
Teoria da Computação
(Theoretical Computer Science)

Licenciatura em Engenharia Informática
Lecture Notes 2011-2012

Luis Caires

version of October 2, 2011

1 Review of Set Theory, Modeling with Sets

1. The basic goal of this chapter is to help you learn how to:

• model data spaces and data structures using basic Set Theory

• specify properties of states of a computing system and of elements
within a data structures using Logic

2. Sets, Everything is a Set and ZFC

Set theory was invented to provide a foundation to model ALL mathe-
matical concepts. In turn mathematical concepts can be used to model
most concepts of scientific and technological disciplines. Informatics
and computer science are not an exception. It turns out that set the-
ory and mathematical logic are particularly convenient tools to model
concepts in informatics and computer science.

Set theory and logic play for informatics the same basic role as mathe-
matical analysis (calculus) plays for disciplines such as physics or elec-
tronic engineering.

We will base our presentation on ZFC (Zermelo-Fraenkel-Cantor) Set
Theory, due to these three famous mathematicians. Set theory was
also developed by pioneers of computer science, for example, John Von
Neumann.

Set theory is based on the idea that ”Everything is a set”. Actually, this
means ”Everything can be modeled by a set”. ZFC models things such

1



as boolean values, natural numbers, relations, functions, databases, and
even algorithms, just based on the fundamental notion of set.

3. Emptyset

The empty set is the “simplest” set we may think of. It is the set
without elements. It is represented ∅.

4. Membership

The fundamental form of statement in set theory is

x ∈ y

which means “x is a member of y”, or “x belongs to y”.

5. Extensionality

The ”Extensionality Principle” of set theory means that sets are de-
termined uniquely by their elements. If two sets (finite or infinite)
have exactly the same elements, then they are actually the same set.
For example, we may think of two Java vectors with exactly the same
elements, without being the same vector. This is not the case with sets.

Practically, if we want to check if two sets A and B are actually the
same set, if is enough to check that every element of A also belongs to
B, and that every element of B also belongs to A.

A = B ⇔ (∀x.x ∈ A⇔ x ∈ B)

Extensionality also implies that there is just one empty set.

6. Subset

A set x is a subset of a set y if all elements of x belong to y. Formally,
we have

A ⊆ B ⇔ ∀x.(x ∈ A⇒ x ∈ B)

Note that A ⊆ A for all sets A, and ∅ ⊆ A for all sets A. Sometimes
we use A ⊂ B to say that A is a strict subset of B. A strict subset of
a set B is a subset that is not the trivial subset B.

A ⊂ B ⇔ (A ⊆ B) ∧ A 6= B

7. Enumeration

We can define sets in various ways.

2



The simplest way is by exhaustively enumerating all the elements in
the set you want to specify

BOOL , {FALSE ,TRUE}
DWARFS , {“Sneezy”, “Sleepy”, “Dopey”, “Doc”, “Happy”,

“Bashful”, “Grumpy”}
LAMPSTATES , {ON ,OFF}

Obviously, this only works for specifying finite sets.

When we define a set by enumerating its elements, the order or pre-
sentation does not matter! So, the following enumerations define the
same set:

{1, 2, 3}
{2, 1, 3}
{3, 1, 2}

8. Sets, Sets of Sets, Sets of Sets of Sets, ...

An set can also be an element of another set, and so on. This is useful
to describe structured entities, with several components

STACK , {0, {2, {3}}}
BOOLS , {∅, {TRUE}, {FALSE},BOOL}

9. Comprehension

We may define a new set using a logical property to select the elements
we want to collect. For example

The set of even natural numbers:

EVEN , {n ∈ NAT | n%2 = 0}

The set of non empty sets:

NOTEMPTY , {s | s 6= ∅}

The general form of the “naive” comprehension principle allows us to
define a new set given any property P expressed in the logic of set
theory.

{x | P (x)}
The logic of set theory is essentially first-order logic enriched with sev-
eral constants and operators that talk about sets, for example, the
empty set, the membership relation, equality, etc, etc.

3



10. Russell’s Paradox

In 1901 Bertrand Russell discovered an inconsistency of Cantor-Frege
set theory, by considering the set

R , {x | x 6∈ x}

Intuitively (so to speak), R is the set of all sets that are not members
of themselves. Being not a member of itself is a property that make
sense, in principle. We can think of many sets that enjoy this property,
for example, the empty set is not a member of itself. The set of boolean
values is not itself a boolean value.

