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CHAPTER

1 Introduction

La dernière chose qu’on trouve en faisant un ouvrage est de savoir celle qu’il faut
mettre la première.
[The last thing you figure out in writing a book is what to put first.]

Pascal

1
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CHAPTER

2 Regular Expressions, Text
Normalization, Edit Distance

User: I am unhappy.

ELIZA: DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY

User: I need some help, that much seems certain.

ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

User: Perhaps I could learn to get along with my mother.

ELIZA: TELL ME MORE ABOUT YOUR FAMILY

User: My mother takes care of me.

ELIZA: WHO ELSE IN YOU FAMILY TAKES CARE OF YOU

User: My father.

ELIZA: YOUR FATHER

User: You are like my father in some ways.
Weizenbaum (1966)

The dialogue above is from ELIZA, an early natural language processing systemELIZA

that could carry on a limited conversation with a user by imitating the responses of
a Rogerian psychotherapist (Weizenbaum, 1966). ELIZA is a surprisingly simple
program that uses pattern matching to recognize phrases like “I need X” and translate
them into suitable outputs like “What would it mean to you if you got X?”. This
simple technique succeeds in this domain because ELIZA doesn’t actually need to
know anything to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is
one of the few dialogue genres where listeners can act as if they know nothing of the
world. Eliza’s mimicry of human conversation was remarkably successful: many
people who interacted with ELIZA came to believe that it really understood them
and their problems, many continued to believe in ELIZA’s abilities even after the
program’s operation was explained to them (Weizenbaum, 1976), and even today
such chatbots are a fun diversion.chatbots

Of course modern conversational agents are much more than a diversion; they
can answer questions, book flights, or find restaurants, functions for which they rely
on a much more sophisticated understanding of the user’s intent, as we will see in
Chapter 24. Nonetheless, the simple pattern-based methods that powered ELIZA
and other chatbots play a crucial role in natural language processing.

We’ll begin with the most important tool for describing text patterns: the regular
expression. Regular expressions can be used to specify strings we might want to
extract from a document, from transforming “I need X” in Eliza above, to defining
strings like $199 or $24.99 for extracting tables of prices from a document.

We’ll then turn to a set of tasks collectively called text normalization, in whichtext
normalization

regular expressions play an important part. Normalizing text means converting it
to a more convenient, standard form. For example, most of what we are going to
do with language relies on first separating out or tokenizing words from running
text, the task of tokenization. English words are often separated from each othertokenization

by whitespace, but whitespace is not always sufficient. New York and rock ’n’ roll
are sometimes treated as large words despite the fact that they contain spaces, while
sometimes we’ll need to separate I’m into the two words I and am. For processing
tweets or texts we’ll need to tokenize emoticons like :) or hashtags like #nlproc.
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Some languages, like Japanese, don’t have spaces between words, so word tokeniza-
tion becomes more difficult.

Another part of text normalization is lemmatization, the task of determininglemmatization

that two words have the same root, despite their surface differences. For example,
the words sang, sung, and sings are forms of the verb sing. The word sing is the
common lemma of these words, and a lemmatizer maps from all of these to sing.
Lemmatization is essential for processing morphologically complex languages like
Arabic. Stemming refers to a simpler version of lemmatization in which we mainlystemming

just strip suffixes from the end of the word. Text normalization also includes sen-
tence segmentation: breaking up a text into individual sentences, using cues likesentence

segmentation
periods or exclamation points.

Finally, we’ll need to compare words and other strings. We’ll introduce a metric
called edit distance that measures how similar two strings are based on the number
of edits (insertions, deletions, substitutions) it takes to change one string into the
other. Edit distance is an algorithm with applications throughout language process-
ing, from spelling correction to speech recognition to coreference resolution.

2.1 Regular Expressions

One of the unsung successes in standardization in computer science has been the
regular expression (RE), a language for specifying text search strings. This prac-regular

expression
tical language is used in every computer language, word processor, and text pro-
cessing tools like the Unix tools grep or Emacs. Formally, a regular expression is
an algebraic notation for characterizing a set of strings. They are particularly use-
ful for searching in texts, when we have a pattern to search for and a corpus ofcorpus

texts to search through. A regular expression search function will search through the
corpus, returning all texts that match the pattern. The corpus can be a single docu-
ment or a collection. For example, the Unix command-line tool grep takes a regular
expression and returns every line of the input document that matches the expression.

A search can be designed to return every match on a line, if there are more than
one, or just the first match. In the following examples we generally underline the
exact part of the pattern that matches the regular expression and show only the first
match. We’ll show regular expressions delimited by slashes but note that slashes are
not part of the regular expressions.

Regular expressions come in many variants. We’ll be describing extended regu-
lar expressions; different regular expression parsers may only recognize subsets of
these, or treat some expressions slightly differently. Using an online regular expres-
sion tester is a handy way to test out your expressions and explore these variations.

2.1.1 Basic Regular Expression Patterns
The simplest kind of regular expression is a sequence of simple characters. To search
for woodchuck, we type /woodchuck/. The expression /Buttercup/ matches any
string containing the substring Buttercup; grepwith that expression would return the
line I’m called little Buttercup. The search string can consist of a single character
(like /!/) or a sequence of characters (like /urgl/).

Regular expressions are case sensitive; lower case /s/ is distinct from upper
case /S/ (/s/ matches a lower case s but not an upper case S). This means that
the pattern /woodchucks/ will not match the string Woodchucks. We can solve this
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RE Example Patterns Matched
/woodchucks/ “interesting links to woodchucks and lemurs”
/a/ “Mary Ann stopped by Mona’s”
/!/ “You’ve left the burglar behind again!” said Nori

Figure 2.1 Some simple regex searches.

problem with the use of the square braces [ and ]. The string of characters inside the
braces specifies a disjunction of characters to match. For example, Fig. 2.2 shows
that the pattern /[wW]/ matches patterns containing either w or W.

RE Match Example Patterns
/[wW]oodchuck/ Woodchuck or woodchuck “Woodchuck”
/[abc]/ ‘a’, ‘b’, or ‘c’ “In uomini, in soldati”
/[1234567890]/ any digit “plenty of 7 to 5”

Figure 2.2 The use of the brackets [] to specify a disjunction of characters.

The regular expression /[1234567890]/ specifies any single digit. While such
classes of characters as digits or letters are important building blocks in expressions,
they can get awkward (e.g., it’s inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean “any capital letter”). In cases where there is a well-defined sequence asso-
ciated with a set of characters, the brackets can be used with the dash (-) to specify
any one character in a range. The pattern /[2-5]/ specifies any one of the charac-range

ters 2, 3, 4, or 5. The pattern /[b-g]/ specifies one of the characters b, c, d, e, f, or
g. Some other examples are shown in Fig. 2.3.

RE Match Example Patterns Matched
/[A-Z]/ an upper case letter “we should call it ‘Drenched Blossoms’ ”
/[a-z]/ a lower case letter “my beans were impatient to be hoed!”
/[0-9]/ a single digit “Chapter 1: Down the Rabbit Hole”

Figure 2.3 The use of the brackets [] plus the dash - to specify a range.

The square braces can also be used to specify what a single character cannot be,
by use of the caret ˆ. If the caret ˆ is the first symbol after the open square brace [,
the resulting pattern is negated. For example, the pattern /[ˆa]/ matches any single
character (including special characters) except a. This is only true when the caret
is the first symbol after the open square brace. If it occurs anywhere else, it usually
stands for a caret; Fig. 2.4 shows some examples.

RE Match (single characters) Example Patterns Matched
/[ˆA-Z]/ not an upper case letter “Oyfn pripetchik”
/[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
/[ˆ.]/ not a period “our resident Djinn”
/[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now”
/aˆb/ the pattern ‘aˆb’ “look up aˆ b now”

Figure 2.4 The caret ˆ for negation or just to mean ˆ. See below re: the backslash for escaping the period.

How can we talk about optional elements, like an optional s in woodchuck and
woodchucks? We can’t use the square brackets, because while they allow us to say
“s or S”, they don’t allow us to say “s or nothing”. For this we use the question mark
/?/, which means “the preceding character or nothing”, as shown in Fig. 2.5.
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RE Match Example Patterns Matched
/woodchucks?/ woodchuck or woodchucks “woodchuck”
/colou?r/ color or colour “color”

Figure 2.5 The question mark ? marks optionality of the previous expression.

We can think of the question mark as meaning “zero or one instances of the
previous character”. That is, it’s a way of specifying how many of something that
we want, something that is very important in regular expressions. For example,
consider the language of certain sheep, which consists of strings that look like the
following:

baa!
baaa!
baaaa!
baaaaa!
. . .

This language consists of strings with a b, followed by at least two a’s, followed
by an exclamation point. The set of operators that allows us to say things like “some
number of as” are based on the asterisk or *, commonly called the Kleene * (gen-Kleene *

erally pronounced “cleany star”). The Kleene star means “zero or more occurrences
of the immediately previous character or regular expression”. So /a*/ means “any
string of zero or more as”. This will match a or aaaaaa, but it will also match Off
Minor since the string Off Minor has zero a’s. So the regular expression for matching
one or more a is /aa*/, meaning one a followed by zero or more as. More complex
patterns can also be repeated. So /[ab]*/ means “zero or more a’s or b’s” (not
“zero or more right square braces”). This will match strings like aaaa or ababab or
bbbb.

For specifying multiple digits (useful for finding prices) we can extend /[0-9]/,
the regular expression for a single digit. An integer (a string of digits) is thus
/[0-9][0-9]*/. (Why isn’t it just /[0-9]*/?)

Sometimes it’s annoying to have to write the regular expression for digits twice,
so there is a shorter way to specify “at least one” of some character. This is the
Kleene +, which means “one or more occurrences of the immediately precedingKleene +

character or regular expression”. Thus, the expression /[0-9]+/ is the normal way
to specify “a sequence of digits”. There are thus two ways to specify the sheep
language: /baaa*!/ or /baa+!/.

One very important special character is the period (/./), a wildcard expression
that matches any single character (except a carriage return), as shown in Fig. 2.6.

RE Match Example Matches
/beg.n/ any character between beg and n begin, beg’n, begun

Figure 2.6 The use of the period . to specify any character.

The wildcard is often used together with the Kleene star to mean “any string of
characters”. For example, suppose we want to find any line in which a particular
word, for example, aardvark, appears twice. We can specify this with the regular
expression /aardvark.*aardvark/.

Anchors are special characters that anchor regular expressions to particular placesanchors

in a string. The most common anchors are the caret ˆ and the dollar sign $. The caret
ˆ matches the start of a line. The pattern /ˆThe/ matches the word The only at the
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start of a line. Thus, the caret ˆ has three uses: to match the start of a line, to in-
dicate a negation inside of square brackets, and just to mean a caret. (What are the
contexts that allow grep or Python to know which function a given caret is supposed
to have?) The dollar sign $ matches the end of a line. So the pattern  $ is a useful
pattern for matching a space at the end of a line, and /ˆThe dog\.$/ matches a
line that contains only the phrase The dog. (We have to use the backslash here since
we want the . to mean “period” and not the wildcard.)

RE Match
ˆ start of line
\$ end of line
\b word boundary
\B non-word boundary

Figure 2.7 Anchors in regular expressions.

There are also two other anchors: \b matches a word boundary, and \B matches
a non-boundary. Thus, /\bthe\b/ matches the word the but not the word other.
More technically, a “word” for the purposes of a regular expression is defined as any
sequence of digits, underscores, or letters; this is based on the definition of “words”
in programming languages. For example, /\b99\b/ will match the string 99 in
There are 99 bottles of beer on the wall (because 99 follows a space) but not 99 in
There are 299 bottles of beer on the wall (since 99 follows a number). But it will
match 99 in $99 (since 99 follows a dollar sign ($), which is not a digit, underscore,
or letter).

2.1.2 Disjunction, Grouping, and Precedence
Suppose we need to search for texts about pets; perhaps we are particularly interested
in cats and dogs. In such a case, we might want to search for either the string cat or
the string dog. Since we can’t use the square brackets to search for “cat or dog” (why
can’t we say /[catdog]/?), we need a new operator, the disjunction operator, alsodisjunction

called the pipe symbol |. The pattern /cat|dog/ matches either the string cat or
the string dog.

Sometimes we need to use this disjunction operator in the midst of a larger se-
quence. For example, suppose I want to search for information about pet fish for
my cousin David. How can I specify both guppy and guppies? We cannot simply
say /guppy|ies/, because that would match only the strings guppy and ies. This
is because sequences like guppy take precedence over the disjunction operator |.precedence

To make the disjunction operator apply only to a specific pattern, we need to use the
parenthesis operators ( and ). Enclosing a pattern in parentheses makes it act like
a single character for the purposes of neighboring operators like the pipe | and the
Kleene*. So the pattern /gupp(y|ies)/ would specify that we meant the disjunc-
tion only to apply to the suffixes y and ies.

The parenthesis operator ( is also useful when we are using counters like the
Kleene*. Unlike the | operator, the Kleene* operator applies by default only to
a single character, not to a whole sequence. Suppose we want to match repeated
instances of a string. Perhaps we have a line that has column labels of the form
Column 1 Column 2 Column 3. The expression /Column [0-9]+ */ will not
match any number of columns; instead, it will match a single column followed by
any number of spaces! The star here applies only to the space  that precedes it,
not to the whole sequence. With the parentheses, we could write the expression
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/(Column [0-9]+ *)*/ to match the word Column, followed by a number and
optional spaces, the whole pattern repeated zero or more times.

This idea that one operator may take precedence over another, requiring us to
sometimes use parentheses to specify what we mean, is formalized by the operator
precedence hierarchy for regular expressions. The following table gives the orderoperator

precedence
of RE operator precedence, from highest precedence to lowest precedence.

Parenthesis ()

Counters * + ? {}

Sequences and anchors the ˆmy end$

Disjunction |

Thus, because counters have a higher precedence than sequences,
/the*/ matches theeeee but not thethe. Because sequences have a higher prece-
dence than disjunction, /the|any/ matches the or any but not thany or theny.

Patterns can be ambiguous in another way. Consider the expression /[a-z]*/

when matching against the text once upon a time. Since /[a-z]*/ matches zero or
more letters, this expression could match nothing, or just the first letter o, on, onc,
or once. In these cases regular expressions always match the largest string they can;
we say that patterns are greedy, expanding to cover as much of a string as they can.greedy

There are, however, ways to enforce non-greedy matching, using another mean-non-greedy

ing of the ? qualifier. The operator *? is a Kleene star that matches as little text as*?

possible. The operator +? is a Kleene plus that matches as little text as possible.+?

2.1.3 A Simple Example
Suppose we wanted to write a RE to find cases of the English article the. A simple
(but incorrect) pattern might be:

/the/

One problem is that this pattern will miss the word when it begins a sentence and
hence is capitalized (i.e., The). This might lead us to the following pattern:

/[tT]he/

But we will still incorrectly return texts with the embedded in other words (e.g.,
other or theology). So we need to specify that we want instances with a word bound-
ary on both sides:

/\b[tT]he\b/

Suppose we wanted to do this without the use of /\b/. We might want this since
/\b/ won’t treat underscores and numbers as word boundaries; but we might want
to find the in some context where it might also have underlines or numbers nearby
(the or the25). We need to specify that we want instances in which there are no
alphabetic letters on either side of the the:

/[ˆa-zA-Z][tT]he[ˆa-zA-Z]/

But there is still one more problem with this pattern: it won’t find the word the
when it begins a line. This is because the regular expression [ˆa-zA-Z], which
we used to avoid embedded instances of the, implies that there must be some single
(although non-alphabetic) character before the the. We can avoid this by specify-
ing that before the the we require either the beginning-of-line or a non-alphabetic
character, and the same at the end of the line:
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/(ˆ|[ˆa-zA-Z])[tT]he([ˆa-zA-Z]|$)/

The process we just went through was based on fixing two kinds of errors: false
positives, strings that we incorrectly matched like other or there, and false nega-false positives

tives, strings that we incorrectly missed, like The. Addressing these two kinds offalse negatives

errors comes up again and again in implementing speech and language processing
systems. Reducing the overall error rate for an application thus involves two antag-
onistic efforts:

• Increasing precision (minimizing false positives)
• Increasing recall (minimizing false negatives)

We’ll come back to precision and recall with more precise definitions in Chapter 4.

2.1.4 More Operators
Figure 2.8 shows some aliases for common ranges, which can be used mainly to
save typing. Besides the Kleene * and Kleene + we can also use explicit numbers as
counters, by enclosing them in curly brackets. The regular expression /{3}/ means
“exactly 3 occurrences of the previous character or expression”. So /a\.{24}z/

will match a followed by 24 dots followed by z (but not a followed by 23 or 25 dots
followed by a z).

RE Expansion Match First Matches
\d [0-9] any digit Party of 5
\D [ˆ0-9] any non-digit Blue moon
\w [a-zA-Z0-9_] any alphanumeric/underscore Daiyu
\W [ˆ\w] a non-alphanumeric !!!!
\s [ \r\t\n\f] whitespace (space, tab)
\S [ˆ\s] Non-whitespace in Concord

Figure 2.8 Aliases for common sets of characters.

A range of numbers can also be specified. So /{n,m}/ specifies from n to m
occurrences of the previous char or expression, and /{n,}/ means at least n occur-
rences of the previous expression. REs for counting are summarized in Fig. 2.9.

RE Match
* zero or more occurrences of the previous char or expression
+ one or more occurrences of the previous char or expression
? exactly zero or one occurrence of the previous char or expression
{n} n occurrences of the previous char or expression
{n,m} from n to m occurrences of the previous char or expression
{n,} at least n occurrences of the previous char or expression
{,m} up to m occurrences of the previous char or expression

Figure 2.9 Regular expression operators for counting.

Finally, certain special characters are referred to by special notation based on the
backslash (\) (see Fig. 2.10). The most common of these are the newline characternewline

\n and the tab character \t. To refer to characters that are special themselves (like
., *, [, and \), precede them with a backslash, (i.e., /\./, /\*/, /\[/, and /\\/).
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RE Match First Patterns Matched
\* an asterisk “*” “K*A*P*L*A*N”
\. a period “.” “Dr. Livingston, I presume”
\? a question mark “Why don’t they come and lend a hand?”
\n a newline
\t a tab

Figure 2.10 Some characters that need to be backslashed.

2.1.5 A More Complex Example
Let’s try out a more significant example of the power of REs. Suppose we want to
build an application to help a user buy a computer on the Web. The user might want
“any machine with at least 6 GHz and 500 GB of disk space for less than $1000”.
To do this kind of retrieval, we first need to be able to look for expressions like 6
GHz or 500 GB or Mac or $999.99. In the rest of this section we’ll work out some
simple regular expressions for this task.

First, let’s complete our regular expression for prices. Here’s a regular expres-
sion for a dollar sign followed by a string of digits:

/$[0-9]+/

Note that the $ character has a different function here than the end-of-line function
we discussed earlier. Most regular expression parsers are smart enough to realize
that $ here doesn’t mean end-of-line. (As a thought experiment, think about how
regex parsers might figure out the function of $ from the context.)

Now we just need to deal with fractions of dollars. We’ll add a decimal point
and two digits afterwards:

/$[0-9]+\.[0-9][0-9]/

This pattern only allows $199.99 but not $199. We need to make the cents
optional and to make sure we’re at a word boundary:

/(ˆ|\W)$[0-9]+(\.[0-9][0-9])?\b/

One last catch! This pattern allows prices like $199999.99 which would be far
too expensive! We need to limit the dollars:

/(ˆ|\W)$[0-9]{0,3}(\.[0-9][0-9])?\b/

How about disk space? We’ll need to allow for optional fractions again (5.5 GB);
note the use of ? for making the final s optional, and the of / */ to mean “zero or
more spaces” since there might always be extra spaces lying around:

/\b[0-9]+(\.[0-9]+)? *(GB|[Gg]igabytes?)\b/

Modifying this regular expression so that it only matches more than 500 GB is
left as an exercise for the reader.

2.1.6 Substitution, Capture Groups, and ELIZA
An important use of regular expressions is in substitutions. For example, the substi-substitution

tution operator s/regexp1/pattern/ used in Python and in Unix commands like
vim or sed allows a string characterized by a regular expression to be replaced by
another string:
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s/colour/color/

It is often useful to be able to refer to a particular subpart of the string matching
the first pattern. For example, suppose we wanted to put angle brackets around all
integers in a text, for example, changing the 35 boxes to the <35> boxes. We’d
like a way to refer to the integer we’ve found so that we can easily add the brackets.
To do this, we put parentheses ( and ) around the first pattern and use the number
operator \1 in the second pattern to refer back. Here’s how it looks:

s/([0-9]+)/<\1>/

The parenthesis and number operators can also specify that a certain string or
expression must occur twice in the text. For example, suppose we are looking for
the pattern “the Xer they were, the Xer they will be”, where we want to constrain
the two X’s to be the same string. We do this by surrounding the first X with the
parenthesis operator, and replacing the second X with the number operator \1, as
follows:

/the (.*)er they were, the \1er they will be/

Here the \1 will be replaced by whatever string matched the first item in paren-
theses. So this will match the bigger they were, the bigger they will be but not the
bigger they were, the faster they will be.

