudados e que poderiam ser utilizados, tendo em conta os padrões de comunicação que estão envolvidos nas sessões. A sua resposta deve ter em conta as características de toda a comunicação confidencial que possa existir numa sessão de chat, de acordo com os requisitos do trabalho.

Esta questão estende o contexto da discussão da alínea c)

Considere agora, no âmbito dos requisitos envolvidos no trabalho, que o ficheiro que pode ser enviado no âmbito das sessões poderia ser de qualquer tipo (texto, mp3, imagens, wma, wav, binários executáveis, etc). Suponha que a sua ferramenta de chat vai ser estendida no futuro para possuir *plugins* que processarão adequadamente as várias extensões, de um modo semelhante aos *plugins* ou suporte nativo de um browser WEB. Ou seja, os referidos plugins desencadearão imediatamente o processamento das diversas extensões do ficheiro transferido (por exemplo, ficheiros mp3 seriam automaticamente ouvidos em tempo real), ficheiros de texto poderiam continuar a ser copiados para disco, etc. Isso teria algum impacto na utilização dos modos de cifra associados às sessões ? Como proporia um suporte mais adequado para esta extensão ?