Since there are so many examples of sets that are not members of
themselves, the set R as defined above, if it exists, must be not empty!
We may even naively think that R contains all the sets that exists,
since perhaps no set can be a member of itself.

But a paradox (or inconsistency) arises! Consider the meaning of the
proposition

R ∈ R
By definition of the “set” R, R ∈ R means that R 6∈ R.

Likewise, if we assume R 6∈ R, then it cannot be the case that R 6∈ R.
So R 6∈ R implies R ∈ R.

Even if surprised at first, we must conclude that, according to the
definition of R, we have

R ∈ R if and only if R 6∈ R

which is obviously an absurd.

Since we arrived to an absurd statement only by following the basic
rules of logic and the definition of R, Russell concluded, rightly, that
an expression like {x | x 6∈ x} must be meaningless, and cannot be used
to define a set. Such meaningless expressions should not be accepted
by the language of set theory.

11. Separation

To avoid confusions like Russell’s paradox, we will always use Compre-
hension in a refined form, using the Separation principle of ZFC.

The general idea of the separation principle is that we may define a
new set given any property P expressed in the logic of set theory, to
select elements from some already well defined set S.

{x ∈ S | P (x)}

4



So, according to this principle, we have the right to write

{n ∈ NAT | n%2 = 0}

a well defined set, but not an expression such as {s | s 6= ∅}.
Be careful to always use the separation principle when defining sets by
comprehension in this course!

12. Union

Besides Enumeration and Separation, we may define sets using the
Union operation

A ∪B
Intuitively A∪B denotes the set that contains exactly the elements in
A and B.

∀x.(x ∈ A ∪B)⇔ (x ∈ A) ∨ (x ∈ B)

Given a set of sets S we also define the union
⋃
S to mean the union

of all sets which are elements of S. More precisely, we have

∀x.(x ∈
⋃

S)⇔ ∃y.(y ∈ S ∧ x ∈ y)

13. Intersection / Disjointness

We may define sets using the Intersection operation

A ∩B

Intuitively A ∩ B denotes the set that contains exactly the elements
that belong both to A and to B.

∀x.(x ∈ A ∩B)⇔ (x ∈ A) ∧ (x ∈ B)

We may also see that

A ∩B = {x ∈ A | x ∈ B}

Given a set of sets S we also define the intersection
⋂
S to mean the

intersection of all sets which are elements of S. More precisely, we have

∀x.(x ∈
⋂

S)⇔ ∀y.(y ∈ S ⇒ x ∈ y)

Two sets A and B are said to be disjoint, in symbols A#B, if they do
not contain any common member. We have

A#B ⇔ (A ∩B) = ∅

5



We say that a collection S of sets is pairwise disjoint if all pairs of sets
in the collection are disjoint. More precisely

#S ⇔ ∀x.∀y.(x ∈ S ∧ y ∈ S ∧ x 6= y ⇒ x#y)

14. Relative Complement

Given a sets A and B, the relative complement A \ B denotes the set
of all elements of A that do not belong to B. Formally

A \B = {x ∈ A | x 6∈ B}

The “absolute complement” of a set A, written A is not definable in
ZFC, due to the Russell paradox.

15. Pairs

For structuring information we need some kind of construction to ag-
gregate data. The simplest one is the pair. We may form e.g., a pair
consisting of a team and the size of the team.

daltons , ({“jack”, “joe”, “averell”, “william”}, 4)

This corresponds to the well known notion of ordered pair. In set
theory, everything is a set, and in fact an ordered pair such as the one
above may be encoded in a set, using the scheme

(x, y) , {x, {x, y}}

This encoding of pairs is a variant of one Kuratowski proposed in 1921.

In practice, we will simply use the standard notation (x, y) to represent
ordered pairs.

16. Products

The product of to sets A and B, written A×B is the set of all ordered
pairs whose first element belongs to A and the second element belongs
to B.

We have

∀x.(x ∈ A×B)⇔ ∃a.∃b.(a ∈ A ∧ b ∈ B ∧ x = (a, b))

This operation is also called the “cartesian” product. The name ”carte-
sian” derives from the name of René Descartes, the mathematician-
philosoper that invented the related concept of cartesian plane, where
one conceive points with two coordinates (x, y) (even if it is best known
by his famous punchline “I think therefore I am” :-).