This use of parentheses to store a pattern in memory is called a capture group.capture group

Every time a capture group is used (i.e., parentheses surround a pattern), the re-
sulting match is stored in a numbered register. If you match two different sets ofregister

parentheses, \2 means whatever matched the second capture group. Thus

/the (.*)er they (.*), the \1er we \2/

will match the faster they ran, the faster we ran but not the faster they ran, the faster
we ate. Similarly, the third capture group is stored in \3, the fourth is \4, and so on.

Parentheses thus have a double function in regular expressions; they are used to
group terms for specifying the order in which operators should apply, and they are
used to capture something in a register. Occasionally we might want to use parenthe-
ses for grouping, but don’t want to capture the resulting pattern in a register. In that
case we use a non-capturing group, which is specified by putting the commandsnon-capturing

group
?: after the open paren, in the form (?: pattern ).

/(?:some|a few) (people|cats) like some \1/

will match some cats like some cats but not some cats like some a few.
Substitutions and capture groups are very useful in implementing simple chat-

bots like ELIZA (Weizenbaum, 1966). Recall that ELIZA simulates a Rogerian
psychologist by carrying on conversations like the following:

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED

ELIZA works by having a series or cascade of regular expression substitutions
each of which matches and changes some part of the input lines. Input lines are
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first uppercased. The first substitutions then change all instances of MY to YOUR,
and I’M to YOU ARE, and so on. The next set of substitutions matches and replaces
other patterns in the input. Here are some examples:

s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/

s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions can apply to a given input, substitutions are assigned
a rank and applied in order. Creating patterns is the topic of Exercise 2.3, and we
return to the details of the ELIZA architecture in Chapter 24.

2.1.7 Lookahead Assertions
Finally, there will be times when we need to predict the future: look ahead in the
text to see if some pattern matches, but not advance the match cursor, so that we can
then deal with the pattern if it occurs.

These lookahead assertions make use of the (? syntax that we saw in the previ-lookahead

ous section for non-capture groups. The operator (?= pattern) is true if pattern
occurs, but is zero-width, i.e. the match pointer doesn’t advance. The operatorzero-width

(?! pattern) only returns true if a pattern does not match, but again is zero-width
and doesn’t advance the cursor. Negative lookahead is commonly used when we
are parsing some complex pattern but want to rule out a special case. For example
suppose we want to match, at the beginning of a line, any single word that doesn’t
start with “Volcano”. We can use negative lookahead to do this:

/ˆ(?!Volcano)[A-Za-z]+/

2.2 Words

Before we talk about processing words, we need to decide what counts as a word.
Let’s start by looking at one particular corpus (plural corpora), a computer-readablecorpus

corpora collection of text or speech. For example the Brown corpus is a million-word col-
lection of samples from 500 written English texts from different genres (newspa-
per, fiction, non-fiction, academic, etc.), assembled at Brown University in 1963–64
(Kučera and Francis, 1967). How many words are in the following Brown sentence?

He stepped out into the hall, was delighted to encounter a water brother.

This sentence has 13 words if we don’t count punctuation marks as words, 15
if we count punctuation. Whether we treat period (“.”), comma (“,”), and so on as
words depends on the task. Punctuation is critical for finding boundaries of things
(commas, periods, colons) and for identifying some aspects of meaning (question
marks, exclamation marks, quotation marks). For some tasks, like part-of-speech
tagging or parsing or speech synthesis, we sometimes treat punctuation marks as if
they were separate words.

The Switchboard corpus of American English telephone conversations between
strangers was collected in the early 1990s; it contains 2430 conversations averaging
6 minutes each, totaling 240 hours of speech and about 3 million words (Godfrey
et al., 1992). Such corpora of spoken language don’t have punctuation but do intro-
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duce other complications with regard to defining words. Let’s look at one utterance
from Switchboard; an utterance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment

filled pause we consider these to be words? Again, it depends on the application. If we are
building a speech transcription system, we might want to eventually strip out the
disfluencies.

But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same
word? These are lumped together in some tasks (speech recognition), while for part-
of-speech or named-entity tagging, capitalization is a useful feature and is retained.

How about inflected forms like cats versus cat? These two words have the same
lemma cat but are different wordforms. A lemma is a set of lexical forms havinglemma

the same stem, the same major part-of-speech, and the same word sense. The word-
form is the full inflected or derived form of the word. For morphologically complexwordform

languages like Arabic, we often need to deal with lemmatization. For many tasks in
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to
distinguish two ways of talking about words. Types are the number of distinct wordsword type

in a corpus; if the set of words in the vocabulary is V , the number of types is the
vocabulary size |V |. Tokens are the total number N of running words. If we ignoreword token

punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally
referring to word types.

Corpus Tokens = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

Figure 2.11 Rough numbers of types and tokens for some English language corpora. The
largest, the Google N-grams corpus, contains 13 million types, but this count only includes
types appearing 40 or more times, so the true number would be much larger.

Fig. 2.11 shows the rough numbers of types and tokens computed from some
popular English corpora. The larger the corpora we look at, the more word types
we find, and in fact this relationship between the number of types |V | and number
of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978)Herdan’s Law

Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown
in Eq. 2.1, where k and β are positive constants, and 0< β < 1.

|V | = kNβ (2.1)
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The value of β depends on the corpus size and the genre, but at least for the large
corpora in Fig. 2.11, β ranges from .67 to .75. Roughly then we can say that the
vocabulary size for a text goes up significantly faster than the square root of its
length in words.

Another measure of the number of words in the language is the number of lem-
mas instead of wordform types. Dictionaries can help in giving lemma counts; dic-
tionary entries or boldface forms are a very rough upper bound on the number of
lemmas (since some lemmas have multiple boldface forms). The 1989 edition of the
Oxford English Dictionary had 615,000 entries.

2.3 Corpora

Words don’t appear out of nowhere. Any particular piece of text that we study
is produced by one or more specific speakers or writers, in a specific dialect of a
specific language, at a specific time, in a specific place, for a specific function.

Perhaps the most important dimension of variation is the language. NLP algo-
rithms are most useful when they apply across many languages. The world has 7097
languages at the time of this writing, according to the online Ethnologue catalog
(Simons and Fennig, 2018). It is important to test algorithms on more than one lan-
guage, and particularly on languages with different properties; by contrast there is
an unfortunate current tendency for NLP algorithms to be developed or tested just
on English (Bender, 2019). Even when algorithms are developed beyond English,
they tend to be developed for the official languages of large industrialized nations
(Chinese, Spanish, Japanese, German etc.), but we don’t want to limit tools to just
these few languages. Furthermore, most languages also have multiple varieties, of-
ten spoken in different regions or by different social groups. Thus, for example, if
we’re processing text that uses features of African American Language (AAL) —AAL

the name for the many variations of language used by millions of people in African
American communities (King 2020) — we must use NLP tools that function with
features of those varieties. Twitter posts might use features often used by speakers of
African American Language, such as constructions like iont (I don’t in Mainstream
American English (MAE)), or talmbout corresponding to MAE talking about, bothMAE

examples that influence word segmentation (Blodgett et al. 2016, Jones 2015).
It’s also quite common for speakers or writers to use multiple languages in a

single communicative act, a phenomenon called code switching. Code switch-code switching

ing is enormously common across the world; here are examples showing Spanish
and (transliterated) Hindi code switching with English (Solorio et al. 2014, Jurgens
et al. 2017):

(2.2) Por primera vez veo a @username actually being hateful! it was beautiful:)
[For the first time I get to see @username actually being hateful! it was
beautiful:) ]

(2.3) dost tha or ra- hega ... dont wory ... but dherya rakhe
[“he was and will remain a friend ... don’t worry ... but have faith”]

Another dimension of variation is the genre. The text that our algorithms must
process might come from newswire, fiction or non-fiction books, scientific articles,
Wikipedia, or religious texts. It might come from spoken genres like telephone
conversations, business meetings, police body-worn cameras, medical interviews,
or transcripts of television shows or movies. It might come from work situations
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like doctors’ notes, legal text, or parliamentary or congressional proceedings.
Text also reflects the demographic characteristics of the writer (or speaker): their

age, gender, race, socioeconomic class can all influence the linguistic properties of
the text we are processing.

And finally, time matters too. Language changes over time, and for some lan-
guages we have good corpora of texts from different historical periods.

Because language is so situated, when developing computational models for lan-
guage processing from a corpus, it’s important to consider who produced the lan-
guage, in what context, for what purpose. How can a user of a dataset know all these
details? The best way is for the corpus creator to build a datasheet (Gebru et al.,datasheet

2020) or data statement (Bender and Friedman, 2018) for each corpus. A datasheet
specifies properties of a dataset like:

Motivation: Why was the corpus collected, by whom, and who funded it?
Situation: When and in what situation was the text written/spoken? For example,

was there a task? Was the language originally spoken conversation, edited
text, social media communication, monologue vs. dialogue?

Language variety: What language (including dialect/region) was the corpus in?
Speaker demographics: What was, e.g., age or gender of the authors of the text?
Collection process: How big is the data? If it is a subsample how was it sampled?

Was the data collected with consent? How was the data pre-processed, and
what metadata is available?

Annotation process: What are the annotations, what are the demographics of the
annotators, how were they trained, how was the data annotated?

Distribution: Are there copyright or other intellectual property restrictions?

2.4 Text Normalization

Before almost any natural language processing of a text, the text has to be normal-
ized. At least three tasks are commonly applied as part of any normalization process:

1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences

In the next sections we walk through each of these tasks.

2.4.1 Unix Tools for Crude Tokenization and Normalization
Let’s begin with an easy, if somewhat naive version of word tokenization and nor-
malization (and frequency computation) that can be accomplished for English solely
in a single UNIX command-line, inspired by Church (1994). We’ll make use of some
Unix commands: tr, used to systematically change particular characters in the in-
put; sort, which sorts input lines in alphabetical order; and uniq, which collapses
and counts adjacent identical lines.

For example let’s begin with the ‘complete words’ of Shakespeare in one textfile,
sh.txt. We can use tr to tokenize the words by changing every sequence of non-
alphabetic characters to a newline (’A-Za-z’ means alphabetic, the -c option com-
plements to non-alphabet, and the -s option squeezes all sequences into a single
character):
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tr -sc ’A-Za-z’ ’\n’ < sh.txt

The output of this command will be:

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...

Now that there is one word per line, we can sort the lines, and pass them to uniq

-c which will collapse and count them:

tr -sc ’A-Za-z’ ’\n’ < sh.txt | sort | uniq -c

with the following output:

1945 A

72 AARON

19 ABBESS

25 Aaron

6 Abate

1 Abates

5 Abbess

6 Abbey

3 Abbot

...

Alternatively, we can collapse all the upper case to lower case:

tr -sc ’A-Za-z’ ’\n’ < sh.txt | tr A-Z a-z | sort | uniq -c

whose output is

14725 a

97 aaron

1 abaissiez

10 abandon

2 abandoned

2 abase

1 abash

14 abate

3 abated

3 abatement

...

Now we can sort again to find the frequent words. The -n option to sort means
to sort numerically rather than alphabetically, and the -r option means to sort in
reverse order (highest-to-lowest):

tr -sc ’A-Za-z’ ’\n’ < sh.txt | tr A-Z a-z | sort | uniq -c | sort -n -r

The results show that the most frequent words in Shakespeare, as in any other
corpus, are the short function words like articles, pronouns, prepositions:
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27378 the

26084 and

22538 i

19771 to

17481 of

14725 a

13826 you

12489 my

11318 that

11112 in

...

Unix tools of this sort can be very handy in building quick word count statistics
for any corpus.

2.4.2 Word Tokenization

The simple UNIX tools above were fine for getting rough word statistics but more
sophisticated algorithms are generally necessary for tokenization, the task of seg-tokenization

menting running text into words.
While the Unix command sequence just removed all the numbers and punctu-

ation, for most NLP applications we’ll need to keep these in our tokenization. We
often want to break off punctuation as a separate token; commas are a useful piece of
information for parsers, periods help indicate sentence boundaries. But we’ll often
want to keep the punctuation that occurs word internally, in examples like m.p.h.,
Ph.D., AT&T, and cap’n. Special characters and numbers will need to be kept in
prices ($45.55) and dates (01/02/06); we don’t want to segment that price into sep-
arate tokens of “45” and “55”. And there are URLs (http://www.stanford.edu),
Twitter hashtags (#nlproc), or email addresses (someone@cs.colorado.edu).

Number expressions introduce other complications as well; while commas nor-
mally appear at word boundaries, commas are used inside numbers in English, every
three digits: 555,500.50. Languages, and hence tokenization requirements, differ
on this; many continental European languages like Spanish, French, and German, by
contrast, use a comma to mark the decimal point, and spaces (or sometimes periods)
where English puts commas, for example, 555 500,50.

A tokenizer can also be used to expand clitic contractions that are marked byclitic

apostrophes, for example, converting what’re to the two tokens what are, and
we’re to we are. A clitic is a part of a word that can’t stand on its own, and can only
occur when it is attached to another word. Some such contractions occur in other
alphabetic languages, including articles and pronouns in French (j’ai, l’homme).

Depending on the application, tokenization algorithms may also tokenize mul-
tiword expressions like New York or rock ’n’ roll as a single token, which re-
quires a multiword expression dictionary of some sort. Tokenization is thus inti-
mately tied up with named entity recognition, the task of detecting names, dates,
and organizations (Chapter 8).

One commonly used tokenization standard is known as the Penn Treebank to-
kenization standard, used for the parsed corpora (treebanks) released by the Lin-Penn Treebank

tokenization
guistic Data Consortium (LDC), the source of many useful datasets. This standard
separates out clitics (doesn’t becomes does plus n’t), keeps hyphenated words to-
gether, and separates out all punctuation (to save space we’re showing visible spaces
‘ ’ between tokens, although newlines is a more common output):
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Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,

" does n’t charge $ 10 " .

In practice, since tokenization needs to be run before any other language pro-
cessing, it needs to be very fast. The standard method for tokenization is therefore
to use deterministic algorithms based on regular expressions compiled into very ef-
ficient finite state automata. For example, Fig. 2.12 shows an example of a basic
regular expression that can be used to tokenize with the nltk.regexp tokenize

function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009;
http://www.nltk.org).

>>> text = ’That U.S.A. poster-print costs $12.40...’

>>> pattern = r’’’(?x) # set flag to allow verbose regexps

... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(-\w+)* # words with optional internal hyphens

... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"’?():-_‘] # these are separate tokens; includes ], [

... ’’’

>>> nltk.regexp_tokenize(text, pattern)

[’That’, ’U.S.A.’, ’poster-print’, ’costs’, ’$12.40’, ’...’]

Figure 2.12 A Python trace of regular expression tokenization in the NLTK Python-based
natural language processing toolkit (Bird et al., 2009), commented for readability; the (?x)

verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Word tokenization is more complex in languages like written Chinese, Japanese,
and Thai, which do not use spaces to mark potential word-boundaries. In Chinese,
for example, words are composed of characters (called hanzi in Chinese). Eachhanzi

character generally represents a single unit of meaning (called a morpheme) and is
pronounceable as a single syllable. Words are about 2.4 characters long on average.
But deciding what counts as a word in Chinese is complex. For example, consider
the following sentence:

(2.4) 姚明进入总决赛
“Yao Ming reaches the finals”

As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’
segmentation):

(2.5) 姚明
YaoMing

进入
reaches

总决赛
finals

or as 5 words (‘Peking University’ segmentation):

(2.6) 姚
Yao
明
Ming

进入
reaches

总
overall

决赛
finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

http://www.nltk.org
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(2.7) 姚
Yao
明
Ming

进
enter

入
enter

总
overall

决
decision

赛
game

In fact, for most Chinese NLP tasks it turns out to work better to take characters
rather than words as input, since characters are at a reasonable semantic level for
most applications, and since most word standards, by contrast, result in a huge vo-
cabulary with large numbers of very rare words (Li et al., 2019).

However, for Japanese and Thai the character is too small a unit, and so algo-
rithms for word segmentation are required. These can also be useful for Chineseword

segmentation
in the rare situations where word rather than character boundaries are required. The
standard segmentation algorithms for these languages use neural sequence mod-
els trained via supervised machine learning on hand-segmented training sets; we’ll
introduce sequence models in Chapter 8 and Chapter 9.

2.4.3 Byte-Pair Encoding for Tokenization

There is a third option to tokenizing text. Instead of defining tokens as words
(whether delimited by spaces or more complex algorithms), or as characters (as in
Chinese), we can use our data to automatically tell us what the tokens should be.
This is especially useful in dealing with unknown words, an important problem in
language processing. As we will see in the next chapter, NLP algorithms often learn
some facts about language from one corpus (a training corpus) and then use these
facts to make decisions about a separate test corpus and its language. Thus if our
training corpus contains, say the words low, new, newer, but not lower, then if the
word lower appears in our test corpus, our system will not know what to do with it.

To deal with this unknown word problem, modern tokenizers often automati-
cally induce sets of tokens that include tokens smaller than words, called subwords.subwords

Subwords can be arbitrary substrings, or they can be meaning-bearing units like the
morphemes -est or -er. (A morpheme is the smallest meaning-bearing unit of a lan-
guage; for example the word unlikeliest has the morphemes un-, likely, and -est.)
In modern tokenization schemes, most tokens are words, but some tokens are fre-
quently occurring morphemes or other subwords like -er. Every unseen words like
lower can thus be represented by some sequence of known subword units, such as
low and er, or even as a sequence of individual letters if necessary.

Most tokenization schemes have two parts: a token learner, and a token seg-
menter. The token learner takes a raw training corpus (sometimes roughly pre-
separated into words, for example by whitespace) and induces a vocabulary, a set
of tokens. The token segmenter takes a raw test sentence and segments it into the
tokens in the vocabulary. Three algorithms are widely used: byte-pair encoding
(Sennrich et al., 2016), unigram language modeling (Kudo, 2018), and WordPiece
(Schuster and Nakajima, 2012); there is also a SentencePiece library that includes
implementations of the first two of the three (Kudo and Richardson, 2018).

In this section we introduce the simplest of the three, the byte-pair encoding or
BPE algorithm (Sennrich et al., 2016); see Fig. 2.13. The BPE token learner beginsBPE

with a vocabulary that is just the set of all individual characters. It then examines the
training corpus, chooses the two symbols that are most frequently adjacent (say ‘A’,
‘B’), adds a new merged symbol ‘AB’ to the vocabulary, and replaces every adjacent
’A’ ’B’ in the corpus with the new ‘AB’. It continues to count and merge, creating
new longer and longer character strings, until k merges have been done creating k
novel tokens; k is thus is a parameter of the algorithm. The resulting vocabulary
consists of the original set of characters plus k new symbols.
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The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w

2 l o w e s t

6 n e w e r

3 w i d e r

2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er

2 l o w e s t

6 n e w er

3 w i d er

2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t

6 n e w er

3 w i d er

2 n e w

Next n e (total count of 8) get merged to ne:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t

6 ne w er

3 w i d er

2 ne w

If we continue, the next merges are:

Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low, ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.
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function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V←all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens til k times

tL, tR←Most frequent pair of adjacent tokens in C
tNEW← tL + tR # make new token by concatenating
V←V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

from the training data, greedily, in the order we learned them. (Thus the frequencies
in the test data don’t play a role, just the frequencies in the training data). So first
we segment each test sentence word into characters. Then we apply the first rule:
replace every instance of e r in the test corpus with r, and then the second rule:
replace every instance of er in the test corpus with er , and so on. By the end,
if the test corpus contained the word n e w e r , it would be tokenized as a full
word. But a new (unknown) word like l o w e r would be merged into the two
tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization

ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want to see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma
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be; the words dinner and dinners both have the lemma dinner. Lemmatizing each of
these forms to the same lemma will let us find all mentions of words in Russian like
Moscow. The lemmatized form of a sentence like He is reading detective stories
would thus be He be read detective story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem

pheme of the word, supplying the main meaning— and affixes—adding “additional”affix

meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or parses a Spanish word like amaren (‘if in the future
they would love’) into the morpheme amar ‘to love’, and the morphological features
3PL and future subjunctive.