6



17. Fixed Sequences and n-tuples.

We may represent tuples of more than 2 elements by iterating the
product. For example STRING × NAT × STRING denotes the set of
all triples (a, b, c) where a ∈ STRING , b ∈ NAT and c ∈ STRING .

This idea of forming sets of tuples of any fixed arbitrary length works
by considering the operation A×B to be right associative, so A×B×C
is actually an abbreviation of A× (B × C).

In the same way a triple such as (a, b, c) is actually an abbreviation of
a pair (a, (b, c)).

So we can say, for example, that the first component of (a, b, c) is a and
the second component of (a, b, c) is (b, c).

Note however that a sequence such as ((a, b), c) is different from the
sequence (a, b, c). The first is a sequence of two elements, namely the
pair (a, b) and c, while the second sequence contains three elements, a,
b and c.

This reasoning applies to sequences of elements of arbitrary finite length.

18. Relations

A (binary) relation between elements of a set A and elements of a set B
is modeled as a subset of the product A×B. For example, the relation
SAMEPAR that holds between two natural numbers if and only if they
have the same parity (odd or even) is defined as follows

SAMEPAR , {(x, y) ∈ NAT × NAT | x%2 = y%2}

For example, (2, 8) ∈ SAMEPAR and (9, 1) ∈ SAMEPAR but (191, 256) 6∈
SAMEPAR.

When R is supposed to denote a relation, we write aR b for (a, b) ∈ R,
to make it more readable. For example, we may write 2 SAMEPAR 8.

Here some other examples of binary relations:

x FATHER OF y

n ANCESTOR OF y

n LINKED TO y

We can also define relations between more than 2 elements. For that,
we just iterate the constructions above, using products and n-tuples.
For example, a phone list may be seen as a relation

PHONELIST ⊂ FIRSTNAME × LASTNAME × PHONENUM

7



where we may set FIRSTNAME , STRING , LASTNAME , STRING
and PHONENUM , NAT . For example, we may consider

(“Luis”, “Caires”, 218402825) ∈ PHONELIST

Relations are an extremely important concept in informatics and com-
puter science. For example, it is pervasive in databases theory and
practice, which are based in the so called relational data model, in-
vented by Edgar Codd in 1970. Codd won the 1981 ACM Turing
Award for this key contribution to Informatics. The relational model
is the basis of most modern database systems, which use the query
language SQL. You will learn more about this in the Databases course.

19. PowerSet

We often need to define the set of all subsets of a given set. For example,
we may want to consider a specific phonelist, as defined above. To what
set does such phonelist belong? Well, a single phonelist is a set of triples
(each one representing a record) where each triple belongs to the set

FIRSTNAME × LASTNAME × PHONENUM

The set of all sets of records of these kind is denoted by the powerset

℘(FIRSTNAME × LASTNAME × PHONENUM )

In general, for any sets A and S we have that

A ∈ ℘(S)⇔ A ⊆ S

20. Functions

A function is modeled in set theory just as a special kind of relation,
a relation between arguments and the corresponding results. Since a
function cannot give two different results for the same argument, we
impose the following condition for a binary relation R to be considered
a function

function(R) , ∀(x, y) ∈ R, ∀(x′, y′) ∈ R . (x = x′)⇒ (y = y′)

This means that if F is a function such that (“luis”, a) ∈ F and
(“luis”, b) ∈ F then a = b, for example a = b = 45. There cannot
be two different pairs with the same first component!

We may think of F as the AGE function that assigns to a person its
(unique) age.

8



Since the result b of a function relation F is unique for any given argu-
ment, we denote such result by F (a) where a is the first element of the
pair (a, b) ∈ F . In the example above, we have, say F (“luis”) = 45.

So, note that, in the end, a function in set theory is nothing but a set
of ordered pairs!

To highlight the use of ordered pairs in the context of functions, we
also use the following alternative notation for ordered pairs

x 7→ y , (x, y)

The notation x 7→ y reads “x is mapped to y” (“x é aplicado em y”).

Given a function as a set (of ordered pairs) we also call such set (of
ordered pairs) the extension of the function.

For example, the extension of the NOT function on booleans may be
represented by:

NOT , {TRUE 7→ FALSE ,FALSE 7→ TRUE}

Then, we have NOT (TRUE ) = FALSE , and (FALSE ,TRUE ) ∈ NOT .

The set of all subsets of A×B which are functions is denoted by

A→ B

In other words,

A→ B , {R ∈ ℘(A×B) | function(R)}

We may then write, as usual

NOT ∈ BOOL→ BOOL

F ∈ A→ B means that F is a function that sends elements of A into
elements of B.

The set A (in A→ B) is called the domain of the function F , and B
the codomain of the function F .

There are several ways of defining functions in set theory. An conve-
nient way we will often use is to follow the pattern

F , {x 7→ y ∈ D × C | P (x, y)}

where P (x, y) is a logical condition between the argument x and the
result y, D is the domain and C is the codomain. For example,

DOUBLE , {x 7→ y ∈ NAT ×NAT | y = 2× x}

Then DOUBLE (2) = 4, etc...

9



21. Identity Function

For any set A there is the identity function on A, that maps each e ∈ A
into itself. The identity on A is noted IdA. We have

IdA = {a 7→ b ∈ A× A | a = b}

so that IdA(a) = a for all a ∈ A.

22. Projections

Projections are useful functions that may be used to select elements
from pairs and n-tuples.

Given any product A×B we define the functions

π1 , {((a, b) 7→ a) ∈ (A×B)× A | (a, b) ∈ A×B}

π2 , {((a, b) 7→ b) ∈ (A×B)×B | (a, b) ∈ A×B}

You may check that for the functions π1 and π2 just defined we have

π1 ∈ (A×B)→ A

π2 ∈ (A×B)→ B

For example, π1((“luis”, 45)) = “luis”, and π2((“luis”, 45)) = 45.

Projections generalize to n-tuples, for example, we may define the pro-
jections π3, π4, etc, which operate on triples, 4-tuples, etc.

1.1 Solved modeling problems

1. Model the following system with a structure.

A lamp with two states ON and OFF.

(a) Model the set of states of a lamp with a set SLAMP .

(b) Define a function in SLAMP → SLAMP that models the “turn
on” operation.

(c) Define a function in SLAMP → SLAMP that models the “turn
off” operation.

(d) Define a function in SLAMP → BOOL that returns the current
state of the lamp.

10



Solution The set of states:

SLAMP = {0, 1}

The function of (b)

turn on , {0 7→ 1, 1 7→ 1}

The function of (c)

turn off , {0 7→ 0, 1 7→ 0}

The function of (d)

status , {0 7→ FALSE , 1 7→ TRUE}

The structure modeling the system:

LAMP , (SLAMP , turn on, turn off , status)

2. Model the following system with a structure.

A counter keeps the count of cars inside a tunnel by keeping track if
cars entering the tunnel and cars exiting the tunnel.

(a) Model the set of states of a counter with a set SCOUNTER.

(b) Define a function in SCOUNTER → SCOUNTER that models
the “car enter” operation.

(c) Define a partial function in SCOUNTER → SCOUNTER that
models the “car exit” operation.

(d) Define a function in SCOUNTER → NAT that yields the number
of cars currently inside the tunnel.

Solution The set of states:

SCOUNTER , NAT

The function of (b)

car enter , {n 7→ m ∈ NAT × NAT | m = n+ 1}

The function of (c)

car exit , {n 7→ m ∈ NAT × NAT | n = m+ 1}

The function of (d)
cars inside , idNAT

The structure modeling the system:

COUNTER , (SCOUNTER, car enter , car exit , cars inside)

11



3. Model the following data with sets

(a) The set of all bank accounts, where each bank account includes
the owner name, the account number, and the balance.

(b) Define a function JOIN that given a set of bank accounts B with-
out repeated account numbers, and two account numbers in B,
yields a set of bank accounts identical to the given one, except
that the two given accounts are merged in a new account, under
the number of (and owner of) smallest account number.

(c) To what set belongs the function JOIN ?

Solution We may first define the sets, just for convenience,

NAME , STRING

ACCNUM , NAT

AMOUNT , NAT

(a) The set of all bank accounts

ACC , NAME × ACCNUM × AMOUNT

An example of a bank account

(“luis”, 1024, 80000000000)

We have (“luis”, 1024, 80000000000) ∈ ACC

(b) Any set of bank accounts B is a subset of ACC , in other words, a
member of ℘(ACC ).