The Porter Stemmer

Lemmatization algorithms can be complex. For this reason we sometimes make use
of a simpler but cruder method, which mainly consists of chopping off word-final
affixes. This naive version of morphological analysis is called stemming. One ofstemming

the most widely used stemming algorithms is the Porter (1980). The Porter stemmerPorter stemmer

applied to the following paragraph:

This was not the map we found in Billy Bones’s chest, but

an accurate copy, complete in all things-names and heights

and soundings-with the single exception of the red crosses

and the written notes.

produces the following stemmed output:

Thi wa not the map we found in Billi Bone s chest but an

accur copi complet in all thing name and height and sound

with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series, as a cascade, incascade

which the output of each pass is fed as input to the next pass; here is a sampling of
the rules:

ATIONAL → ATE (e.g., relational→ relate)
ING → ε if stem contains vowel (e.g., motoring→ motor)

SSES → SS (e.g., grasses→ grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.)
can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity
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2.4.5 Sentence Segmentation
Sentence segmentation is another important step in text processing. The most use-sentence

segmentation
ful cues for segmenting a text into sentences are punctuation, like periods, question
marks, and exclamation points. Question marks and exclamation points are rela-
tively unambiguous markers of sentence boundaries. Periods, on the other hand, are
more ambiguous. The period character “.” is ambiguous between a sentence bound-
ary marker and a marker of abbreviations like Mr. or Inc. The previous sentence that
you just read showed an even more complex case of this ambiguity, in which the final
period of Inc. marked both an abbreviation and the sentence boundary marker. For
this reason, sentence tokenization and word tokenization may be addressed jointly.

In general, sentence tokenization methods work by first deciding (based on rules
or machine learning) whether a period is part of the word or is a sentence-boundary
marker. An abbreviation dictionary can help determine whether the period is part
of a commonly used abbreviation; the dictionaries can be hand-built or machine-
learned (Kiss and Strunk, 2006), as can the final sentence splitter. In the Stan-
ford CoreNLP toolkit (Manning et al., 2014), for example sentence splitting is
rule-based, a deterministic consequence of tokenization; a sentence ends when a
sentence-ending punctuation (., !, or ?) is not already grouped with other charac-
ters into a token (such as for an abbreviation or number), optionally followed by
additional final quotes or brackets.

2.5 Minimum Edit Distance

Much of natural language processing is concerned with measuring how similar two
strings are. For example in spelling correction, the user typed some erroneous
string—let’s say graffe–and we want to know what the user meant. The user prob-
ably intended a word that is similar to graffe. Among candidate similar words,
the word giraffe, which differs by only one letter from graffe, seems intuitively
to be more similar than, say grail or graf, which differ in more letters. Another
example comes from coreference, the task of deciding whether two strings such as
the following refer to the same entity:

Stanford President Marc Tessier-Lavigne

Stanford University President Marc Tessier-Lavigne

Again, the fact that these two strings are very similar (differing by only one word)
seems like useful evidence for deciding that they might be coreferent.

Edit distance gives us a way to quantify both of these intuitions about string sim-
ilarity. More formally, the minimum edit distance between two strings is definedminimum edit

distance
as the minimum number of editing operations (operations like insertion, deletion,
substitution) needed to transform one string into another.

The gap between intention and execution, for example, is 5 (delete an i, substi-
tute e for n, substitute x for t, insert c, substitute u for n). It’s much easier to see
this by looking at the most important visualization for string distances, an alignmentalignment

between the two strings, shown in Fig. 2.14. Given two sequences, an alignment is
a correspondence between substrings of the two sequences. Thus, we say I aligns
with the empty string, N with E, and so on. Beneath the aligned strings is another
representation; a series of symbols expressing an operation list for converting the
top string into the bottom string: d for deletion, s for substitution, i for insertion.
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I N T E * N T I O N

| | | | | | | | | |
* E X E C U T I O N

d s s i s

Figure 2.14 Representing the minimum edit distance between two strings as an alignment.
The final row gives the operation list for converting the top string into the bottom string: d for
deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of these operations. The
Levenshtein distance between two sequences is the simplest weighting factor in
which each of the three operations has a cost of 1 (Levenshtein, 1966)—we assume
that the substitution of a letter for itself, for example, t for t, has zero cost. The Lev-
enshtein distance between intention and execution is 5. Levenshtein also proposed
an alternative version of his metric in which each insertion or deletion has a cost of
1 and substitutions are not allowed. (This is equivalent to allowing substitution, but
giving each substitution a cost of 2 since any substitution can be represented by one
insertion and one deletion). Using this version, the Levenshtein distance between
intention and execution is 8.

2.5.1 The Minimum Edit Distance Algorithm
How do we find the minimum edit distance? We can think of this as a search task, in
which we are searching for the shortest path—a sequence of edits—from one string
to another.

n t e n t i o n i n t e c n t i o n i n x e n t i o n

del ins subst

i n t e n t i o n

Figure 2.15 Finding the edit distance viewed as a search problem

The space of all possible edits is enormous, so we can’t search naively. However,
lots of distinct edit paths will end up in the same state (string), so rather than recom-
puting all those paths, we could just remember the shortest path to a state each time
we saw it. We can do this by using dynamic programming. Dynamic programmingdynamic

programming
is the name for a class of algorithms, first introduced by Bellman (1957), that apply
a table-driven method to solve problems by combining solutions to sub-problems.
Some of the most commonly used algorithms in natural language processing make
use of dynamic programming, such as the Viterbi algorithm (Chapter 8) and the
CKY algorithm for parsing (Chapter 13).

The intuition of a dynamic programming problem is that a large problem can
be solved by properly combining the solutions to various sub-problems. Consider
the shortest path of transformed words that represents the minimum edit distance
between the strings intention and execution shown in Fig. 2.16.

Imagine some string (perhaps it is exention) that is in this optimal path (whatever
it is). The intuition of dynamic programming is that if exention is in the optimal
operation list, then the optimal sequence must also include the optimal path from
intention to exention. Why? If there were a shorter path from intention to exention,
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n t e n t i o n

i n t e n t i o n

e t e n t i o n

e x e n t i o n

e x e n u t i o n

e x e c u t i o n

delete i

substitute n by e

substitute t by x

insert u

substitute n by c

Figure 2.16 Path from intention to execution.

then we could use it instead, resulting in a shorter overall path, and the optimal
sequence wouldn’t be optimal, thus leading to a contradiction.

The minimum edit distance algorithm algorithm was named by Wagner and
minimum edit

distance
algorithm

Fischer (1974) but independently discovered by many people (see the Historical
Notes section of Chapter 8).

Let’s first define the minimum edit distance between two strings. Given two
strings, the source string X of length n, and target string Y of length m, we’ll define
D[i, j] as the edit distance between X [1..i] and Y [1.. j], i.e., the first i characters of X
and the first j characters of Y . The edit distance between X and Y is thus D[n,m].

We’ll use dynamic programming to compute D[n,m] bottom up, combining so-
lutions to subproblems. In the base case, with a source substring of length i but an
empty target string, going from i characters to 0 requires i deletes. With a target
substring of length j but an empty source going from 0 characters to j characters
requires j inserts. Having computed D[i, j] for small i, j we then compute larger
D[i, j] based on previously computed smaller values. The value of D[i, j] is com-
puted by taking the minimum of the three possible paths through the matrix which
arrive there:

D[i, j] = min





D[i−1, j]+del-cost(source[i])
D[i, j−1]+ ins-cost(target[ j])
D[i−1, j−1]+ sub-cost(source[i], target[ j])

If we assume the version of Levenshtein distance in which the insertions and dele-
tions each have a cost of 1 (ins-cost(·) = del-cost(·) = 1), and substitutions have a
cost of 2 (except substitution of identical letters have zero cost), the computation for
D[i, j] becomes:

D[i, j] = min





D[i−1, j]+1
D[i, j−1]+1

D[i−1, j−1]+
{

2; if source[i] 6= target[ j]
0; if source[i] = target[ j]

(2.8)

The algorithm is summarized in Fig. 2.17; Fig. 2.18 shows the results of applying
the algorithm to the distance between intention and execution with the version of
Levenshtein in Eq. 2.8.

Knowing the minimum edit distance is useful for algorithms like finding poten-
tial spelling error corrections. But the edit distance algorithm is important in another
way; with a small change, it can also provide the minimum cost alignment between
two strings. Aligning two strings is useful throughout speech and language process-
ing. In speech recognition, minimum edit distance alignment is used to compute
the word error rate (Chapter 26). Alignment plays a role in machine translation, in
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function MIN-EDIT-DISTANCE(source, target) returns min-distance

n←LENGTH(source)
m←LENGTH(target)
Create a distance matrix distance[n+1,m+1]

# Initialization: the zeroth row and column is the distance from the empty string
D[0,0] = 0
for each row i from 1 to n do

D[i,0]←D[i-1,0] + del-cost(source[i])
for each column j from 1 to m do

D[0,j]←D[0, j-1] + ins-cost(target[j])

# Recurrence relation:
for each row i from 1 to n do

for each column j from 1 to m do
D[i, j]←MIN( D[i−1, j] + del-cost(source[i]),

D[i−1, j−1] + sub-cost(source[i], target[j]),
D[i, j−1] + ins-cost(target[j]))

# Termination
return D[n,m]

Figure 2.17 The minimum edit distance algorithm, an example of the class of dynamic
programming algorithms. The various costs can either be fixed (e.g., ∀x, ins-cost(x) = 1)
or can be specific to the letter (to model the fact that some letters are more likely to be in-
serted than others). We assume that there is no cost for substituting a letter for itself (i.e.,
sub-cost(x,x) = 0).

Src\Tar # e x e c u t i o n
# 0 1 2 3 4 5 6 7 8 9
i 1 2 3 4 5 6 7 6 7 8

n 2 3 4 5 6 7 8 7 8 7
t 3 4 5 6 7 8 7 8 9 8
e 4 3 4 5 6 7 8 9 10 9
n 5 4 5 6 7 8 9 10 11 10
t 6 5 6 7 8 9 8 9 10 11
i 7 6 7 8 9 10 9 8 9 10
o 8 7 8 9 10 11 10 9 8 9
n 9 8 9 10 11 12 11 10 9 8

Figure 2.18 Computation of minimum edit distance between intention and execution with
the algorithm of Fig. 2.17, using Levenshtein distance with cost of 1 for insertions or dele-
tions, 2 for substitutions.

which sentences in a parallel corpus (a corpus with a text in two languages) need to
be matched to each other.

To extend the edit distance algorithm to produce an alignment, we can start by
visualizing an alignment as a path through the edit distance matrix. Figure 2.19
shows this path with the boldfaced cell. Each boldfaced cell represents an alignment
of a pair of letters in the two strings. If two boldfaced cells occur in the same row,
there will be an insertion in going from the source to the target; two boldfaced cells
in the same column indicate a deletion.

Figure 2.19 also shows the intuition of how to compute this alignment path. The
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computation proceeds in two steps. In the first step, we augment the minimum edit
distance algorithm to store backpointers in each cell. The backpointer from a cell
points to the previous cell (or cells) that we came from in entering the current cell.
We’ve shown a schematic of these backpointers in Fig. 2.19. Some cells have mul-
tiple backpointers because the minimum extension could have come from multiple
previous cells. In the second step, we perform a backtrace. In a backtrace, we startbacktrace

from the last cell (at the final row and column), and follow the pointers back through
the dynamic programming matrix. Each complete path between the final cell and the
initial cell is a minimum distance alignment. Exercise 2.7 asks you to modify the
minimum edit distance algorithm to store the pointers and compute the backtrace to
output an alignment.

# e x e c u t i o n
# 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7 ← 8 ← 9
i ↑ 1 ↖←↑ 2 ↖←↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖ 6 ← 7 ← 8
n ↑ 2 ↖←↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↑ 7 ↖←↑ 8 ↖ 7
t ↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖ 7 ←↑ 8 ↖←↑ 9 ↑ 8
e ↑ 4 ↖ 3 ← 4 ↖← 5 ← 6 ← 7 ←↑ 8 ↖←↑ 9 ↖←↑ 10 ↑ 9
n ↑ 5 ↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↖↑ 10
t ↑ 6 ↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖ 8 ← 9 ← 10 ←↑ 11
i ↑ 7 ↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↑ 9 ↖ 8 ← 9 ← 10
o ↑ 8 ↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↑ 10 ↑ 9 ↖ 8 ← 9
n ↑ 9 ↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↖←↑ 12 ↑ 11 ↑ 10 ↑ 9 ↖ 8

Figure 2.19 When entering a value in each cell, we mark which of the three neighboring
cells we came from with up to three arrows. After the table is full we compute an alignment
(minimum edit path) by using a backtrace, starting at the 8 in the lower-right corner and
following the arrows back. The sequence of bold cells represents one possible minimum cost
alignment between the two strings. Diagram design after Gusfield (1997).

While we worked our example with simple Levenshtein distance, the algorithm
in Fig. 2.17 allows arbitrary weights on the operations. For spelling correction, for
example, substitutions are more likely to happen between letters that are next to
each other on the keyboard. The Viterbi algorithm is a probabilistic extension of
minimum edit distance. Instead of computing the “minimum edit distance” between
two strings, Viterbi computes the “maximum probability alignment” of one string
with another. We’ll discuss this more in Chapter 8.

2.6 Summary

This chapter introduced a fundamental tool in language processing, the regular ex-
pression, and showed how to perform basic text normalization tasks including
word segmentation and normalization, sentence segmentation, and stemming.
We also introduced the important minimum edit distance algorithm for comparing
strings. Here’s a summary of the main points we covered about these ideas:

• The regular expression language is a powerful tool for pattern-matching.
• Basic operations in regular expressions include concatenation of symbols,

disjunction of symbols ([], |, and .), counters (*, +, and {n,m}), anchors
(ˆ, $) and precedence operators ((,)).
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• Word tokenization and normalization are generally done by cascades of
simple regular expression substitutions or finite automata.

• The Porter algorithm is a simple and efficient way to do stemming, stripping
off affixes. It does not have high accuracy but may be useful for some tasks.

• The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edit distance can be
computed by dynamic programming, which also results in an alignment of
the two strings.

Bibliographical and Historical Notes
Kleene (1951, 1956) first defined regular expressions and the finite automaton, based
on the McCulloch-Pitts neuron. Ken Thompson was one of the first to build regular
expressions compilers into editors for text searching (Thompson, 1968). His edi-
tor ed included a command “g/regular expression/p”, or Global Regular Expression
Print, which later became the Unix grep utility.

Text normalization algorithms have been applied since the beginning of the
field. One of the earliest widely used stemmers was Lovins (1968). Stemming
was also applied early to the digital humanities, by Packard (1973), who built an
affix-stripping morphological parser for Ancient Greek. Currently a wide vari-
ety of code for tokenization and normalization is available, such as the Stanford
Tokenizer (http://nlp.stanford.edu/software/tokenizer.shtml) or spe-
cialized tokenizers for Twitter (O’Connor et al., 2010), or for sentiment (http:
//sentiment.christopherpotts.net/tokenizing.html). See Palmer (2012)
for a survey of text preprocessing. NLTK is an essential tool that offers both useful
Python libraries (http://www.nltk.org) and textbook descriptions (Bird et al.,
2009) of many algorithms including text normalization and corpus interfaces.

For more on Herdan’s law and Heaps’ Law, see Herdan (1960, p. 28), Heaps
(1978), Egghe (2007) and Baayen (2001); Yasseri et al. (2012) discuss the relation-
ship with other measures of linguistic complexity. For more on edit distance, see the
excellent Gusfield (1997). Our example measuring the edit distance from ‘intention’
to ‘execution’ was adapted from Kruskal (1983). There are various publicly avail-
able packages to compute edit distance, including Unix diff and the NIST sclite

program (NIST, 2005).
In his autobiography Bellman (1984) explains how he originally came up with

the term dynamic programming:

“...The 1950s were not good years for mathematical research. [the]
Secretary of Defense ...had a pathological fear and hatred of the word,
research... I decided therefore to use the word, “programming”. I
wanted to get across the idea that this was dynamic, this was multi-
stage... I thought, let’s ... take a word that has an absolutely precise
meaning, namely dynamic... it’s impossible to use the word, dynamic,
in a pejorative sense. Try thinking of some combination that will pos-
sibly give it a pejorative meaning. It’s impossible. Thus, I thought
dynamic programming was a good name. It was something not even a
Congressman could object to.”

http://nlp.stanford.edu/software/tokenizer.shtml
http://sentiment.christopherpotts.net/tokenizing.html
http://sentiment.christopherpotts.net/tokenizing.html
http://www.nltk.org
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Exercises
2.1 Write regular expressions for the following languages.

1. the set of all alphabetic strings;
2. the set of all lower case alphabetic strings ending in a b;
3. the set of all strings from the alphabet a,b such that each a is immedi-

ately preceded by and immediately followed by a b;

2.2 Write regular expressions for the following languages. By “word”, we mean
an alphabetic string separated from other words by whitespace, any relevant
punctuation, line breaks, and so forth.

1. the set of all strings with two consecutive repeated words (e.g., “Hum-
bert Humbert” and “the the” but not “the bug” or “the big bug”);

2. all strings that start at the beginning of the line with an integer and that
end at the end of the line with a word;

3. all strings that have both the word grotto and the word raven in them
(but not, e.g., words like grottos that merely contain the word grotto);

4. write a pattern that places the first word of an English sentence in a
register. Deal with punctuation.

2.3 Implement an ELIZA-like program, using substitutions such as those described
on page 11. You might want to choose a different domain than a Rogerian psy-
chologist, although keep in mind that you would need a domain in which your
program can legitimately engage in a lot of simple repetition.

2.4 Compute the edit distance (using insertion cost 1, deletion cost 1, substitution
cost 1) of “leda” to “deal”. Show your work (using the edit distance grid).

2.5 Figure out whether drive is closer to brief or to divers and what the edit dis-
tance is to each. You may use any version of distance that you like.

2.6 Now implement a minimum edit distance algorithm and use your hand-computed
results to check your code.

2.7 Augment the minimum edit distance algorithm to output an alignment; you
will need to store pointers and add a stage to compute the backtrace.



CHAPTER

3 N-gram Language Models

“You are uniformly charming!” cried he, with a smile of associating and now
and then I bowed and they perceived a chaise and four to wish for.

Random sentence generated from a Jane Austen trigram model

Predicting is difficult—especially about the future, as the old quip goes. But how
about predicting something that seems much easier, like the next few words someone
is going to say? What word, for example, is likely to follow

Please turn your homework ...

Hopefully, most of you concluded that a very likely word is in, or possibly over,
but probably not refrigerator or the. In the following sections we will formalize
this intuition by introducing models that assign a probability to each possible next
word. The same models will also serve to assign a probability to an entire sentence.
Such a model, for example, could predict that the following sequence has a much
higher probability of appearing in a text:

all of a sudden I notice three guys standing on the sidewalk

than does this same set of words in a different order:

on guys all I of notice sidewalk three a sudden standing the

Why would you want to predict upcoming words, or assign probabilities to sen-
tences? Probabilities are essential in any task in which we have to identify words in
noisy, ambiguous input, like speech recognition. For a speech recognizer to realize
that you said I will be back soonish and not I will be bassoon dish, it helps to know
that back soonish is a much more probable sequence than bassoon dish. For writing
tools like spelling correction or grammatical error correction, we need to find and
correct errors in writing like Their are two midterms, in which There was mistyped
as Their, or Everything has improve, in which improve should have been improved.
The phrase There are will be much more probable than Their are, and has improved
than has improve, allowing us to help users by detecting and correcting these errors.

Assigning probabilities to sequences of words is also essential in machine trans-
lation. Suppose we are translating a Chinese source sentence:

他 向 记者 介绍了 主要 内容
He to reporters introduced main content

As part of the process we might have built the following set of potential rough
English translations:

he introduced reporters to the main contents of the statement
he briefed to reporters the main contents of the statement
he briefed reporters on the main contents of the statement
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A probabilistic model of word sequences could suggest that briefed reporters on
is a more probable English phrase than briefed to reporters (which has an awkward
to after briefed) or introduced reporters to (which uses a verb that is less fluent
English in this context), allowing us to correctly select the boldfaced sentence above.

Probabilities are also important for augmentative and alternative communi-
cation systems (Trnka et al. 2007, Kane et al. 2017). People often use such AACAAC

devices if they are physically unable to speak or sign but can instead use eye gaze or
other specific movements to select words from a menu to be spoken by the system.
Word prediction can be used to suggest likely words for the menu.

Models that assign probabilities to sequences of words are called language mod-
els or LMs. In this chapter we introduce the simplest model that assigns probabil-language model

LM ities to sentences and sequences of words, the n-gram. An n-gram is a sequence
n-gram of n words: a 2-gram (which we’ll call bigram) is a two-word sequence of words

like “please turn”, “turn your”, or ”your homework”, and a 3-gram (a trigram) is
a three-word sequence of words like “please turn your”, or “turn your homework”.
We’ll see how to use n-gram models to estimate the probability of the last word of
an n-gram given the previous words, and also to assign probabilities to entire se-
quences. In a bit of terminological ambiguity, we usually drop the word “model”,
and use the term n-gram (and bigram, etc.) to mean either the word sequence itself
or the predictive model that assigns it a probability. In later chapters we’ll introduce
more sophisticated language models like the RNN LMs of Chapter 9.

3.1 N-Grams

Let’s begin with the task of computing P(w|h), the probability of a word w given
some history h. Suppose the history h is “its water is so transparent that” and we
want to know the probability that the next word is the:

P(the|its water is so transparent that). (3.1)

One way to estimate this probability is from relative frequency counts: take a
very large corpus, count the number of times we see its water is so transparent that,
and count the number of times this is followed by the. This would be answering the
question “Out of the times we saw the history h, how many times was it followed by
the word w”, as follows:

P(the|its water is so transparent that) =
C(its water is so transparent that the)

C(its water is so transparent that)
(3.2)

With a large enough corpus, such as the web, we can compute these counts and
estimate the probability from Eq. 3.2. You should pause now, go to the web, and
compute this estimate for yourself.

While this method of estimating probabilities directly from counts works fine in
many cases, it turns out that even the web isn’t big enough to give us good estimates
in most cases. This is because language is creative; new sentences are created all the
time, and we won’t always be able to count entire sentences. Even simple extensions
of the example sentence may have counts of zero on the web (such as “Walden
Pond’s water is so transparent that the”; well, used to have counts of zero).
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Similarly, if we wanted to know the joint probability of an entire sequence of
words like its water is so transparent, we could do it by asking “out of all possible
sequences of five words, how many of them are its water is so transparent?” We
would have to get the count of its water is so transparent and divide by the sum of
the counts of all possible five word sequences. That seems rather a lot to estimate!

For this reason, we’ll need to introduce more clever ways of estimating the prob-
ability of a word w given a history h, or the probability of an entire word sequence
W . Let’s start with a little formalizing of notation. To represent the probability
of a particular random variable Xi taking on the value “the”, or P(Xi = “the”), we
will use the simplification P(the). We’ll represent a sequence of N words either as
w1 . . .wn or w1:n (so the expression w1:n−1 means the string w1,w2, ...,wn−1). For the
joint probability of each word in a sequence having a particular value P(X =w1,Y =
w2,Z = w3, ...,W = wn) we’ll use P(w1,w2, ...,wn).

Now how can we compute probabilities of entire sequences like P(w1,w2, ...,wn)?
One thing we can do is decompose this probability using the chain rule of proba-
bility:

P(X1...Xn) = P(X1)P(X2|X1)P(X3|X1:2) . . .P(Xn|X1:n−1)

=

n∏

k=1

P(Xk|X1:k−1) (3.3)

Applying the chain rule to words, we get

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . .P(wn|w1:n−1)

=

n∏

k=1

P(wk|w1:k−1) (3.4)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equa-
tion 3.4 suggests that we could estimate the joint probability of an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words, P(wn|wn−1

1 ).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string, because language is creative and any particular
context might have never occurred before!

The intuition of the n-gram model is that instead of computing the probability of
a word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|w1:n−1) by using only the conditional probability of the
preceding word P(wn|wn−1). In other words, instead of computing the probability

P(the|Walden Pond’s water is so transparent that) (3.5)

we approximate it with the probability

P(the|that) (3.6)

When we use a bigram model to predict the conditional probability of the next word,
we are thus making the following approximation:

P(wn|w1:n−1)≈ P(wn|wn−1) (3.7)
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The assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n−1 words into the past).
Thus, the general equation for this n-gram approximation to the conditional

probability of the next word in a sequence is

P(wn|w1:n−1)≈ P(wn|wn−N+1:n−1) (3.8)

Given the bigram assumption for the probability of an individual word, we can com-
pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

P(w1:n)≈
n∏

k=1

P(wk|wk−1) (3.9)

How do we estimate these bigram or n-gram probabilities? An intuitive way to
estimate probabilities is called maximum likelihood estimation or MLE. We get

maximum
likelihood
estimation

the MLE estimate for the parameters of an n-gram model by getting counts from a
corpus, and normalizing the counts so that they lie between 0 and 1.1normalize

For example, to compute a particular bigram probability of a word y given a
previous word x, we’ll compute the count of the bigram C(xy) and normalize by the
sum of all the bigrams that share the same first word x:

P(wn|wn−1) =
C(wn−1wn)∑

w C(wn−1w)
(3.10)

We can simplify this equation, since the sum of all bigram counts that start with
a given word wn−1 must be equal to the unigram count for that word wn−1 (the reader
should take a moment to be convinced of this):

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.11)

Let’s work through an example using a mini-corpus of three sentences. We’ll
first need to augment each sentence with a special symbol <s> at the beginning
of the sentence, to give us the bigram context of the first word. We’ll also need a
special end-symbol. </s>2

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

Here are the calculations for some of the bigram probabilities from this corpus

P(I|<s>) = 2
3 = .67 P(Sam|<s>) = 1

3 = .33 P(am|I) = 2
3 = .67

P(</s>|Sam) = 1
2 = 0.5 P(Sam|am) = 1

2 = .5 P(do|I) = 1
3 = .33

1 For probabilistic models, normalizing means dividing by some total count so that the resulting proba-
bilities fall legally between 0 and 1.
2 We need the end-symbol to make the bigram grammar a true probability distribution. Without an
end-symbol, the sentence probabilities for all sentences of a given length would sum to one. This model
would define an infinite set of probability distributions, with one distribution per sentence length. See
Exercise 3.5.
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For the general case of MLE n-gram parameter estimation:

P(wn|wn−N+1:n−1) =
C(wn−N+1:n−1 wn)

C(wn−N+1:n−1)
(3.12)

Equation 3.12 (like Eq. 3.11) estimates the n-gram probability by dividing the
observed frequency of a particular sequence by the observed frequency of a prefix.
This ratio is called a relative frequency. We said above that this use of relativerelative

frequency
frequencies as a way to estimate probabilities is an example of maximum likelihood
estimation or MLE. In MLE, the resulting parameter set maximizes the likelihood
of the training set T given the model M (i.e., P(T |M)). For example, suppose the
word Chinese occurs 400 times in a corpus of a million words like the Brown corpus.
What is the probability that a random word selected from some other text of, say,
a million words will be the word Chinese? The MLE of its probability is 400

1000000
or .0004. Now .0004 is not the best possible estimate of the probability of Chinese
occurring in all situations; it might turn out that in some other corpus or context
Chinese is a very unlikely word. But it is the probability that makes it most likely
that Chinese will occur 400 times in a million-word corpus. We present ways to
modify the MLE estimates slightly to get better probability estimates in Section 3.4.

Let’s move on to some examples from a slightly larger corpus than our 14-word
example above. We’ll use data from the now-defunct Berkeley Restaurant Project,
a dialogue system from the last century that answered questions about a database
of restaurants in Berkeley, California (Jurafsky et al., 1994). Here are some text-
normalized sample user queries (a sample of 9332 sentences is on the website):

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’m looking for
tell me about chez panisse
can you give me a listing of the kinds of food that are available
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

Figure 3.1 shows the bigram counts from a piece of a bigram grammar from the
Berkeley Restaurant Project. Note that the majority of the values are zero. In fact,
we have chosen the sample words to cohere with each other; a matrix selected from
a random set of seven words would be even more sparse.

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 3.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

Figure 3.2 shows the bigram probabilities after normalization (dividing each cell
in Fig. 3.1 by the appropriate unigram for its row, taken from the following set of
unigram probabilities):



34 CHAPTER 3 • N-GRAM LANGUAGE MODELS

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 3.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

Here are a few other useful probabilities:

P(i|<s>) = 0.25 P(english|want) = 0.0011
P(food|english) = 0.5 P(</s>|food) = 0.68

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)

= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)

= .25× .33× .0011×0.5×0.68
= .000031

We leave it as Exercise 3.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described
bigram models, in practice it’s more common to use trigram models, which con-trigram

dition on the previous two words rather than the previous word, or 4-gram or even4-gram

5-gram models, when there is sufficient training data. Note that for these larger n-5-gram

grams, we’ll need to assume extra contexts to the left and right of the sentence end.
For example, to compute trigram probabilities at the very beginning of the sentence,
we use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

We always represent and compute language model probabilities in log format
as log probabilities. Since probabilities are (by definition) less than or equal tolog

probabilities
1, the more probabilities we multiply together, the smaller the product becomes.
Multiplying enough n-grams together would result in numerical underflow. By using
log probabilities instead of raw probabilities, we get numbers that are not as small.
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Adding in log space is equivalent to multiplying in linear space, so we combine log
probabilities by adding them. The result of doing all computation and storage in log
space is that we only need to convert back into probabilities if we need to report
them at the end; then we can just take the exp of the logprob:

p1× p2× p3× p4 = exp(log p1 + log p2 + log p3 + log p4) (3.13)

3.2 Evaluating Language Models

The best way to evaluate the performance of a language model is to embed it in
an application and measure how much the application improves. Such end-to-end
evaluation is called extrinsic evaluation. Extrinsic evaluation is the only way toextrinsic

evaluation
know if a particular improvement in a component is really going to help the task
at hand. Thus, for speech recognition, we can compare the performance of two
language models by running the speech recognizer twice, once with each language
model, and seeing which gives the more accurate transcription.

Unfortunately, running big NLP systems end-to-end is often very expensive. In-
stead, it would be nice to have a metric that can be used to quickly evaluate potential
improvements in a language model. An intrinsic evaluation metric is one that mea-intrinsic

evaluation
sures the quality of a model independent of any application.

For an intrinsic evaluation of a language model we need a test set. As with many
of the statistical models in our field, the probabilities of an n-gram model come from
the corpus it is trained on, the training set or training corpus. We can then measuretraining set

the quality of an n-gram model by its performance on some unseen data called the
test set or test corpus. We will also sometimes call test sets and other datasets thattest set

are not in our training sets held out corpora because we hold them out from theheld out

training data.
So if we are given a corpus of text and want to compare two different n-gram

models, we divide the data into training and test sets, train the parameters of both
models on the training set, and then compare how well the two trained models fit the
test set.

But what does it mean to “fit the test set”? The answer is simple: whichever
model assigns a higher probability to the test set—meaning it more accurately
predicts the test set—is a better model. Given two probabilistic models, the better
model is the one that has a tighter fit to the test data or that better predicts the details
of the test data, and hence will assign a higher probability to the test data.

Since our evaluation metric is based on test set probability, it’s important not to
let the test sentences into the training set. Suppose we are trying to compute the
probability of a particular “test” sentence. If our test sentence is part of the training
corpus, we will mistakenly assign it an artificially high probability when it occurs
in the test set. We call this situation training on the test set. Training on the test
set introduces a bias that makes the probabilities all look too high, and causes huge
inaccuracies in perplexity, the probability-based metric we introduce below.

Sometimes we use a particular test set so often that we implicitly tune to its
characteristics. We then need a fresh test set that is truly unseen. In such cases, we
call the initial test set the development test set or, devset. How do we divide ourdevelopment

test
data into training, development, and test sets? We want our test set to be as large
as possible, since a small test set may be accidentally unrepresentative, but we also
want as much training data as possible. At the minimum, we would want to pick
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the smallest test set that gives us enough statistical power to measure a statistically
significant difference between two potential models. In practice, we often just divide
our data into 80% training, 10% development, and 10% test. Given a large corpus
that we want to divide into training and test, test data can either be taken from some
continuous sequence of text inside the corpus, or we can remove smaller “stripes”
of text from randomly selected parts of our corpus and combine them into a test set.

3.2.1 Perplexity
In practice we don’t use raw probability as our metric for evaluating language mod-
els, but a variant called perplexity. The perplexity (sometimes called PP for short)perplexity

of a language model on a test set is the inverse probability of the test set, normalized
by the number of words. For a test set W = w1w2 . . .wN ,:

PP(W ) = P(w1w2 . . .wN)
− 1

N (3.14)

= N

√
1

P(w1w2 . . .wN)

We can use the chain rule to expand the probability of W :

PP(W ) = N

√√√√
N∏

i=1

1
P(wi|w1 . . .wi−1)

(3.15)

Thus, if we are computing the perplexity of W with a bigram language model,
we get:

PP(W ) = N

√√√√
N∏

i=1

1
P(wi|wi−1)

(3.16)

Note that because of the inverse in Eq. 3.15, the higher the conditional probabil-
ity of the word sequence, the lower the perplexity. Thus, minimizing perplexity is
equivalent to maximizing the test set probability according to the language model.
What we generally use for word sequence in Eq. 3.15 or Eq. 3.16 is the entire se-
quence of words in some test set. Since this sequence will cross many sentence
boundaries, we need to include the begin- and end-sentence markers <s> and </s>

in the probability computation. We also need to include the end-of-sentence marker
</s> (but not the beginning-of-sentence marker <s>) in the total count of word to-
kens N.

There is another way to think about perplexity: as the weighted average branch-
ing factor of a language. The branching factor of a language is the number of possi-
ble next words that can follow any word. Consider the task of recognizing the digits
in English (zero, one, two,..., nine), given that (both in some training set and in some
test set) each of the 10 digits occurs with equal probability P = 1

10 . The perplexity of
this mini-language is in fact 10. To see that, imagine a test string of digits of length
N, and assume that in the training set all the digits occurred with equal probability.
By Eq. 3.15, the perplexity will be
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PP(W ) = P(w1w2 . . .wN)
− 1

N

= (
1
10

N
)−

1
N

=
1

10

−1

= 10 (3.17)

But suppose that the number zero is really frequent and occurs far more often
than other numbers. Let’s say that 0 occur 91 times in the training set, and each
of the other digits occurred 1 time each. Now we see the following test set: 0 0
0 0 0 3 0 0 0 0. We should expect the perplexity of this test set to be lower since
most of the time the next number will be zero, which is very predictable, i.e. has
a high probability. Thus, although the branching factor is still 10, the perplexity or
weighted branching factor is smaller. We leave this exact calculation as exercise 12.

We see in Section 3.7 that perplexity is also closely related to the information-
theoretic notion of entropy.

Finally, let’s look at an example of how perplexity can be used to compare dif-
ferent n-gram models. We trained unigram, bigram, and trigram grammars on 38
million words (including start-of-sentence tokens) from the Wall Street Journal, us-
ing a 19,979 word vocabulary. We then computed the perplexity of each of these
models on a test set of 1.5 million words with Eq. 3.16. The table below shows the
perplexity of a 1.5 million word WSJ test set according to each of these grammars.

Unigram Bigram Trigram
Perplexity 962 170 109

As we see above, the more information the n-gram gives us about the word
sequence, the lower the perplexity (since as Eq. 3.15 showed, perplexity is related
inversely to the likelihood of the test sequence according to the model).

Note that in computing perplexities, the n-gram model P must be constructed
without any knowledge of the test set or any prior knowledge of the vocabulary of
the test set. Any kind of knowledge of the test set can cause the perplexity to be
artificially low. The perplexity of two language models is only comparable if they
use identical vocabularies.

An (intrinsic) improvement in perplexity does not guarantee an (extrinsic) im-
provement in the performance of a language processing task like speech recognition
or machine translation. Nonetheless, because perplexity often correlates with such
improvements, it is commonly used as a quick check on an algorithm. But a model’s
improvement in perplexity should always be confirmed by an end-to-end evaluation
of a real task before concluding the evaluation of the model.

3.3 Generalization and Zeros

The n-gram model, like many statistical models, is dependent on the training corpus.
One implication of this is that the probabilities often encode specific facts about a
given training corpus. Another implication is that n-grams do a better and better job
of modeling the training corpus as we increase the value of N.
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We can visualize both of these facts by borrowing the technique of Shannon
(1951) and Miller and Selfridge (1950) of generating random sentences from dif-
ferent n-gram models. It’s simplest to visualize how this works for the unigram
case. Imagine all the words of the English language covering the probability space
between 0 and 1, each word covering an interval proportional to its frequency. We
choose a random value between 0 and 1 and print the word whose interval includes
this chosen value. We continue choosing random numbers and generating words
until we randomly generate the sentence-final token </s>. We can use the same
technique to generate bigrams by first generating a random bigram that starts with
<s> (according to its bigram probability). Let’s say the second word of that bigram
is w. We next chose a random bigram starting with w (again, drawn according to its
bigram probability), and so on.

To give an intuition for the increasing power of higher-order n-grams, Fig. 3.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 3.3 Eight sentences randomly generated from four n-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This is
because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora
go (N = 884,647,V = 29,066), and our n-gram probability matrices are ridiculously
sparse. There are V 2 = 844,000,000 possible bigrams alone, and the number of pos-
sible 4-grams is V 4 = 7×1017. Thus, once the generator has chosen the first 4-gram
(It cannot be but), there are only five possible continuations (that, I, he, thou, and
so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
n-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our n-grams for the two genres. Fig. 3.4
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shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 3.4 Three sentences randomly generated from three n-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

Compare these examples to the pseudo-Shakespeare in Fig. 3.3. While they both
model “English-like sentences”, there is clearly no overlap in generated sentences,
and little overlap even in small phrases. Statistical models are likely to be pretty use-
less as predictors if the training sets and the test sets are as different as Shakespeare
and WSJ.

How should we deal with this problem when we build n-gram models? One step
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

It is equally important to get training data in the appropriate dialect or variety,
especially when processing social media posts or spoken transcripts. For example
some tweets will use features of African American Language (AAL)— the name
for the many variations of language used in African American communities (King,
2020). Such features include words like finna—an auxiliary verb that marks imme-
diate future tense —that don’t occur in other varieties, or spellings like den for then,
in tweets like this one (Blodgett and O’Connor, 2017):

(3.18) Bored af den my phone finna die!!!

while tweets from varieties like Nigerian English have markedly different vocabu-
lary and n-gram patterns from American English (Jurgens et al., 2017):

(3.19) @username R u a wizard or wat gan sef: in d mornin - u tweet, afternoon - u
tweet, nyt gan u dey tweet. beta get ur IT placement wiv twitter

Matching genres and dialects is still not sufficient. Our models may still be
subject to the problem of sparsity. For any n-gram that occurred a sufficient number
of times, we might have a good estimate of its probability. But because any corpus is
limited, some perfectly acceptable English word sequences are bound to be missing
from it. That is, we’ll have many cases of putative “zero probability n-grams” that
should really have some non-zero probability. Consider the words that follow the
bigram denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1
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But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros— things that don’t ever occur in the training set but do occur inzeros

the test set—are a problem for two reasons. First, their presence means we are
underestimating the probability of all sorts of words that might occur, which will
hurt the performance of any application we want to run on this data.

Second, if the probability of any word in the test set is 0, the entire probability
of the test set is 0. By definition, perplexity is based on the inverse probability of the
test set. Thus if some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!

3.3.1 Unknown Words
The previous section discussed the problem of words whose bigram probability is
zero. But what about words we simply have never seen before?

Sometimes we have a language task in which this can’t happen because we know
all the words that can occur. In such a closed vocabulary system the test set canclosed

vocabulary
only contain words from this lexicon, and there will be no unknown words. This is
a reasonable assumption in some domains, such as speech recognition or machine
translation, where we have a pronunciation dictionary or a phrase table that are fixed
in advance, and so the language model can only use the words in that dictionary or
phrase table.

In other cases we have to deal with words we haven’t seen before, which we’ll
call unknown words, or out of vocabulary (OOV) words. The percentage of OOVOOV

words that appear in the test set is called the OOV rate. An open vocabulary systemopen
vocabulary

is one in which we model these potential unknown words in the test set by adding a
pseudo-word called <UNK>.

There are two common ways to train the probabilities of the unknown word
model <UNK>. The first one is to turn the problem back into a closed vocabulary one
by choosing a fixed vocabulary in advance:

1. Choose a vocabulary (word list) that is fixed in advance.
2. Convert in the training set any word that is not in this set (any OOV word) to

the unknown word token <UNK> in a text normalization step.
3. Estimate the probabilities for <UNK> from its counts just like any other regular

word in the training set.

The second alternative, in situations where we don’t have a prior vocabulary in ad-
vance, is to create such a vocabulary implicitly, replacing words in the training data
by <UNK> based on their frequency. For example we can replace by <UNK> all words
that occur fewer than n times in the training set, where n is some small number, or
equivalently select a vocabulary size V in advance (say 50,000) and choose the top
V words by frequency and replace the rest by UNK. In either case we then proceed
to train the language model as before, treating <UNK> like a regular word.