For any set B ∈ ℘(ACC ) and account numbers n1 and n2 in B, we define
the set

merge(B, n1, n2)

,
{c ∈ B | π2(c) 6= n1 ∧ π2(c) 6= n2}
∪
{(o, n, b) ∈ ACC |

n = min(n1, n2) ∧ ∃b1.∃b2.(o, n1, b1) ∈ B ∧ (o, n2, b2) ∈ B ∧ b = b1 + b2}
The first part of the union contains the accounts in B that are not the
accounts with numbers n1 or n2.

The second part of the union contains the “joined” account.
The function JOIN can then be defined

JOIN , {(S, n1, n2) 7→M |M = merge(S, n1, n2)}
(c) We have

JOIN ∈ (℘(ACC )× ACCNUM × ACCNUM )→ ℘(ACC )

12



1.2 Inductive Definitions

We have discussed several ways to define sets, for example, by enumeration,
by comprehension, and by applying set operations to previously defined sets.

Another fundamental way of defining sets, particularly useful in infor-
matics and computer science, is the so-called inductive definition.

Induction is an extremely powerful technique, and plays in set theory a
role similar to the one recursion plays in programming (this remark is only
for those of you that already know what is a recursive function or recursive
procedure in a programming language).

Using induction, we define sets using an incremental construction method,
by adding in stages to previously built stages, as if we were building skyscrap-
ers from their foundations.

Actually, the basic idea is quite simple.
First, we enumerate a (finite) set of basic elements that must belong to

the set we want to define. We can think of these basic elements as some kind
of “seeds”.

You may imagine the “seeds” as being the “basic” elements of the set.
This elements will be created in stage 0.

Then, we add a new stage of elements to the set, these ”new” elements
must be calculated from the “seeds” according to some fixed rule. That will

13



be the second stage.
Then, we add a third stage of elements to the set, calculated from the

elements in level two, according to the same fixed rule.
And so on, and on ... indefinitely, to the infinite.
Obviously, we cannot in general implement the whole generation process

of the complete inductive set as an algorithm. But the mechanism of induc-
tion gives us for free the inductive set (which in general contains an infinite
number of elements) for granted automatically: we just have to say what are
the seeds, and what are the generation rules. Both the seeds and the rules
are finite in number, and we can easily write them down.

As a first, example, we consider an inductive definition of the set of
natural numbers (supposing that it was not yet defined). First the “seed”
(there is only one seed in this case, which is the simplest natural number,
namely 0). We thus define

=⇒ 0 ∈ N

This “seed” rule asserts that 0 is in the set N , and defines the first layer of
N , which contains just 0. We then need a ”construction” rule, that allows
us to add new natural numbers to the set, based on elements already defined
in previous layers. The rule looks like

x ∈ N =⇒ succ(x) ∈ N

We may read this construction rule as: If x is an element of the set N , then
succ(x) must also be an element of N . Here we have represented by succ(x)
the sucessor of x, e.g., succ(2) = 3.

The complete inductive definition of N is then as follows:

ZERO : =⇒ 0 ∈ N
SUCC : x ∈ N =⇒ succ(x) ∈ N

It contains two rules, one seed rule and one construction rule.
This inductive definition defines a set N , the set that contains all the

elements and only the elements that may be generated by the rules shown.
Note that we gave names to the rules in the inductive definition, the first

rule is called ZERO and the second rule is called SUCC . To name rules in
an inductive definitions, we may invent illustrative names, there is no fixed
recipe to give names to rules.

In general, an inductive definition may include any number of seed rules
and any number of construction rules, as we will see in forthcoming exam-
ples, although in the simple example we have only one seed rule and one
construction rule.

14



A fundamental property of any inductively defined set S is that ANY
element e ∈ S is always justified by a finite number of applications of con-
struction rules, always starting from one or more seed rules.

For example, we have 4 ∈ N .
What is the justification of the fact 4 ∈ N , according to the inductive

definition given above?
It is easy:

• We know that 0 ∈ N by the ZERO (seed) rule!

• We conclude 1 ∈ N by applying the SUCC (construction) rule to 0 ∈ N .

• We conclude 2 ∈ N by applying the SUCC (construction) rule to 3 ∈ N .

• We conclude 3 ∈ N by applying the SUCC (construction) rule to 2 ∈ N .