The exact choice of <UNK> model does have an effect on metrics like perplexity.
A language model can achieve low perplexity by choosing a small vocabulary and
assigning the unknown word a high probability. For this reason, perplexities should
only be compared across language models with the same vocabularies (Buck et al.,
2014).
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3.4 Smoothing

What do we do with words that are in our vocabulary (they are not unknown words)
but appear in a test set in an unseen context (for example they appear after a word
they never appeared after in training)? To keep a language model from assigning
zero probability to these unseen events, we’ll have to shave off a bit of probability
mass from some more frequent events and give it to the events we’ve never seen.
This modification is called smoothing or discounting. In this section and the fol-smoothing

discounting lowing ones we’ll introduce a variety of ways to do smoothing: Laplace (add-one)
smoothing, add-k smoothing, stupid backoff, and Kneser-Ney smoothing.

3.4.1 Laplace Smoothing
The simplest way to do smoothing is to add one to all the bigram counts, before
we normalize them into probabilities. All the counts that used to be zero will now
have a count of 1, the counts of 1 will be 2, and so on. This algorithm is called
Laplace smoothing. Laplace smoothing does not perform well enough to be usedLaplace

smoothing
in modern n-gram models, but it usefully introduces many of the concepts that we
see in other smoothing algorithms, gives a useful baseline, and is also a practical
smoothing algorithm for other tasks like text classification (Chapter 4).

Let’s start with the application of Laplace smoothing to unigram probabilities.
Recall that the unsmoothed maximum likelihood estimate of the unigram probability
of the word wi is its count ci normalized by the total number of word tokens N:

P(wi) =
ci

N

Laplace smoothing merely adds one to each count (hence its alternate name add-
one smoothing). Since there are V words in the vocabulary and each one was incre-add-one

mented, we also need to adjust the denominator to take into account the extra V
observations. (What happens to our P values if we don’t increase the denominator?)

PLaplace(wi) =
ci +1
N +V

(3.20)

Instead of changing both the numerator and denominator, it is convenient to
describe how a smoothing algorithm affects the numerator, by defining an adjusted
count c∗. This adjusted count is easier to compare directly with the MLE counts and
can be turned into a probability like an MLE count by normalizing by N. To define
this count, since we are only changing the numerator in addition to adding 1 we’ll
also need to multiply by a normalization factor N

N+V :

c∗i = (ci +1)
N

N +V
(3.21)

We can now turn c∗i into a probability P∗i by normalizing by N.
A related way to view smoothing is as discounting (lowering) some non-zerodiscounting

counts in order to get the probability mass that will be assigned to the zero counts.
Thus, instead of referring to the discounted counts c∗, we might describe a smooth-
ing algorithm in terms of a relative discount dc, the ratio of the discounted counts todiscount

the original counts:
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dc =
c∗

c
Now that we have the intuition for the unigram case, let’s smooth our Berkeley

Restaurant Project bigrams. Figure 3.5 shows the add-one smoothed counts for the
bigrams in Fig. 3.1.

i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 3.5 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Figure 3.6 shows the add-one smoothed probabilities for the bigrams in Fig. 3.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.22)

For add-one smoothed bigram counts, we need to augment the unigram count by
the number of total word types in the vocabulary V :

P∗Laplace(wn|wn−1) =
C(wn−1wn)+1∑
w (C(wn−1w)+1)

=
C(wn−1wn)+1
C(wn−1)+V

(3.23)

Thus, each of the unigram counts given in the previous section will need to be
augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 3.6.

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 3.6 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 3.24. Figure 3.7 shows the reconstructed counts.

c∗(wn−1wn) =
[C(wn−1wn)+1]×C(wn−1)

C(wn−1)+V
(3.24)
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i want to eat chinese food lunch spend
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 3.7 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.

Note that add-one smoothing has made a very big change to the counts. C(want to)
changed from 609 to 238! We can see this in probability space as well: P(to|want)
decreases from .66 in the unsmoothed case to .26 in the smoothed case. Looking at
the discount d (the ratio between new and old counts) shows us how strikingly the
counts for each prefix word have been reduced; the discount for the bigram want to
is .39, while the discount for Chinese food is .10, a factor of 10!

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

3.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P∗Add-k(wn|wn−1) =
C(wn−1wn)+ k
C(wn−1)+ kV

(3.25)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

3.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency n-grams. But there is an additional source of knowledge we can draw on.
If we are trying to compute P(wn|wn−2wn−1) but we have no examples of a particular
trigram wn−2wn−1wn, we can instead estimate its probability by using the bigram
probability P(wn|wn−1). Similarly, if we don’t have counts to compute P(wn|wn−1),
we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this n-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order n-gram if we have zero evidence for a higher-order
n-gram. By contrast, in interpolation, we always mix the probability estimates frominterpolation

all the n-gram estimators, weighing and combining the trigram, bigram, and unigram
counts.
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In simple linear interpolation, we combine different order n-grams by linearly in-
terpolating all the models. Thus, we estimate the trigram probability P(wn|wn−2wn−1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a λ :

P̂(wn|wn−2wn−1) = λ1P(wn|wn−2wn−1)

+λ2P(wn|wn−1)

+λ3P(wn) (3.26)

such that the λ s sum to 1: ∑

i

λi = 1 (3.27)

In a slightly more sophisticated version of linear interpolation, each λ weight is
computed by conditioning on the context. This way, if we have particularly accurate
counts for a particular bigram, we assume that the counts of the trigrams based on
this bigram will be more trustworthy, so we can make the λ s for those trigrams
higher and thus give that trigram more weight in the interpolation. Equation 3.28
shows the equation for interpolation with context-conditioned weights:

P̂(wn|wn−2wn−1) = λ1(wn−2:n−1)P(wn|wn−2wn−1)

+λ2(wn−2:n−1)P(wn|wn−1)

+λ3(wn−2:n−1)P(wn) (3.28)

How are these λ values set? Both the simple interpolation and conditional inter-
polation λ s are learned from a held-out corpus. A held-out corpus is an additionalheld-out

training corpus that we use to set hyperparameters like these λ values, by choosing
the λ values that maximize the likelihood of the held-out corpus. That is, we fix
the n-gram probabilities and then search for the λ values that—when plugged into
Eq. 3.26—give us the highest probability of the held-out set. There are various ways
to find this optimal set of λ s. One way is to use the EM algorithm, an iterative
learning algorithm that converges on locally optimal λ s (Jelinek and Mercer, 1980).

In a backoff n-gram model, if the n-gram we need has zero counts, we approxi-
mate it by backing off to the (N-1)-gram. We continue backing off until we reach a
history that has some counts.

In order for a backoff model to give a correct probability distribution, we have
to discount the higher-order n-grams to save some probability mass for the lowerdiscount

order n-grams. Just as with add-one smoothing, if the higher-order n-grams aren’t
discounted and we just used the undiscounted MLE probability, then as soon as we
replaced an n-gram which has zero probability with a lower-order n-gram, we would
be adding probability mass, and the total probability assigned to all possible strings
by the language model would be greater than 1! In addition to this explicit discount
factor, we’ll need a function α to distribute this probability mass to the lower order
n-grams.

This kind of backoff with discounting is also called Katz backoff. In Katz back-Katz backoff

off we rely on a discounted probability P∗ if we’ve seen this n-gram before (i.e., if
we have non-zero counts). Otherwise, we recursively back off to the Katz probabil-
ity for the shorter-history (N-1)-gram. The probability for a backoff n-gram PBO is
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thus computed as follows:

PBO(wn|wn−N+1:n−1) =





P∗(wn|wn−N+1:n−1), if C(wn−N+1:n)> 0

α(wn−N+1:n−1)PBO(wn|wn−N+2:n−1), otherwise. (3.29)

Katz backoff is often combined with a smoothing method called Good-Turing.Good-Turing

The combined Good-Turing backoff algorithm involves quite detailed computation
for estimating the Good-Turing smoothing and the P∗ and α values.

3.5 Kneser-Ney Smoothing

One of the most commonly used and best performing n-gram smoothing methods
is the interpolated Kneser-Ney algorithm (Kneser and Ney 1995, Chen and Good-Kneser-Ney

man 1998).
Kneser-Ney has its roots in a method called absolute discounting. Recall that

discounting of the counts for frequent n-grams is necessary to save some probability
mass for the smoothing algorithm to distribute to the unseen n-grams.

To see this, we can use a clever idea from Church and Gale (1991). Consider
an n-gram that has count 4. We need to discount this count by some amount. But
how much should we discount it? Church and Gale’s clever idea was to look at a
held-out corpus and just see what the count is for all those bigrams that had count
4 in the training set. They computed a bigram grammar from 22 million words of
AP newswire and then checked the counts of each of these bigrams in another 22
million words. On average, a bigram that occurred 4 times in the first 22 million
words occurred 3.23 times in the next 22 million words. Fig. 3.8 from Church and
Gale (1991) shows these counts for bigrams with c from 0 to 9.

Bigram count in Bigram count in
training set heldout set

0 0.0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

Figure 3.8 For all bigrams in 22 million words of AP newswire of count 0, 1, 2,...,9, the
counts of these bigrams in a held-out corpus also of 22 million words.

Notice in Fig. 3.8 that except for the held-out counts for 0 and 1, all the other
bigram counts in the held-out set could be estimated pretty well by just subtracting
0.75 from the count in the training set! Absolute discounting formalizes this intu-Absolute

discounting
ition by subtracting a fixed (absolute) discount d from each count. The intuition is
that since we have good estimates already for the very high counts, a small discount
d won’t affect them much. It will mainly modify the smaller counts, for which we
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don’t necessarily trust the estimate anyway, and Fig. 3.8 suggests that in practice this
discount is actually a good one for bigrams with counts 2 through 9. The equation
for interpolated absolute discounting applied to bigrams:

PAbsoluteDiscounting(wi|wi−1) =
C(wi−1wi)−d∑

v C(wi−1 v)
+λ (wi−1)P(wi) (3.30)

The first term is the discounted bigram, and the second term is the unigram with
an interpolation weight λ . We could just set all the d values to .75, or we could keep
a separate discount value of 0.5 for the bigrams with counts of 1.

Kneser-Ney discounting (Kneser and Ney, 1995) augments absolute discount-
ing with a more sophisticated way to handle the lower-order unigram distribution.
Consider the job of predicting the next word in this sentence, assuming we are inter-
polating a bigram and a unigram model.

I can’t see without my reading .

The word glasses seems much more likely to follow here than, say, the word
Kong, so we’d like our unigram model to prefer glasses. But in fact it’s Kong that is
more common, since Hong Kong is a very frequent word. A standard unigram model
will assign Kong a higher probability than glasses. We would like to capture the
intuition that although Kong is frequent, it is mainly only frequent in the phrase Hong
Kong, that is, after the word Hong. The word glasses has a much wider distribution.

In other words, instead of P(w), which answers the question “How likely is
w?”, we’d like to create a unigram model that we might call PCONTINUATION, which
answers the question “How likely is w to appear as a novel continuation?”. How can
we estimate this probability of seeing the word w as a novel continuation, in a new
unseen context? The Kneser-Ney intuition is to base our estimate of PCONTINUATION
on the number of different contexts word w has appeared in, that is, the number of
bigram types it completes. Every bigram type was a novel continuation the first time
it was seen. We hypothesize that words that have appeared in more contexts in the
past are more likely to appear in some new context as well. The number of times a
word w appears as a novel continuation can be expressed as:

PCONTINUATION(w) ∝ |{v : C(vw)> 0}| (3.31)

To turn this count into a probability, we normalize by the total number of word
bigram types. In summary:

PCONTINUATION(w) =
|{v : C(vw)> 0}|

|{(u′,w′) : C(u′w′)> 0}| (3.32)

An equivalent formulation based on a different metaphor is to use the number of
word types seen to precede w (Eq. 3.31 repeated):

PCONTINUATION(w) ∝ |{v : C(vw)> 0}| (3.33)

normalized by the number of words preceding all words, as follows:

PCONTINUATION(w) =
|{v : C(vw)> 0}|∑
w′ |{v : C(vw′)> 0}| (3.34)

A frequent word (Kong) occurring in only one context (Hong) will have a low
continuation probability.
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The final equation for Interpolated Kneser-Ney smoothing for bigrams is then:Interpolated
Kneser-Ney

PKN(wi|wi−1) =
max(C(wi−1wi)−d,0)

C(wi−1)
+λ (wi−1)PCONTINUATION(wi) (3.35)

The λ is a normalizing constant that is used to distribute the probability mass
we’ve discounted.:

λ (wi−1) =
d∑

v C(wi−1v)
|{w : C(wi−1w)> 0}| (3.36)

The first term,
d∑

v C(wi−1v)
, is the normalized discount. The second term,

|{w : C(wi−1w)> 0}|, is the number of word types that can follow wi−1 or, equiva-
lently, the number of word types that we discounted; in other words, the number of
times we applied the normalized discount.

The general recursive formulation is as follows:

PKN(wi|wi−n+1:i−1) =
max(cKN(w i−n+1: i)−d,0)∑

v cKN(wi−n+1:i−1 v)
+λ (wi−n+1:i−1)PKN(wi|wi−n+2:i−1) (3.37)

where the definition of the count cKN depends on whether we are counting the
highest-order n-gram being interpolated (for example trigram if we are interpolating
trigram, bigram, and unigram) or one of the lower-order n-grams (bigram or unigram
if we are interpolating trigram, bigram, and unigram):

cKN(·) =
{

count(·) for the highest order
continuationcount(·) for lower orders (3.38)

The continuation count is the number of unique single word contexts for ·.
At the termination of the recursion, unigrams are interpolated with the uniform

distribution, where the parameter ε is the empty string:

PKN(w) =
max(cKN(w)−d,0)∑

w′ cKN(w′)
+λ (ε)

1
V

(3.39)

If we want to include an unknown word <UNK>, it’s just included as a regular vo-
cabulary entry with count zero, and hence its probability will be a lambda-weighted
uniform distribution λ (ε)

V .
The best performing version of Kneser-Ney smoothing is called modified Kneser-

Ney smoothing, and is due to Chen and Goodman (1998). Rather than use a singlemodified
Kneser-Ney

fixed discount d, modified Kneser-Ney uses three different discounts d1, d2, and
d3+ for n-grams with counts of 1, 2 and three or more, respectively. See Chen and
Goodman (1998, p. 19) or Heafield et al. (2013) for the details.

3.6 Huge Language Models and Stupid Backoff

By using text from the web or other enormous collections, it is possible to build
extremely large language models. The Web 1 Trillion 5-gram corpus released by
Google includes various large sets of n-grams, including 1-grams through 5-grams
from all the five-word sequences that appear in at least 40 distinct books from
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1,024,908,267,229 words of text from publicly accessible Web pages in English
(Franz and Brants, 2006). Google has also released Google Books Ngrams cor-
pora with n-grams drawn from their book collections, including another 800 billion
tokens of of n-grams from Chinese, English, French, German, Hebrew, Italian, Rus-
sian, and Spanish (Lin et al., 2012a). Smaller but more carefully curated n-gram cor-
pora for English include the million most frequent n-grams drawn from the COCA
(Corpus of Contemporary American English) 1 billion word corpus of American
English (Davies, 2020). COCA is a balanced corpora, meaning that it has roughly
equal numbers of words from different genres: web, newspapers, spoken conversa-
tion transcripts, fiction, and so on, drawn from the period 1990-2019, and has the
context of each n-gram as well as labels for genre and provenance).

Some example 4-grams from the Google Web corpus:

4-gram Count
serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45

Efficiency considerations are important when building language models that use
such large sets of n-grams. Rather than store each word as a string, it is generally
represented in memory as a 64-bit hash number, with the words themselves stored
on disk. Probabilities are generally quantized using only 4-8 bits (instead of 8-byte
floats), and n-grams are stored in reverse tries.

N-grams can also be shrunk by pruning, for example only storing n-grams with
counts greater than some threshold (such as the count threshold of 40 used for the
Google n-gram release) or using entropy to prune less-important n-grams (Stolcke,
1998). Another option is to build approximate language models using techniques
like Bloom filters (Talbot and Osborne 2007, Church et al. 2007). Finally, effi-Bloom filters

cient language model toolkits like KenLM (Heafield 2011, Heafield et al. 2013) use
sorted arrays, efficiently combine probabilities and backoffs in a single value, and
use merge sorts to efficiently build the probability tables in a minimal number of
passes through a large corpus.

Although with these toolkits it is possible to build web-scale language models
using full Kneser-Ney smoothing, Brants et al. (2007) show that with very large lan-
guage models a much simpler algorithm may be sufficient. The algorithm is called
stupid backoff. Stupid backoff gives up the idea of trying to make the languagestupid backoff

model a true probability distribution. There is no discounting of the higher-order
probabilities. If a higher-order n-gram has a zero count, we simply backoff to a
lower order n-gram, weighed by a fixed (context-independent) weight. This algo-
rithm does not produce a probability distribution, so we’ll follow Brants et al. (2007)
in referring to it as S:

S(wi|wi−1
i−k+1) =





count(wi
i−k+1)

count(wi−1
i−k+1)

if count(wi
i−k+1)> 0

λS(wi|wi−1
i−k+2) otherwise

(3.40)

The backoff terminates in the unigram, which has probability S(w)= count(w)
N . Brants

et al. (2007) find that a value of 0.4 worked well for λ .
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3.7 Advanced: Perplexity’s Relation to Entropy

We introduced perplexity in Section 3.2.1 as a way to evaluate n-gram models on
a test set. A better n-gram model is one that assigns a higher probability to the
test data, and perplexity is a normalized version of the probability of the test set.
The perplexity measure actually arises from the information-theoretic concept of
cross-entropy, which explains otherwise mysterious properties of perplexity (why
the inverse probability, for example?) and its relationship to entropy. Entropy is aEntropy

measure of information. Given a random variable X ranging over whatever we are
predicting (words, letters, parts of speech, the set of which we’ll call χ) and with a
particular probability function, call it p(x), the entropy of the random variable X is:

H(X) =−
∑

x∈χ

p(x) log2 p(x) (3.41)

The log can, in principle, be computed in any base. If we use log base 2, the
resulting value of entropy will be measured in bits.

One intuitive way to think about entropy is as a lower bound on the number of
bits it would take to encode a certain decision or piece of information in the optimal
coding scheme.

Consider an example from the standard information theory textbook Cover and
Thomas (1991). Imagine that we want to place a bet on a horse race but it is too
far to go all the way to Yonkers Racetrack, so we’d like to send a short message to
the bookie to tell him which of the eight horses to bet on. One way to encode this
message is just to use the binary representation of the horse’s number as the code;
thus, horse 1 would be 001, horse 2 010, horse 3 011, and so on, with horse 8 coded
as 000. If we spend the whole day betting and each horse is coded with 3 bits, on
average we would be sending 3 bits per race.

Can we do better? Suppose that the spread is the actual distribution of the bets
placed and that we represent it as the prior probability of each horse as follows:

Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

The entropy of the random variable X that ranges over horses gives us a lower
bound on the number of bits and is

H(X) = −
i=8∑

i=1

p(i) log p(i)

= − 1
2 log 1

2− 1
4 log 1

4− 1
8 log 1

8− 1
16 log 1

16−4( 1
64 log 1

64 )

= 2 bits (3.42)

A code that averages 2 bits per race can be built with short encodings for more
probable horses, and longer encodings for less probable horses. For example, we
could encode the most likely horse with the code 0, and the remaining horses as 10,
then 110, 1110, 111100, 111101, 111110, and 111111.
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What if the horses are equally likely? We saw above that if we used an equal-
length binary code for the horse numbers, each horse took 3 bits to code, so the
average was 3. Is the entropy the same? In this case each horse would have a
probability of 1

8 . The entropy of the choice of horses is then

H(X) =−
i=8∑

i=1

1
8

log
1
8
=− log

1
8
= 3 bits (3.43)

Until now we have been computing the entropy of a single variable. But most of
what we will use entropy for involves sequences. For a grammar, for example, we
will be computing the entropy of some sequence of words W = {w0,w1,w2, . . . ,wn}.
One way to do this is to have a variable that ranges over sequences of words. For
example we can compute the entropy of a random variable that ranges over all finite
sequences of words of length n in some language L as follows:

H(w1,w2, . . . ,wn) =−
∑

W n
1 ∈L

p(W n
1 ) log p(W n

1 ) (3.44)

We could define the entropy rate (we could also think of this as the per-wordentropy rate

entropy) as the entropy of this sequence divided by the number of words:

1
n

H(W n
1 ) =−

1
n

∑

W n
1 ∈L

p(W n
1 ) log p(W n

1 ) (3.45)

But to measure the true entropy of a language, we need to consider sequences of
infinite length. If we think of a language as a stochastic process L that produces a
sequence of words, and allow W to represent the sequence of words w1, . . . ,wn, then
L’s entropy rate H(L) is defined as

H(L) = lim
n→∞

1
n

H(w1,w2, . . . ,wn)

= − lim
n→∞

1
n

∑

W∈L

p(w1, . . . ,wn) log p(w1, . . . ,wn) (3.46)

The Shannon-McMillan-Breiman theorem (Algoet and Cover 1988, Cover and
Thomas 1991) states that if the language is regular in certain ways (to be exact, if it
is both stationary and ergodic),

H(L) = lim
n→∞
−1

n
log p(w1w2 . . .wn) (3.47)

That is, we can take a single sequence that is long enough instead of summing
over all possible sequences. The intuition of the Shannon-McMillan-Breiman the-
orem is that a long-enough sequence of words will contain in it many other shorter
sequences and that each of these shorter sequences will reoccur in the longer se-
quence according to their probabilities.