• We conclude 4 ∈ N by applying the SUCC (construction) rule to 3 ∈ N .

We will now go through a sequence of examples of inductive definitions
of sets.

Remember that in set theory, a data domain is a set, a function is a
set, a relation is a set, and we can also model properties as a set. We will
show below how the basic technique of inductive definitions can be used to
inductively define functions, relations, properties, data domains, and so on!

1. Example: Even numbers

Consider the set EVENN of even natural numbers. We have already
provided a definition of EVENN using comprehension. We now provide
an alternative inductive definition.

ZERO : =⇒ 0 ∈ EVENN
DUP : x ∈ EVEN =⇒ x+ 2 ∈ EVENN

2. Example: An inductively defined data type

Consider the set of all finite sequences of natural numbers SEQ. A
sequence may be represented in set theory by an n-tuple (see Section
1(17)).

Let us now define SEQ using an inductive definition (is is not really
possible to precisely define this set using either set enumeration or set
comprehension / separation).

EMPTY : =⇒ ∅ ∈ SEQ
ONEMORE : s ∈ SEQ ; x ∈ NAT =⇒ (x, s) ∈ SEQ

15



The (seed) rule EMPTY introduces the empty sequence (represented
here by the empty set) in the set SEQ .

The (construction) rule ONEMORE introduces a new sequence in the
set SEQ by adding an arbitrary natural number as the new first element
to an already introduced sequence.

Notice that the ONEMORE rule constructs a new element in the set
SEQ not only from some existing element s ∈ SEQ , but also from any
existing element n ∈ NAT .

For example, here is the justification that (3, 4, 2, 4) ∈ SEQ .

• We know that () ∈ SEQ by the EMPTY rule!

• We conclude (4, ∅) ∈ SEQ by applying the ONEMORE rule to
() ∈ SEQ and 4 ∈ NAT . Notice that (4, ∅) = (4).

• We conclude (2, (4, ∅)) ∈ SEQ by applying the ONEMORE rule
to (4, ∅) ∈ SEQ and 2 ∈ NAT . Notice that (2, (4, ∅)) = (2, 4).

• We conclude (4, 2, 4) ∈ SEQ by applying the ONEMORE rule to
(2, 4) ∈ SEQ and 4 ∈ NAT .

• We conclude (3, 4, 2, 4) ∈ SEQ by applying the ONEMORE rule
to (4, 2, 4) ∈ SEQ and 2 ∈ NAT .

3. General form of Induction Rules

The last example shows the general format of rules in an inductive
definition, which is as follows

e1 ∈ S1 ; e2 ∈ S2 ; · · · en ∈ Sn =⇒ e ∈ U

Each set Si is either the name of the set U being inductively defined,
or a set expression denoting any already defined set.

The conditions e1 ∈ S1, e2 ∈ S2, · · · , en ∈ Sn are called the premises of
the rule, and the e ∈ U is called the conclusion of the rule.

4. Example: Inductively defined functions

As we know a function is a set, a set of ordered pairs subject to the
“functional” condition (see Section 1 (20)).

We may define a function inductively as we have done above for sets.

Lets illustrate the idea with the Fibonacci function. The Fibonacci
function maps n ∈ NAT to the nth element in the Fibonacci sequence
of natural numbers. Remember (this has to do with rabbits :-) that the

16



Fibonacci sequence is defined as follows. The first and second element
in the sequence are both 1. From then on, the nth element in the
Fibonacci sequence is computed as the sum of the two previous ones.

1, 1, 2, 3, 5, 8, · · ·

The Fibonnaci function fib then gives

fib(0) = 1
fib(1) = 1
fib(2) = 2
fib(3) = 3
fib(4) = 5
etc...

To define a function (such as fib) as an inductive set, we need to define
a set of ordered pairs a 7→ b where a is an argument value and b is the
corresponding function result.

In the case of the fib function is particularly easy to take care of with
an inductive definition, because it is very clear what is the stage by
stage construction rules needed!

First we need to introduce the two first values. It is clear that none of
these values are computed from the other, they are both seeds, really.

=⇒ 0 7→ 1 ∈ fib
=⇒ 1 7→ 1 ∈ fib

Recall that the function fib we are defining is a set of ordered pairs.
The two rules above state that the set fib must contain the pairs 0 7→ 1
and 1 7→ 1. This means that fib(0) = 0 and fib(1) = 1. Actually, we
could have written the rules above as

=⇒ fib(0) = 1
=⇒ fib(1) = 1

since saying a 7→ b ∈ F is the same as saying F (a) = b.