A stochastic process is said to be stationary if the probabilities it assigns to aStationary

sequence are invariant with respect to shifts in the time index. In other words, the
probability distribution for words at time t is the same as the probability distribution
at time t + 1. Markov models, and hence n-grams, are stationary. For example, in
a bigram, Pi is dependent only on Pi−1. So if we shift our time index by x, Pi+x is
still dependent on Pi+x−1. But natural language is not stationary, since as we show
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in Chapter 12, the probability of upcoming words can be dependent on events that
were arbitrarily distant and time dependent. Thus, our statistical models only give
an approximation to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying assump-
tions, we can compute the entropy of some stochastic process by taking a very long
sample of the output and computing its average log probability.

Now we are ready to introduce cross-entropy. The cross-entropy is useful whencross-entropy

we don’t know the actual probability distribution p that generated some data. It
allows us to use some m, which is a model of p (i.e., an approximation to p). The
cross-entropy of m on p is defined by

H(p,m) = lim
n→∞
−1

n

∑

W∈L

p(w1, . . . ,wn) logm(w1, . . . ,wn) (3.48)

That is, we draw sequences according to the probability distribution p, but sum
the log of their probabilities according to m.

Again, following the Shannon-McMillan-Breiman theorem, for a stationary er-
godic process:

H(p,m) = lim
n→∞
−1

n
logm(w1w2 . . .wn) (3.49)

This means that, as for entropy, we can estimate the cross-entropy of a model
m on some distribution p by taking a single sequence that is long enough instead of
summing over all possible sequences.

What makes the cross-entropy useful is that the cross-entropy H(p,m) is an up-
per bound on the entropy H(p). For any model m:

H(p)≤ H(p,m) (3.50)

This means that we can use some simplified model m to help estimate the true en-
tropy of a sequence of symbols drawn according to probability p. The more accurate
m is, the closer the cross-entropy H(p,m) will be to the true entropy H(p). Thus,
the difference between H(p,m) and H(p) is a measure of how accurate a model is.
Between two models m1 and m2, the more accurate model will be the one with the
lower cross-entropy. (The cross-entropy can never be lower than the true entropy, so
a model cannot err by underestimating the true entropy.)

We are finally ready to see the relation between perplexity and cross-entropy
as we saw it in Eq. 3.49. Cross-entropy is defined in the limit as the length of the
observed word sequence goes to infinity. We will need an approximation to cross-
entropy, relying on a (sufficiently long) sequence of fixed length. This approxima-
tion to the cross-entropy of a model M = P(wi|wi−N+1...wi−1) on a sequence of
words W is

H(W ) =− 1
N

logP(w1w2 . . .wN) (3.51)

The perplexity of a model P on a sequence of words W is now formally defined asperplexity

the exp of this cross-entropy:
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Perplexity(W ) = 2H(W )

= P(w1w2 . . .wN)
− 1

N

= N

√
1

P(w1w2 . . .wN)

= N

√√√√
N∏

i=1

1
P(wi|w1 . . .wi−1)

(3.52)

3.8 Summary

This chapter introduced language modeling and the n-gram, one of the most widely
used tools in language processing.

• Language models offer a way to assign a probability to a sentence or other
sequence of words, and to predict a word from preceding words.

• n-grams are Markov models that estimate words from a fixed window of pre-
vious words. n-gram probabilities can be estimated by counting in a corpus
and normalizing (the maximum likelihood estimate).

• n-gram language models are evaluated extrinsically in some task, or intrinsi-
cally using perplexity.

• The perplexity of a test set according to a language model is the geometric
mean of the inverse test set probability computed by the model.

• Smoothing algorithms provide a more sophisticated way to estimate the prob-
ability of n-grams. Commonly used smoothing algorithms for n-grams rely on
lower-order n-gram counts through backoff or interpolation.

• Both backoff and interpolation require discounting to create a probability dis-
tribution.

• Kneser-Ney smoothing makes use of the probability of a word being a novel
continuation. The interpolated Kneser-Ney smoothing algorithm mixes a
discounted probability with a lower-order continuation probability.

Bibliographical and Historical Notes
The underlying mathematics of the n-gram was first proposed by Markov (1913),
who used what are now called Markov chains (bigrams and trigrams) to predict
whether an upcoming letter in Pushkin’s Eugene Onegin would be a vowel or a con-
sonant. Markov classified 20,000 letters as V or C and computed the bigram and
trigram probability that a given letter would be a vowel given the previous one or
two letters. Shannon (1948) applied n-grams to compute approximations to English
word sequences. Based on Shannon’s work, Markov models were commonly used in
engineering, linguistic, and psychological work on modeling word sequences by the
1950s. In a series of extremely influential papers starting with Chomsky (1956) and
including Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued
that “finite-state Markov processes”, while a possibly useful engineering heuristic,
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were incapable of being a complete cognitive model of human grammatical knowl-
edge. These arguments led many linguists and computational linguists to ignore
work in statistical modeling for decades.

The resurgence of n-gram models came from Jelinek and colleagues at the IBM
Thomas J. Watson Research Center, who were influenced by Shannon, and Baker
at CMU, who was influenced by the work of Baum and colleagues. Independently
these two labs successfully used n-grams in their speech recognition systems (Baker 1975b,
Jelinek 1976, Baker 1975a, Bahl et al. 1983, Jelinek 1990).

Add-one smoothing derives from Laplace’s 1812 law of succession and was first
applied as an engineering solution to the zero frequency problem by Jeffreys (1948)
based on an earlier Add-K suggestion by Johnson (1932). Problems with the add-
one algorithm are summarized in Gale and Church (1994).

A wide variety of different language modeling and smoothing techniques were
proposed in the 80s and 90s, including Good-Turing discounting—first applied to
the n-gram smoothing at IBM by Katz (Nádas 1984, Church and Gale 1991)—
Witten-Bell discounting (Witten and Bell, 1991), and varieties of class-based n-
gram models that used information about word classes.class-based

n-gram
Starting in the late 1990s, Chen and Goodman performed a number of carefully

controlled experiments comparing different discounting algorithms, cache models,
class-based models, and other language model parameters (Chen and Goodman 1999,
Goodman 2006, inter alia). They showed the advantages of Modified Interpolated
Kneser-Ney, which became the standard baseline for n-gram language modeling,
especially because they showed that caches and class-based models provided only
minor additional improvement. These papers are recommended for any reader with
further interest in n-gram language modeling. SRILM (Stolcke, 2002) and KenLM
(Heafield 2011, Heafield et al. 2013) are publicly available toolkits for building n-
gram language models.

Modern language modeling is more commonly done with neural network lan-
guage models, which solve the major problems with n-grams: the number of param-
eters increases exponentially as the n-gram order increases, and n-grams have no
way to generalize from training to test set. Neural language models instead project
words into a continuous space in which words with similar contexts have simi-
lar representations. We’ll introduce both feedforward language models (Bengio
et al. 2006, Schwenk 2007) in Chapter 7, and recurrent language models (Mikolov,
2012) in Chapter 9.

Exercises
3.1 Write out the equation for trigram probability estimation (modifying Eq. 3.11).

Now write out all the non-zero trigram probabilities for the I am Sam corpus
on page 32.

3.2 Calculate the probability of the sentence i want chinese food. Give two
probabilities, one using Fig. 3.2 and the ‘useful probabilities’ just below it on
page 34, and another using the add-1 smoothed table in Fig. 3.6. Assume the
additional add-1 smoothed probabilities P(i|<s>)= 0.19 and P(</s>|food)=
0.40.

3.3 Which of the two probabilities you computed in the previous exercise is higher,
unsmoothed or smoothed? Explain why.

3.4 We are given the following corpus, modified from the one in the chapter:
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<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

Using a bigram language model with add-one smoothing, what is P(Sam |
am)? Include <s> and </s> in your counts just like any other token.

3.5 Suppose we didn’t use the end-symbol </s>. Train an unsmoothed bigram
grammar on the following training corpus without using the end-symbol </s>:

<s> a b

<s> b b

<s> b a

<s> a a

Demonstrate that your bigram model does not assign a single probability dis-
tribution across all sentence lengths by showing that the sum of the probability
of the four possible 2 word sentences over the alphabet {a,b} is 1.0, and the
sum of the probability of all possible 3 word sentences over the alphabet {a,b}
is also 1.0.

3.6 Suppose we train a trigram language model with add-one smoothing on a
given corpus. The corpus contains V word types. Express a formula for esti-
mating P(w3|w1,w2), where w3 is a word which follows the bigram (w1,w2),
in terms of various N-gram counts and V. Use the notation c(w1,w2,w3) to
denote the number of times that trigram (w1,w2,w3) occurs in the corpus, and
so on for bigrams and unigrams.

3.7 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

If we use linear interpolation smoothing between a maximum-likelihood bi-
gram model and a maximum-likelihood unigram model with λ1 =

1
2 and λ2 =

1
2 , what is P(Sam|am)? Include <s> and </s> in your counts just like any
other token.

3.8 Write a program to compute unsmoothed unigrams and bigrams.

3.9 Run your n-gram program on two different small corpora of your choice (you
might use email text or newsgroups). Now compare the statistics of the two
corpora. What are the differences in the most common unigrams between the
two? How about interesting differences in bigrams?

3.10 Add an option to your program to generate random sentences.

3.11 Add an option to your program to compute the perplexity of a test set.

3.12 You are given a training set of 100 numbers that consists of 91 zeros and 1
each of the other digits 1-9. Now we see the following test set: 0 0 0 0 0 3 0 0
0 0. What is the unigram perplexity?
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4 Naive Bayes and Sentiment
Classification

Classification lies at the heart of both human and machine intelligence. Deciding
what letter, word, or image has been presented to our senses, recognizing faces
or voices, sorting mail, assigning grades to homeworks; these are all examples of
assigning a category to an input. The potential challenges of this task are highlighted
by the fabulist Jorge Luis Borges (1964), who imagined classifying animals into:

(a) those that belong to the Emperor, (b) embalmed ones, (c) those that
are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray
dogs, (h) those that are included in this classification, (i) those that
tremble as if they were mad, (j) innumerable ones, (k) those drawn with
a very fine camel’s hair brush, (l) others, (m) those that have just broken
a flower vase, (n) those that resemble flies from a distance.

Many language processing tasks involve classification, although luckily our classes
are much easier to define than those of Borges. In this chapter we introduce the naive
Bayes algorithm and apply it to text categorization, the task of assigning a label ortext

categorization
category to an entire text or document.

We focus on one common text categorization task, sentiment analysis, the ex-sentiment
analysis

traction of sentiment, the positive or negative orientation that a writer expresses
toward some object. A review of a movie, book, or product on the web expresses the
author’s sentiment toward the product, while an editorial or political text expresses
sentiment toward a candidate or political action. Extracting consumer or public sen-
timent is thus relevant for fields from marketing to politics.

The simplest version of sentiment analysis is a binary classification task, and
the words of the review provide excellent cues. Consider, for example, the follow-
ing phrases extracted from positive and negative reviews of movies and restaurants.
Words like great, richly, awesome, and pathetic, and awful and ridiculously are very
informative cues:

+ ...zany characters and richly applied satire, and some great plot twists
− It was pathetic. The worst part about it was the boxing scenes...
+ ...awesome caramel sauce and sweet toasty almonds. I love this place!
− ...awful pizza and ridiculously overpriced...

Spam detection is another important commercial application, the binary clas-spam detection

sification task of assigning an email to one of the two classes spam or not-spam.
Many lexical and other features can be used to perform this classification. For ex-
ample you might quite reasonably be suspicious of an email containing phrases like
“online pharmaceutical” or “WITHOUT ANY COST” or “Dear Winner”.

Another thing we might want to know about a text is the language it’s written
in. Texts on social media, for example, can be in any number of languages and
we’ll need to apply different processing. The task of language id is thus the firstlanguage id

step in most language processing pipelines. Related text classification tasks like au-
thorship attribution— determining a text’s author— are also relevant to the digitalauthorship

attribution
humanities, social sciences, and forensic linguistics.
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Finally, one of the oldest tasks in text classification is assigning a library sub-
ject category or topic label to a text. Deciding whether a research paper concerns
epidemiology or instead, perhaps, embryology, is an important component of infor-
mation retrieval. Various sets of subject categories exist, such as the MeSH (Medical
Subject Headings) thesaurus. In fact, as we will see, subject category classification
is the task for which the naive Bayes algorithm was invented in 1961.

Classification is essential for tasks below the level of the document as well.
We’ve already seen period disambiguation (deciding if a period is the end of a sen-
tence or part of a word), and word tokenization (deciding if a character should be
a word boundary). Even language modeling can be viewed as classification: each
word can be thought of as a class, and so predicting the next word is classifying the
context-so-far into a class for each next word. A part-of-speech tagger (Chapter 8)
classifies each occurrence of a word in a sentence as, e.g., a noun or a verb.

The goal of classification is to take a single observation, extract some useful
features, and thereby classify the observation into one of a set of discrete classes.
One method for classifying text is to use handwritten rules. There are many areas of
language processing where handwritten rule-based classifiers constitute a state-of-
the-art system, or at least part of it.

Rules can be fragile, however, as situations or data change over time, and for
some tasks humans aren’t necessarily good at coming up with the rules. Most cases
of classification in language processing are instead done via supervised machine
learning, and this will be the subject of the remainder of this chapter. In supervised

supervised
machine
learning

learning, we have a data set of input observations, each associated with some correct
output (a ‘supervision signal’). The goal of the algorithm is to learn how to map
from a new observation to a correct output.

Formally, the task of supervised classification is to take an input x and a fixed
set of output classes Y = y1,y2, ...,yM and return a predicted class y ∈ Y . For text
classification, we’ll sometimes talk about c (for “class”) instead of y as our output
variable, and d (for “document”) instead of x as our input variable. In the supervised
situation we have a training set of N documents that have each been hand-labeled
with a class: (d1,c1), ....,(dN ,cN). Our goal is to learn a classifier that is capable of
mapping from a new document d to its correct class c∈C. A probabilistic classifier
additionally will tell us the probability of the observation being in the class. This
full distribution over the classes can be useful information for downstream decisions;
avoiding making discrete decisions early on can be useful when combining systems.

Many kinds of machine learning algorithms are used to build classifiers. This
chapter introduces naive Bayes; the following one introduces logistic regression.
These exemplify two ways of doing classification. Generative classifiers like naive
Bayes build a model of how a class could generate some input data. Given an ob-
servation, they return the class most likely to have generated the observation. Dis-
criminative classifiers like logistic regression instead learn what features from the
input are most useful to discriminate between the different possible classes. While
discriminative systems are often more accurate and hence more commonly used,
generative classifiers still have a role.

4.1 Naive Bayes Classifiers

In this section we introduce the multinomial naive Bayes classifier, so called be-naive Bayes
classifier

cause it is a Bayesian classifier that makes a simplifying (naive) assumption about
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how the features interact.
The intuition of the classifier is shown in Fig. 4.1. We represent a text document

as if it were a bag-of-words, that is, an unordered set of words with their positionbag-of-words

ignored, keeping only their frequency in the document. In the example in the figure,
instead of representing the word order in all the phrases like “I love this movie” and
“I would recommend it”, we simply note that the word I occurred 5 times in the
entire excerpt, the word it 6 times, the words love, recommend, and movie once, and
so on.

it

it

it
it

it
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I love this movie! It's sweet, 
but with satirical humor. The 
dialogue is great and the 
adventure scenes are fun... 
It manages to be whimsical 
and romantic while laughing 
at the conventions of the 
fairy tale genre. I would 
recommend it to just about 
anyone. I've seen it several 
times, and I'm always happy 
to see it again whenever I 
have a friend who hasn't 
seen it yet!

it 
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to
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Figure 4.1 Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the
words is ignored (the bag of words assumption) and we make use of the frequency of each word.

Naive Bayes is a probabilistic classifier, meaning that for a document d, out of
all classes c ∈C the classifier returns the class ĉ which has the maximum posterior
probability given the document. In Eq. 4.1 we use the hat notation ˆ to mean “ourˆ

estimate of the correct class”.

ĉ = argmax
c∈C

P(c|d) (4.1)

This idea of Bayesian inference has been known since the work of Bayes (1763),Bayesian
inference

and was first applied to text classification by Mosteller and Wallace (1964). The
intuition of Bayesian classification is to use Bayes’ rule to transform Eq. 4.1 into
other probabilities that have some useful properties. Bayes’ rule is presented in
Eq. 4.2; it gives us a way to break down any conditional probability P(x|y) into
three other probabilities:

P(x|y) = P(y|x)P(x)
P(y)

(4.2)

We can then substitute Eq. 4.2 into Eq. 4.1 to get Eq. 4.3:

ĉ = argmax
c∈C

P(c|d) = argmax
c∈C

P(d|c)P(c)
P(d)

(4.3)
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We can conveniently simplify Eq. 4.3 by dropping the denominator P(d). This
is possible because we will be computing P(d|c)P(c)

P(d) for each possible class. But P(d)
doesn’t change for each class; we are always asking about the most likely class for
the same document d, which must have the same probability P(d). Thus, we can
choose the class that maximizes this simpler formula:

ĉ = argmax
c∈C

P(c|d) = argmax
c∈C

P(d|c)P(c) (4.4)

We call Naive Bayes a generative model because we can read Eq. 4.4 as stating
a kind of implicit assumption about how a document is generated: first a class is
sampled from P(c), and then the words are generated by sampling from P(d|c). (In
fact we could imagine generating artificial documents, or at least their word counts,
by following this process). We’ll say more about this intuition of generative models
in Chapter 5.

To return to classification: we compute the most probable class ĉ given some
document d by choosing the class which has the highest product of two probabilities:
the prior probability of the class P(c) and the likelihood of the document P(d|c):prior

probability
likelihood

ĉ = argmax
c∈C

likelihood︷ ︸︸ ︷
P(d|c)

prior︷︸︸︷
P(c) (4.5)

Without loss of generalization, we can represent a document d as a set of features
f1, f2, ..., fn:

ĉ = argmax
c∈C

likelihood︷ ︸︸ ︷
P( f1, f2, ...., fn|c)

prior︷︸︸︷
P(c) (4.6)

Unfortunately, Eq. 4.6 is still too hard to compute directly: without some sim-
plifying assumptions, estimating the probability of every possible combination of
features (for example, every possible set of words and positions) would require huge
numbers of parameters and impossibly large training sets. Naive Bayes classifiers
therefore make two simplifying assumptions.

The first is the bag of words assumption discussed intuitively above: we assume
position doesn’t matter, and that the word “love” has the same effect on classification
whether it occurs as the 1st, 20th, or last word in the document. Thus we assume
that the features f1, f2, ..., fn only encode word identity and not position.

The second is commonly called the naive Bayes assumption: this is the condi-naive Bayes
assumption

tional independence assumption that the probabilities P( fi|c) are independent given
the class c and hence can be ‘naively’ multiplied as follows:

P( f1, f2, ...., fn|c) = P( f1|c) ·P( f2|c) · ... ·P( fn|c) (4.7)

The final equation for the class chosen by a naive Bayes classifier is thus:

cNB = argmax
c∈C

P(c)
∏

f∈F

P( f |c) (4.8)

To apply the naive Bayes classifier to text, we need to consider word positions, by
simply walking an index through every word position in the document:

positions ← all word positions in test document

cNB = argmax
c∈C

P(c)
∏

i∈positions

P(wi|c) (4.9)
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Naive Bayes calculations, like calculations for language modeling, are done in log
space, to avoid underflow and increase speed. Thus Eq. 4.9 is generally instead
expressed as

cNB = argmax
c∈C

logP(c)+
∑

i∈positions

logP(wi|c) (4.10)

By considering features in log space, Eq. 4.10 computes the predicted class as a lin-
ear function of input features. Classifiers that use a linear combination of the inputs
to make a classification decision —like naive Bayes and also logistic regression—
are called linear classifiers.linear

classifiers

4.2 Training the Naive Bayes Classifier

How can we learn the probabilities P(c) and P( fi|c)? Let’s first consider the maxi-
mum likelihood estimate. We’ll simply use the frequencies in the data. For the class
prior P(c) we ask what percentage of the documents in our training set are in each
class c. Let Nc be the number of documents in our training data with class c and
Ndoc be the total number of documents. Then:

P̂(c) =
Nc

Ndoc
(4.11)

To learn the probability P( fi|c), we’ll assume a feature is just the existence of a word
in the document’s bag of words, and so we’ll want P(wi|c), which we compute as
the fraction of times the word wi appears among all words in all documents of topic
c. We first concatenate all documents with category c into one big “category c” text.
Then we use the frequency of wi in this concatenated document to give a maximum
likelihood estimate of the probability:

P̂(wi|c) =
count(wi,c)∑
w∈V count(w,c)

(4.12)

Here the vocabulary V consists of the union of all the word types in all classes, not
just the words in one class c.

There is a problem, however, with maximum likelihood training. Imagine we
are trying to estimate the likelihood of the word “fantastic” given class positive, but
suppose there are no training documents that both contain the word “fantastic” and
are classified as positive. Perhaps the word “fantastic” happens to occur (sarcasti-
cally?) in the class negative. In such a case the probability for this feature will be
zero:

P̂(“fantastic”|positive) =
count(“fantastic”,positive)∑

w∈V count(w,positive)
= 0 (4.13)

But since naive Bayes naively multiplies all the feature likelihoods together, zero
probabilities in the likelihood term for any class will cause the probability of the
class to be zero, no matter the other evidence!

The simplest solution is the add-one (Laplace) smoothing introduced in Chap-
ter 3. While Laplace smoothing is usually replaced by more sophisticated smoothing
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algorithms in language modeling, it is commonly used in naive Bayes text catego-
rization:

P̂(wi|c) =
count(wi,c)+1∑

w∈V (count(w,c)+1)
=

count(wi,c)+1(∑
w∈V count(w,c)

)
+ |V | (4.14)

Note once again that it is crucial that the vocabulary V consists of the union of all the
word types in all classes, not just the words in one class c (try to convince yourself
why this must be true; see the exercise at the end of the chapter).

What do we do about words that occur in our test data but are not in our vocab-
ulary at all because they did not occur in any training document in any class? The
solution for such unknown words is to ignore them—remove them from the testunknown word

document and not include any probability for them at all.
Finally, some systems choose to completely ignore another class of words: stop

words, very frequent words like the and a. This can be done by sorting the vocabu-stop words

lary by frequency in the training set, and defining the top 10–100 vocabulary entries
as stop words, or alternatively by using one of the many predefined stop word list
available online. Then every instance of these stop words are simply removed from
both training and test documents as if they had never occurred. In most text classi-
fication applications, however, using a stop word list doesn’t improve performance,
and so it is more common to make use of the entire vocabulary and not use a stop
word list.

Fig. 4.2 shows the final algorithm.

function TRAIN NAIVE BAYES(D, C) returns log P(c) and log P(w|c)

for each class c ∈ C # Calculate P(c) terms
Ndoc = number of documents in D
Nc = number of documents from D in class c

logprior[c]← log
Nc

Ndoc
V←vocabulary of D
bigdoc[c]←append(d) for d ∈ D with class c
for each word w in V # Calculate P(w|c) terms

count(w,c)←# of occurrences of w in bigdoc[c]

loglikelihood[w,c]← log
count(w,c) + 1∑

w′ in V (count (w′,c) + 1)
return logprior, loglikelihood, V

function TEST NAIVE BAYES(testdoc, logprior, loglikelihood, C, V) returns best c

for each class c ∈ C
sum[c]← logprior[c]
for each position i in testdoc

word← testdoc[i]
if word ∈ V

sum[c]←sum[c]+ loglikelihood[word,c]
return argmaxc sum[c]

Figure 4.2 The naive Bayes algorithm, using add-1 smoothing. To use add-α smoothing
instead, change the +1 to +α for loglikelihood counts in training.
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4.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. 4.11 as Nc
Ndoc

:

P(−) = 3
5

P(+) =
2
5

The word with doesn’t occur in the training set, so we drop it completely (as
mentioned above, we don’t use unknown word models for naive Bayes). The like-
lihoods from the training set for the remaining three words “predictable”, “no”, and
“fun”, are as follows, from Eq. 4.14 (computing the probabilities for the remainder
of the words in the training set is left as an exercise for the reader):

P(“predictable”|−) = 1+1
14+20

P(“predictable”|+) =
0+1

9+20

P(“no”|−) = 1+1
14+20

P(“no”|+) =
0+1

9+20

P(“fun”|−) = 0+1
14+20

P(“fun”|+) =
1+1

9+20

For the test sentence S = “predictable with no fun”, after removing the word ‘with’,
the chosen class, via Eq. 4.9, is therefore computed as follows:

P(−)P(S|−) =
3
5
× 2×2×1

343 = 6.1×10−5

P(+)P(S|+) =
2
5
× 1×1×2

293 = 3.2×10−5

The model thus predicts the class negative for the test sentence.

4.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis,
some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks,
whether a word occurs or not seems to matter more than its frequency. Thus it
often improves performance to clip the word counts in each document at 1 (see
the end of the chapter for pointers to these results). This variant is called binary



62 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

multinomial naive Bayes or binary NB. The variant uses the same Eq. 4.10 exceptbinary NB

that for each document we remove all duplicate words before concatenating them
into the single big document. Fig. 4.3 shows an example in which a set of four
documents (shortened and text-normalized for this example) are remapped to binary,
with the modified counts shown in the table on the right. The example is worked
without add-1 smoothing to make the differences clearer. Note that the results counts
need not be 1; the word great has a count of 2 even for Binary NB, because it appears
in multiple documents.

Four original documents:

− it was pathetic the worst part was the
boxing scenes

− no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

After per-document binarization:

− it was pathetic the worst part boxing
scenes

− no plot twists or great scenes
+ and satire great plot twists
+ great scenes film

NB Binary
Counts Counts
+ − + −

and 2 0 1 0
boxing 0 1 0 1
film 1 0 1 0
great 3 1 2 1
it 0 1 0 1
no 0 1 0 1
or 0 1 0 1
part 0 1 0 1
pathetic 0 1 0 1
plot 1 1 1 1
satire 1 0 1 0
scenes 1 2 1 2
the 0 2 0 1
twists 1 1 1 1
was 0 2 0 1
worst 0 1 0 1

Figure 4.3 An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for
sentiment is to deal with negation. Consider the difference between I really like this
movie (positive) and I didn’t like this movie (negative). The negation expressed by
didn’t completely alters the inferences we draw from the predicate like. Similarly,
negation can modify a negative word to produce a positive review (don’t dismiss this
film, doesn’t let us get bored).

A very simple baseline that is commonly used in sentiment analysis to deal with
negation is the following: during text normalization, prepend the prefix NOT to
every word after a token of logical negation (n’t, not, no, never) until the next punc-
tuation mark. Thus the phrase

didn’t like this movie , but I

becomes

didn’t NOT_like NOT_this NOT_movie , but I

Newly formed ‘words’ like NOT like, NOT recommend will thus occur more of-
ten in negative document and act as cues for negative sentiment, while words like
NOT bored, NOT dismiss will acquire positive associations. We will return in Chap-
ter 16 to the use of parsing to deal more accurately with the scope relationship be-
tween these negation words and the predicates they modify, but this simple baseline
works quite well in practice.

Finally, in some situations we might have insufficient labeled training data to
train accurate naive Bayes classifiers using all words in the training set to estimate
positive and negative sentiment. In such cases we can instead derive the positive
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and negative word features from sentiment lexicons, lists of words that are pre-sentiment
lexicons

annotated with positive or negative sentiment. Four popular lexicons are the General
Inquirer (Stone et al., 1966), LIWC (Pennebaker et al., 2007), the opinion lexiconGeneral

Inquirer
LIWC of Hu and Liu (2004a) and the MPQA Subjectivity Lexicon (Wilson et al., 2005).

For example the MPQA subjectivity lexicon has 6885 words, 2718 positive and
4912 negative, each marked for whether it is strongly or weakly biased. Some sam-
ples of positive and negative words from the MPQA lexicon include:

+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
− : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

A common way to use lexicons in a naive Bayes classifier is to add a feature
that is counted whenever a word from that lexicon occurs. Thus we might add a
feature called ‘this word occurs in the positive lexicon’, and treat all instances of
words in the lexicon as counts for that one feature, instead of counting each word
separately. Similarly, we might add as a second feature ‘this word occurs in the
negative lexicon’ of words in the negative lexicon. If we have lots of training data,
and if the test data matches the training data, using just two features won’t work as
well as using all the words. But when training data is sparse or not representative of
the test set, using dense lexicon features instead of sparse individual-word features
may generalize better.

We’ll return to this use of lexicons in Chapter 20, showing how these lexicons
can be learned automatically, and how they can be applied to many other tasks be-
yond sentiment classification.

4.5 Naive Bayes for other text classification tasks

In the previous section we pointed out that naive Bayes doesn’t require that our
classifier use all the words in the training data as features. In fact features in naive
Bayes can express any property of the input text we want.

Consider the task of spam detection, deciding if a particular piece of email isspam detection

an example of spam (unsolicited bulk email) — and one of the first applications of
naive Bayes to text classification (Sahami et al., 1998).

A common solution here, rather than using all the words as individual features,
is to predefine likely sets of words or phrases as features, combined with features
that are not purely linguistic. For example the open-source SpamAssassin tool1

predefines features like the phrase “one hundred percent guaranteed”, or the feature
mentions millions of dollars, which is a regular expression that matches suspiciously
large sums of money. But it also includes features like HTML has a low ratio of text
to image area, that aren’t purely linguistic and might require some sophisticated
computation, or totally non-linguistic features about, say, the path that the email
took to arrive. More sample SpamAssassin features:

• Email subject line is all capital letters
• Contains phrases of urgency like “urgent reply”
• Email subject line contains “online pharmaceutical”
• HTML has unbalanced “head” tags
• Claims you can be removed from the list
For other tasks, like language ID—determining what language a given piecelanguage ID

1 https://spamassassin.apache.org

https://spamassassin.apache.org
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of text is written in—the most effective naive Bayes features are not words at all,
but character n-grams, 2-grams (‘zw’) 3-grams (‘nya’, ‘ Vo’), or 4-grams (‘ie z’,
‘thei’), or, even simpler byte n-grams, where instead of using the multibyte Unicode
character representations called codepoints, we just pretend everything is a string of
raw bytes. Because spaces count as a byte, byte n-grams can model statistics about
the beginning or ending of words. A widely used naive Bayes system, langid.py
(Lui and Baldwin, 2012) begins with all possible n-grams of lengths 1-4, using fea-
ture selection to winnow down to the most informative 7000 final features.

Language ID systems are trained on multilingual text, such as Wikipedia (Wiki-
pedia text in 68 different languages were used in (Lui and Baldwin, 2011)), or
newswire. To make sure that this multilingual text correctly reflects different re-
gions, dialects, and socioeconomic classes, systems also add Twitter text in many
languages geotagged to many regions (important for getting world English dialects
from countries with large Anglophone populations like Nigeria or India), Bible and
Quran translations, slang websites like Urban Dictionary, corpora of African Amer-
ican Vernacular English (Blodgett et al., 2016), and so on (Jurgens et al., 2017).

4.6 Naive Bayes as a Language Model

As we saw in the previous section, naive Bayes classifiers can use any sort of fea-
ture: dictionaries, URLs, email addresses, network features, phrases, and so on. But
if, as in the previous section, we use only individual word features, and we use all
of the words in the text (not a subset), then naive Bayes has an important similar-
ity to language modeling. Specifically, a naive Bayes model can be viewed as a
set of class-specific unigram language models, in which the model for each class
instantiates a unigram language model.

Since the likelihood features from the naive Bayes model assign a probability to
each word P(word|c), the model also assigns a probability to each sentence:

P(s|c) =
∏

i∈positions

P(wi|c) (4.15)

Thus consider a naive Bayes model with the classes positive (+) and negative (-)
and the following model parameters:

w P(w|+) P(w|-)
I 0.1 0.2
love 0.1 0.001
this 0.01 0.01
fun 0.05 0.005
film 0.1 0.1
... ... ...

Each of the two columns above instantiates a language model that can assign a
probability to the sentence “I love this fun film”:

P(“I love this fun film”|+) = 0.1×0.1×0.01×0.05×0.1 = 0.0000005
P(“I love this fun film”|−) = 0.2×0.001×0.01×0.005×0.1 = .0000000010
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As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes
model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

4.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a confusion matrix like the one shown in Fig. 4.4. A confusion matrixconfusion

matrix
is a table for visualizing how an algorithm performs with respect to the human gold
labels, using two dimensions (system output and gold labels), and each cell labeling
a set of possible outcomes. In the spam detection case, for example, true positives
are documents that are indeed spam (indicated by human-created gold labels) that
our system correctly said were spam. False negatives are documents that are indeed
spam but our system incorrectly labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it for text classification tasks. That’s because accuracy
doesn’t work well when the classes are unbalanced (as indeed they are with spam,
which is a large majority of email, or with tweets, which are mainly not about pie).

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall = 
tp

tp+fn

precision = 
tp

tp+fp

accuracy = 
tp+tn

tp+fp+tn+fn

Figure 4.4 A confusion matrix for visualizing how well a binary classification system per-
forms against gold standard labels.

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,
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while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall

correctly identified by the system. Recall is defined as

Recall =
true positives

true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure

Rijsbergen, 1975) , defined as:

Fβ =
(β 2 +1)PR

β 2P+R

The β parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of β > 1 favor recall, while
values of β < 1 favor precision. When β = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fβ=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

α
1
P +(1−α) 1

R

or
(

with β
2 =

1−α

α

)
F =

(β 2 +1)PR
β 2P+R

(4.18)
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Harmonic mean is used because it is a conservative metric; the harmonic mean of
two values is closer to the minimum of the two values than the arithmetic mean is.
Thus it weighs the lower of the two numbers more heavily.

4.7.1 Evaluating with more than two classes
Up to now we have been describing text classification tasks with only two classes.
But lots of classification tasks in language processing have more than two classes.
For sentiment analysis we generally have 3 classes (positive, negative, neutral) and
even more classes are common for tasks like part-of-speech tagging, word sense
disambiguation, semantic role labeling, emotion detection, and so on. Luckily the
naive Bayes algorithm is already a multi-class classification algorithm.

8
5

10
60

urgent normal
gold labels

system
output

recallu = 
8

8+5+3

precisionu= 
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls = 

precisionn= 
60

5+60+50

precisions= 
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

But we’ll need to slightly modify our definitions of precision and recall. Con-
sider the sample confusion matrix for a hypothetical 3-way one-of email catego-
rization decision (urgent, normal, spam) shown in Fig. 4.5. The matrix shows, for
example, that the system mistakenly labeled one spam document as urgent, and we
have shown how to compute a distinct precision and recall value for each class. In
order to derive a single metric that tells us how well the system is doing, we can com-
bine these values in two ways. In macroaveraging, we compute the performancemacroaveraging

for each class, and then average over classes. In microaveraging, we collect the de-microaveraging

cisions for all classes into a single confusion matrix, and then compute precision and
recall from that table. Fig. 4.6 shows the confusion matrix for each class separately,
and shows the computation of microaveraged and macroaveraged precision.

As the figure shows, a microaverage is dominated by the more frequent class (in
this case spam), since the counts are pooled. The macroaverage better reflects the
statistics of the smaller classes, and so is more appropriate when performance on all
the classes is equally important.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section 3.2): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset
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Figure 4.6 Separate confusion matrices for the 3 classes from the previous figure, showing the pooled confu-
sion matrix and the microaveraged and macroaveraged precision.

and in general decide what the best model is. Once we come up with what we think
is the best model, we run it on the (hitherto unseen) test set to report its performance.

While the use of a devset avoids overfitting the test set, having a fixed train-
ing set, devset, and test set creates another problem: in order to save lots of data
for training, the test set (or devset) might not be large enough to be representative.
Wouldn’t it be better if we could somehow use all our data for training and still use
all our data for test? We can do this by cross-validation: we randomly choose across-validation

training and test set division of our data, train our classifier, and then compute the
error rate on the test set. Then we repeat with a different randomly selected training
set and test set. We do this sampling process 10 times and average these 10 runs to
get an average error rate. This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on, because we’d be
peeking at the test set, and such cheating would cause us to overestimate the perfor-
mance of our system. However, looking at the corpus to understand what’s going
on is important in designing NLP systems! What to do? For this reason, it is com-
mon to create a fixed training set and test set, then do 10-fold cross-validation inside
the training set, but compute error rate the normal way in the test set, as shown in
Fig. 4.7.
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Figure 4.7 10-fold cross-validation
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4.9 Statistical Significance Testing

In building systems we often need to compare the performance of two systems. How
can we know if the new system we just built is better than our old one? Or better than
the some other system described in the literature? This is the domain of statistical
hypothesis testing, and in this section we introduce tests for statistical significance
for NLP classifiers, drawing especially on the work of Dror et al. (2020) and Berg-
Kirkpatrick et al. (2012).

Suppose we’re comparing the performance of classifiers A and B on a metric M
such as F1, or accuracy. Perhaps we want to know if our logistic regression senti-
ment classifier A (Chapter 5) gets a higher F1 score than our naive Bayes sentiment
classifier B on a particular test set x. Let’s call M(A,x) the score that system A gets
on test set x, and δ (x) the performance difference between A and B on x:

δ (x) = M(A,x)−M(B,x) (4.19)

We would like to know if δ (x) > 0, meaning that our logistic regression classifier
has a higher F1 than our naive Bayes classifier on X . δ (x) is called the effect size;effect size

a bigger δ means that A seems to be way better than B; a small δ means A seems to
be only a little better.

Why don’t we just check if δ (x) is positive? Suppose we do, and we find that
the F1 score of A is higher than Bs by .04. Can we be certain that A is better? We
cannot! That’s because A might just be accidentally better than B on this particular x.
We need something more: we want to know if A’s superiority over B is likely to hold
again if we checked another test set x′, or under some other set of circumstances.

In the paradigm of statistical hypothesis testing, we test this by formalizing two
hypotheses.

H0 : δ (x)≤ 0
H1 : δ (x)> 0 (4.20)

The hypothesis H0, called the null hypothesis, supposes that δ (x) is actually nega-null hypothesis

tive or zero, meaning that A is not better than B. We would like to know if we can
confidently rule out this hypothesis, and instead support H1, that A is better.

We do this by creating a random variable X ranging over all test sets. Now we
ask how likely is it, if the null hypothesis H0 was correct, that among these test sets
we would encounter the value of δ (x) that we found. We formalize this likelihood
as the p-value: the probability, assuming the null hypothesis H0 is true, of seeingp-value

the δ (x) that we saw or one even greater

P(δ (X)≥ δ (x)|H0 is true) (4.21)

So in our example, this p-value is the probability that we would see δ (x) assuming
A is not better than B. If δ (x) is huge (let’s say A has a very respectable F1 of .9
and B has a terrible F1 of only .2 on x), we might be surprised, since that would be
extremely unlikely to occur if H0 were in fact true, and so the p-value would be low
(unlikely to have such a large δ if A is in fact not better than B). But if δ (x) is very
small, it might be less surprising to us even if H0 were true and A is not really better
than B, and so the p-value would be higher.

A very small p-value means that the difference we observed is very unlikely
under the null hypothesis, and we can reject the null hypothesis. What counts as very
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small? It is common to use values like .05 or .01 as the thresholds. A value of .01
means that if the p-value (the probability of observing the δ we saw assuming H0 is
true) is less than .01, we reject the null hypothesis and assume that A is indeed better
than B. We say that a result (e.g., “A is better than B”) is statistically significant ifstatistically

significant
the δ we saw has a probability that is below the threshold and we therefore reject
this null hypothesis.