Now we need a construction rule, to generate new values for the func-
tion fib from “previous” ones. For the Fibonacci function, the rule is
simply

n 7→ a ∈ fib ; n+ 1 7→ b ∈ fib =⇒ (n+ 2) 7→ (a+ b) ∈ fib

17



This says that if we already know that (at a previous stage) fib(n) = a
and fib(n+ 1) = b, then we can define that fib(n+ 2) = a+ b.

fib(n) = a; fib(n+ 1) = b =⇒ fib(n+ 2) = a+ b

We now summarize our inductive definition for the function fib, now
labeling the rules with names.

FIB0 : =⇒ fib(0) = 1
FIB1 : =⇒ fib(1) = 1
FIBNEXT : fib(n) = a; fib(n+ 1) = b =⇒ fib(n+ 2) = a+ b

We can for example check that fib(4) = 5 by writing down the justifi-
cation, in terms of the available induction rules.

(a) We conclude 0 7→ 1 ∈ fib by the FIB0 rule.

(b) We conclude 1 7→ 1 ∈ fib by the FIB1 rule.

(c) We conclude 2 7→ 2 ∈ fib by applying the FIBNEXT rule to
0 7→ 1 ∈ fib and 1 7→ 1 ∈ fib introduced in (a) and (b).

(d) We conclude 3 7→ 3 ∈ fib by applying the FIBNEXT rule to
1 7→ 1 ∈ fib and 2 7→ 2 ∈ fib introduced in (b) and (c).

(e) We conclude 4 7→ 5 ∈ fib by applying the FIBNEXT rule to
2 7→ 2 ∈ fib and 3 7→ 3 ∈ fib introduced in (c) and (d).

5. Example: The sumupto function

We seek an inductive definition of the sumupto function such that

sumupto(k) = 1 + 2 + 3 + ...+ k

for any k ∈ NAT . Notice that this “definition” is not a precise one,
and uses “hand waving” notation such as ”...”, etc.

We can provide a precise inductive definition as follows:

SUM0 : =⇒ 0 7→ 0 ∈ sumupto
SUMNEXT : n 7→ s ∈ sumupto =⇒ (n+ 1) 7→ (n+ 1 + k) ∈ sumupto

or, perhaps more readably,

SUM0 : =⇒ sumupto(0) = 0
SUMNEXT : sumupto(n) = s =⇒ sumupto(n+ 1) = n+ 1 + s

This inductive definition defines the intended function sumupto. For
example, we may check the justification that sumpupto(4) = 10

18



(a) We conclude 0 7→ 0 ∈ sumupto by the SUM0 rule.

(b) We conclude 1 7→ 1 ∈ sumupto by applying the SUMNEXT rule
to 0 7→ 0 ∈ sumupto introduced in (a).

(c) We conclude 2 7→ 3 ∈ sumupto by applying the SUMNEXT rule
to 1 7→ 1 ∈ sumupto introduced in (b).

(d) We conclude 3 7→ 6 ∈ sumupto by applying the SUMNEXT rule
to 2 7→ 3 ∈ sumupto introduced in (c).

(e) We conclude 4 7→ 10 ∈ sumupto by applying the SUMNEXT rule
to 3 7→ 6 ∈ sumupto introduced in (d).

6. Example: The len function

We seek an inductive definition of the let function, that given a sequence
of naturals, that is, an element of SEQ as defined above in 2, returns
the length of the sequence, for example:

len((1, 2, 3, 4)) = 4

So, we expect len ∈ SEQ→ NAT .

Here is our inductive definition for the function len.

LENEMPTY : =⇒ () 7→ 0 ∈ len
LENONEMORE : s 7→ l ∈ len =⇒ (h, s) 7→ (l + 1) ∈ len

or, perhaps more readably,

LENEMPTY : =⇒ len(()) = 0
LENONEMORE : len(s) = l ; h ∈ NAT = l =⇒ len(h, s) = (l + 1)

This definition inductively defines the intended function len. For ex-
ample, we may check the justification that len((4, 2, 4)) = 3.

Recall that (4, 2, 4) = (4, (2, (4, ())))! Then

(a) We conclude () 7→ 0 ∈ len by the LENEMPTY rule.

(b) We conclude (4) 7→ 1 ∈ len by applying the LENONEMORE rule
to () 7→ 0 ∈ len introduced in (a) and 4 ∈ NAT .

(c) We conclude (2, 4) 7→ 2 ∈ len by applying the LENONEMORE
rule to (4) 7→ 1 ∈ len introduced in (b) and 2 ∈ NAT .

(d) We conclude (4, 2, 4) 7→ 3 ∈ len by applying the LENONEMORE
rule to (2, 4) 7→ 2 ∈ len introduced in (c) and 4 ∈ NAT .

19



7. Top-down and Bottom-up justifications.

In the previous examples, we have given formal justifications of the
fact that an element e belongs to an inductive set I by showing the
sequence of rule applications that lead from the seed rules (the most
basic elements) to the final construction of e.

This style of presentation is called a bottom-up justification.

For example, the justification

(a) We conclude () 7→ 0 ∈ len by the LENEMPTY rule.

(b) We conclude (4) 7→ 1 ∈ len by applying the LENONEMORE rule
to () 7→ 0 ∈ len introduced in (a) and 4 ∈ NAT .

(c) We conclude (2, 4) 7→ 2 ∈ len by applying the LENONEMORE
rule to (4) 7→ 1 ∈ len introduced in (b) and 2 ∈ NAT .

(d) We conclude (4, 2, 4) 7→ 3 ∈ len by applying the LENONEMORE
rule to (2, 4) 7→ 2 ∈ len introduced in (c) and 4 ∈ NAT .

is bottom-up. It starts by the seed rule len(()) = 0 and then pro-
ceeds by rule application until the conclusion len((4, 2, 4)) = 3 of the
justification is reached.

However, we can also provide justifications the other way around.

We do that by starting from the element that we want to justify, and
proceeding backwards down to the seed rules.

For example, the following is the top-down version of the justification
above for len((4, 2, 4)) = 3.

(a) We conclude (4, 2, 4) 7→ 3 ∈ len because we can apply LENONEMORE
rule to (2, 4) 7→ 2 ∈ len and 4 ∈ NAT .

(b) We conclude (2, 4) 7→ 2 ∈ len because we can apply LENONEMORE
rule to (4) 7→ 1 ∈ len and 2 ∈ NAT .

(c) We conclude (4) 7→ 1 ∈ len because we can apply LENONEMORE
rule to () 7→ 0 ∈ len and 4 ∈ NAT .

(d) We have () 7→ 0 ∈ len by the LENEMPTY rule.

8. Example: The concat function

We seek an inductive definition of the concat function. The concat
function accepts as arguments two sequences and gives the sequence

20



obtained by concatenating them. For example,

concat((), (1, 9)) = (1, 9)
concat((3, 4), (4, 6)) = (3, 4, 4, 6)
concat((1), (2)) = (1, 2)

Clearly, we have concat ∈ (SEQ× SEQ)→ SEQ.

Here is an inductive definition for the function concat.

CEMPTY : s ∈ SEQ =⇒ ((), s) 7→ s ∈ concat
CSTEP : (s, v) 7→ r ∈ concat ; h ∈ NAT =⇒ ((h, s), v) 7→ (h, r) ∈ concat

or, perhaps more readably,

CEMPTY : s ∈ SEQ =⇒ concat((), s) = s
CSTEP : concat((s, v)) = r ; h ∈ NAT =⇒ concat(((h, s), v)) = (h, r)

Lets see the justification that concat((4, 2), (1, 4)) = (4, 2, 1, 4). Recall
that (4, 2) = (4, (2, ∅)), (4, 2, 1, 4) = (4, (2, (1, (4, ∅)))), etc !

This time, we write a top-down justification:

(a) We conclude concat((4, 2), (1, 4) = (4, 2, 1, 4) because we can ap-
ply the CSTEP rule to concat((2), (1, 4) = (2, 1, 4) and 4 ∈ NAT .

(b) We conclude concat((2), (1, 4) = (2, 1, 4) because we can apply the
CSTEP rule to concat((), (1, 4) = (1, 4) and 2 ∈ NAT .

(c) We conclude concat((), (1, 4) = (1, 4) by the the CEMPTY rule.

21