How do we compute this probability we need for the p-value? In NLP we gen-
erally don’t use simple parametric tests like t-tests or ANOVAs that you might be
familiar with. Parametric tests make assumptions about the distributions of the test
statistic (such as normality) that don’t generally hold in our cases. So in NLP we
usually use non-parametric tests based on sampling: we artificially create many ver-
sions of the experimental setup. For example, if we had lots of different test sets x′

we could just measure all the δ (x′) for all the x′. That gives us a distribution. Now
we set a threshold (like .01) and if we see in this distribution that 99% or more of
those deltas are smaller than the delta we observed, i.e. that p-value(x)—the proba-
bility of seeing a δ (x) as big as the one we saw, is less than .01, then we can reject
the null hypothesis and agree that δ (x) was a sufficiently surprising difference and
A is really a better algorithm than B.

There are two common non-parametric tests used in NLP: approximate ran-
domization (Noreen, 1989). and the bootstrap test. We will describe bootstrapapproximate

randomization
below, showing the paired version of the test, which again is most common in NLP.
Paired tests are those in which we compare two sets of observations that are aligned:paired

each observation in one set can be paired with an observation in another. This hap-
pens naturally when we are comparing the performance of two systems on the same
test set; we can pair the performance of system A on an individual observation xi
with the performance of system B on the same xi.

4.9.1 The Paired Bootstrap Test
The bootstrap test (Efron and Tibshirani, 1993) can apply to any metric; from pre-bootstrap test

cision, recall, or F1 to the BLEU metric used in machine translation. The word
bootstrapping refers to repeatedly drawing large numbers of smaller samples withbootstrapping

replacement (called bootstrap samples) from an original larger sample. The intu-
ition of the bootstrap test is that we can create many virtual test sets from an observed
test set by repeatedly sampling from it. The method only makes the assumption that
the sample is representative of the population.

Consider a tiny text classification example with a test set x of 10 documents. The
first row of Fig. 4.8 shows the results of two classifiers (A and B) on this test set,
with each document labeled by one of the four possibilities: (A and B both right,
both wrong, A right and B wrong, A wrong and B right); a slash through a letter
(�B) means that that classifier got the answer wrong. On the first document both A
and B get the correct class (AB), while on the second document A got it right but B
got it wrong (A�B). If we assume for simplicity that our metric is accuracy, A has an
accuracy of .70 and B of .50, so δ (x) is .20.

Now we create a large number b (perhaps 105) of virtual test sets x(i), each of
size n = 10. Fig. 4.8 shows a couple examples. To create each virtual test set x(i), we
repeatedly (n = 10 times) select a cell from row x with replacement. For example, to
create the first cell of the first virtual test set x(1), if we happened to randomly select
the second cell of the x row; we would copy the value A�B into our new cell, and
move on to create the second cell of x(1), each time sampling (randomly choosing)
from the original x with replacement.
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1 2 3 4 5 6 7 8 9 10 A% B% δ ()
x AB A��B AB ��AB A��B ��AB A��B AB ��A��B A��B .70 .50 .20
x(1) A��B AB A��B ��AB ��AB A��B ��AB AB ��A��B AB .60 .60 .00
x(2) A��B AB ��A��B ��AB ��AB AB ��AB A��B AB AB .60 .70 -.10
...
x(b)
Figure 4.8 The paired bootstrap test: Examples of b pseudo test sets x(i) being created
from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with
replacement; thus an individual sample is a single cell, a document with its gold label and
the correct or incorrect performance of classifiers A and B. Of course real test sets don’t have
only 10 examples, and b needs to be large as well.

Now that we have the b test sets, providing a sampling distribution, we can do
statistics on how often A has an accidental advantage. There are various ways to
compute this advantage; here we follow the version laid out in Berg-Kirkpatrick
et al. (2012). Assuming H0 (A isn’t better than B), we would expect that δ (X), esti-
mated over many test sets, would be zero; a much higher value would be surprising,
since H0 specifically assumes A isn’t better than B. To measure exactly how surpris-
ing is our observed δ (x) we would in other circumstances compute the p-value by
counting over many test sets how often δ (x(i)) exceeds the expected zero value by
δ (x) or more:

p-value(x) =
b∑

i=1

1

(
δ (x(i))−δ (x)≥ 0

)

However, although it’s generally true that the expected value of δ (X) over many test
sets, (again assuming A isn’t better than B) is 0, this isn’t true for the bootstrapped
test sets we created. That’s because we didn’t draw these samples from a distribution
with 0 mean; we happened to create them from the original test set x, which happens
to be biased (by .20) in favor of A. So to measure how surprising is our observed
δ (x), we actually compute the p-value by counting over many test sets how often
δ (x(i)) exceeds the expected value of δ (x) by δ (x) or more:

p-value(x) =

b∑

i=1

1

(
δ (x(i))−δ (x)≥ δ (x)

)

=

b∑

i=1

1

(
δ (x(i))≥ 2δ (x)

)
(4.22)

So if for example we have 10,000 test sets x(i) and a threshold of .01, and in only
47 of the test sets do we find that δ (x(i)) ≥ 2δ (x), the resulting p-value of .0047 is
smaller than .01, indicating δ (x) is indeed sufficiently surprising, and we can reject
the null hypothesis and conclude A is better than B.

The full algorithm for the bootstrap is shown in Fig. 4.9. It is given a test set x, a
number of samples b, and counts the percentage of the b bootstrap test sets in which
δ (x∗(i))> 2δ (x). This percentage then acts as a one-sided empirical p-value
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function BOOTSTRAP(test set x, num of samples b) returns p-value(x)

Calculate δ (x) # how much better does algorithm A do than B on x
s = 0
for i = 1 to b do

for j = 1 to n do # Draw a bootstrap sample x(i) of size n
Select a member of x at random and add it to x(i)

Calculate δ (x(i)) # how much better does algorithm A do than B on x(i)

s←s + 1 if δ (x(i)) > 2δ (x)
p-value(x) ≈ s

b # on what % of the b samples did algorithm A beat expectations?
return p-value(x) # if very few did, our observed δ is probably not accidental

Figure 4.9 A version of the paired bootstrap algorithm after Berg-Kirkpatrick et al. (2012).

4.10 Avoiding Harms in Classification

It is important to avoid harms that may result from classifiers, harms that exist both
for naive Bayes classifiers and for the other classification algorithms we introduce
in later chapters.

One class of harms is representational harms (Crawford 2017, Blodgett et al. 2020),representational
harms

harms caused by a system that demeans a social group, for example by perpetuating
negative stereotypes about them. For example Kiritchenko and Mohammad (2018)
examined the performance of 200 sentiment analysis systems on pairs of sentences
that were identical except for containing either a common African American first
name (like Shaniqua) or a common European American first name (like Stephanie),
chosen from the Caliskan et al. (2017) study discussed in Chapter 6. They found
that most systems assigned lower sentiment and more negative emotion to sentences
with African American names, reflecting and perpetuating stereotypes that associate
African Americans with negative emotions (Popp et al., 2003).

In other tasks classifiers may lead to both representational harms and other
harms, such as censorship. For example the important text classification task of
toxicity detection is the task of detecting hate speech, abuse, harassment, or othertoxicity

detection
kinds of toxic language. While the goal of such classifiers is to help reduce soci-
etal harm, toxicity classifiers can themselves cause harms. For example, researchers
have shown that some widely used toxicity classifiers incorrectly flag as being toxic
sentences that are non-toxic but simply mention minority identities like women
(Park et al., 2018), blind people (Hutchinson et al., 2020) or gay people (Dixon
et al., 2018), or simply use linguistic features characteristic of varieties like African-
American Vernacular English (Sap et al. 2019, Davidson et al. 2019). Such false
positive errors, if employed by toxicity detection systems without human oversight,
could lead to the censoring of discourse by or about these groups.

These model problems can be caused by biases or other problems in the training
data; in general, machine learning systems replicate and even amplify the biases in
their training data. But these problems can also be caused by the labels (for exam-
ple caused by biases in the human labelers) by the resources used (like lexicons,
or model components like pretrained embeddings), or even by model architecture
(like what the model is trained to optimized). While the mitigation of these biases
(for example by carefully considering the training data sources) is an important area
of research, we currently don’t have general solutions. For this reason it’s impor-
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tant, when introducing any NLP model, to study these these kinds of factors and
make them clear. One way to do this is by releasing a model card (Mitchell et al.,model card

2019) for each version of a model, that documents a machine learning model with
information like:

• training algorithms and parameters
• training data sources, motivation, and preprocessing
• evaluation data sources, motivation, and preprocessing
• intended use and users
• model performance across different demographic or other groups and envi-

ronmental situations

4.11 Summary

This chapter introduced the naive Bayes model for classification and applied it to
the text categorization task of sentiment analysis.

• Many language processing tasks can be viewed as tasks of classification.
• Text categorization, in which an entire text is assigned a class from a finite set,

includes such tasks as sentiment analysis, spam detection, language identi-
fication, and authorship attribution.

• Sentiment analysis classifies a text as reflecting the positive or negative orien-
tation (sentiment) that a writer expresses toward some object.

• Naive Bayes is a generative model that makes the bag of words assumption
(position doesn’t matter) and the conditional independence assumption (words
are conditionally independent of each other given the class)

• Naive Bayes with binarized features seems to work better for many text clas-
sification tasks.

• Classifiers are evaluated based on precision and recall.
• Classifiers are trained using distinct training, dev, and test sets, including the

use of cross-validation in the training set.
• Statistical significance tests should be used to determine whether we can be

confident that one version of a classifier is better than another.
• Designers of classifiers should carefully consider harms that may be caused

by the model, including its training data and other components, and report
model characteristics in a model card.

Bibliographical and Historical Notes
Multinomial naive Bayes text classification was proposed by Maron (1961) at the
RAND Corporation for the task of assigning subject categories to journal abstracts.
His model introduced most of the features of the modern form presented here, ap-
proximating the classification task with one-of categorization, and implementing
add-δ smoothing and information-based feature selection.

The conditional independence assumptions of naive Bayes and the idea of Bayes-
ian analysis of text seems to have arisen multiple times. The same year as Maron’s
paper, Minsky (1961) proposed a naive Bayes classifier for vision and other arti-
ficial intelligence problems, and Bayesian techniques were also applied to the text



74 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

classification task of authorship attribution by Mosteller and Wallace (1963). It had
long been known that Alexander Hamilton, John Jay, and James Madison wrote
the anonymously-published Federalist papers in 1787–1788 to persuade New York
to ratify the United States Constitution. Yet although some of the 85 essays were
clearly attributable to one author or another, the authorship of 12 were in dispute
between Hamilton and Madison. Mosteller and Wallace (1963) trained a Bayesian
probabilistic model of the writing of Hamilton and another model on the writings
of Madison, then computed the maximum-likelihood author for each of the disputed
essays. Naive Bayes was first applied to spam detection in Heckerman et al. (1998).

Metsis et al. (2006), Pang et al. (2002), and Wang and Manning (2012) show
that using boolean attributes with multinomial naive Bayes works better than full
counts. Binary multinomial naive Bayes is sometimes confused with another variant
of naive Bayes that also use a binary representation of whether a term occurs in
a document: Multivariate Bernoulli naive Bayes. The Bernoulli variant instead
estimates P(w|c) as the fraction of documents that contain a term, and includes a
probability for whether a term is not in a document. McCallum and Nigam (1998)
and Wang and Manning (2012) show that the multivariate Bernoulli variant of naive
Bayes doesn’t work as well as the multinomial algorithm for sentiment or other text
tasks.

There are a variety of sources covering the many kinds of text classification
tasks. For sentiment analysis see Pang and Lee (2008), and Liu and Zhang (2012).
Stamatatos (2009) surveys authorship attribute algorithms. On language identifica-
tion see Jauhiainen et al. (2018); Jaech et al. (2016) is an important early neural
system. The task of newswire indexing was often used as a test case for text classi-
fication algorithms, based on the Reuters-21578 collection of newswire articles.

See Manning et al. (2008) and Aggarwal and Zhai (2012) on text classification;
classification in general is covered in machine learning textbooks (Hastie et al. 2001,
Witten and Frank 2005, Bishop 2006, Murphy 2012).

Non-parametric methods for computing statistical significance were used first in
NLP in the MUC competition (Chinchor et al., 1993), and even earlier in speech
recognition (Gillick and Cox 1989, Bisani and Ney 2004). Our description of the
bootstrap draws on the description in Berg-Kirkpatrick et al. (2012). Recent work
has focused on issues including multiple test sets and multiple metrics (Søgaard
et al. 2014, Dror et al. 2017).

Feature selection is a method of removing features that are unlikely to generalize
well. Features are generally ranked by how informative they are about the classifica-
tion decision. A very common metric, information gain, tells us how many bits ofinformation

gain
information the presence of the word gives us for guessing the class. Other feature
selection metrics include χ2, pointwise mutual information, and GINI index; see
Yang and Pedersen (1997) for a comparison and Guyon and Elisseeff (2003) for an
introduction to feature selection.

Exercises

4.1 Assume the following likelihoods for each word being part of a positive or
negative movie review, and equal prior probabilities for each class.
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pos neg
I 0.09 0.16
always 0.07 0.06
like 0.29 0.06
foreign 0.04 0.15
films 0.08 0.11

What class will Naive bayes assign to the sentence “I always like foreign
films.”?

4.2 Given the following short movie reviews, each labeled with a genre, either
comedy or action:

1. fun, couple, love, love comedy
2. fast, furious, shoot action
3. couple, fly, fast, fun, fun comedy
4. furious, shoot, shoot, fun action
5. fly, fast, shoot, love action

and a new document D:

fast, couple, shoot, fly

compute the most likely class for D. Assume a naive Bayes classifier and use
add-1 smoothing for the likelihoods.

4.3 Train two models, multinomial naive Bayes and binarized naive Bayes, both
with add-1 smoothing, on the following document counts for key sentiment
words, with positive or negative class assigned as noted.

doc “good” “poor” “great” (class)
d1. 3 0 3 pos
d2. 0 1 2 pos
d3. 1 3 0 neg
d4. 1 5 2 neg
d5. 0 2 0 neg

Use both naive Bayes models to assign a class (pos or neg) to this sentence:

A good, good plot and great characters, but poor acting.

Recall from page 60 that with naive Bayes text classification, we simply ig-
nore (throw out) any word that never occurred in the training document. (We
don’t throw out words that appear in some classes but not others; that’s what
add-one smoothing is for.) Do the two models agree or disagree?
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CHAPTER

5 Logistic Regression

“And how do you know that these fine begonias are not of equal importance?”
Hercule Poirot, in Agatha Christie’s The Mysterious Affair at Styles

Detective stories are as littered with clues as texts are with words. Yet for the
poor reader it can be challenging to know how to weigh the author’s clues in order
to make the crucial classification task: deciding whodunnit.

In this chapter we introduce an algorithm that is admirably suited for discovering
the link between features or cues and some particular outcome: logistic regression.logistic

regression
Indeed, logistic regression is one of the most important analytic tools in the social
and natural sciences. In natural language processing, logistic regression is the base-
line supervised machine learning algorithm for classification, and also has a very
close relationship with neural networks. As we will see in Chapter 7, a neural net-
work can be viewed as a series of logistic regression classifiers stacked on top of
each other. Thus the classification and machine learning techniques introduced here
will play an important role throughout the book.

Logistic regression can be used to classify an observation into one of two classes
(like ‘positive sentiment’ and ‘negative sentiment’), or into one of many classes.
Because the mathematics for the two-class case is simpler, we’ll describe this special
case of logistic regression first in the next few sections, and then briefly summarize
the use of multinomial logistic regression for more than two classes in Section 5.6.

We’ll introduce the mathematics of logistic regression in the next few sections.
But let’s begin with some high-level issues.

Generative and Discriminative Classifiers: The most important difference be-
tween naive Bayes and logistic regression is that logistic regression is a discrimina-
tive classifier while naive Bayes is a generative classifier.

These are two very different frameworks for how
to build a machine learning model. Consider a visual
metaphor: imagine we’re trying to distinguish dog
images from cat images. A generative model would
have the goal of understanding what dogs look like
and what cats look like. You might literally ask such
a model to ‘generate’, i.e., draw, a dog. Given a test
image, the system then asks whether it’s the cat model or the dog model that better
fits (is less surprised by) the image, and chooses that as its label.

A discriminative model, by contrast, is only try-
ing to learn to distinguish the classes (perhaps with-
out learning much about them). So maybe all the
dogs in the training data are wearing collars and the
cats aren’t. If that one feature neatly separates the
classes, the model is satisfied. If you ask such a
model what it knows about cats all it can say is that
they don’t wear collars.
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More formally, recall that the naive Bayes assigns a class c to a document d not
by directly computing P(c|d) but by computing a likelihood and a prior

ĉ = argmax
c∈C

likelihood︷ ︸︸ ︷
P(d|c)

prior︷︸︸︷
P(c) (5.1)

A generative model like naive Bayes makes use of this likelihood term, whichgenerative
model

expresses how to generate the features of a document if we knew it was of class c.
By contrast a discriminative model in this text categorization scenario attemptsdiscriminative

model
to directly compute P(c|d). Perhaps it will learn to assign a high weight to document
features that directly improve its ability to discriminate between possible classes,
even if it couldn’t generate an example of one of the classes.

Components of a probabilistic machine learning classifier: Like naive Bayes,
logistic regression is a probabilistic classifier that makes use of supervised machine
learning. Machine learning classifiers require a training corpus of m input/output
pairs (x(i),y(i)). (We’ll use superscripts in parentheses to refer to individual instances
in the training set—for sentiment classification each instance might be an individual
document to be classified). A machine learning system for classification then has
four components:

1. A feature representation of the input. For each input observation x(i), this
will be a vector of features [x1,x2, ...,xn]. We will generally refer to feature
i for input x( j) as x( j)

i , sometimes simplified as xi, but we will also see the
notation fi, fi(x), or, for multiclass classification, fi(c,x).

2. A classification function that computes ŷ, the estimated class, via p(y|x). In
the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

3. An objective function for learning, usually involving minimizing error on
training examples. We will introduce the cross-entropy loss function.

4. An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.

Logistic regression has two phases:

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y = 1 or y = 0.

5.1 Classification: the sigmoid

The goal of binary logistic regression is to train a classifier that can make a binary
decision about the class of a new input observation. Here we introduce the sigmoid
classifier that will help us make this decision.

Consider a single input observation x, which we will represent by a vector of fea-
tures [x1,x2, ...,xn] (we’ll show sample features in the next subsection). The classifier
output y can be 1 (meaning the observation is a member of the class) or 0 (the ob-
servation is not a member of the class). We want to know the probability P(y = 1|x)
that this observation is a member of the class. So perhaps the decision is “positive
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sentiment” versus “negative sentiment”, the features represent counts of words in a
document, P(y = 1|x) is the probability that the document has positive sentiment,
and P(y = 0|x) is the probability that the document has negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature
is to the classification decision, and can be positive (providing evidence that the in-
stance being classified belongs in the positive class) or negative (providing evidence
that the instance being classified belongs in the negative class). Thus we might
expect in a sentiment task the word awesome to have a high positive weight, and
abysmal to have a very negative weight. The bias term, also called the intercept, isbias term

intercept another real number that’s added to the weighted inputs.
To make a decision on a test instance— after we’ve learned the weights in

training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

(
n∑

i=1

wixi

)
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from −∞ to ∞.

Figure 5.1 The sigmoid function y= 1
1+e−z takes a real value and maps it to the range [0,1].

It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, σ(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = σ(z) =
1

1+ e−z =
1

1+ exp(−z)
(5.4)

(For the rest of the book, we’ll use the notation exp(x) to mean ex.) The sigmoid
has a number of advantages; it takes a real-valued number and maps it into the range
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[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = σ(w · x+b)

=
1

1+ exp(−(w · x+b))

P(y = 0) = 1−σ(w · x+b)

= 1− 1
1+ exp(−(w · x+b))

=
exp(−(w · x+b))

1+ exp(−(w · x+b))
(5.5)

The sigmoid function has the property

1−σ(x) = σ(−x) (5.6)

so we could also have expressed P(y = 0) as σ(−(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

{
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or − to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) ∈ doc) 3
x2 count(negative lexicon) ∈ doc) 2

x3

{
1 if “no” ∈ doc
0 otherwise 1

x4 count(1st and 2nd pronouns ∈ doc) 3

x5

{
1 if “!” ∈ doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,−5.0,−1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how



80 CHAPTER 5 • LOGISTIC REGRESSION

 It's hokey . There are virtually no surprises , and the writing is second-rate . 
So why was it so enjoyable  ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing .  It sucked me in , and it'll do the same to you  .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =−5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.

Given these 6 features and the input review x, P(+|x) and P(−|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = σ(w · x+b)

= σ([2.5,−5.0,−1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= σ(.833)
= 0.70 (5.7)

p(−|x) = P(Y = 0|x) = 1−σ(w · x+b)

= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

{
1 if “Case(wi) = Lower”
0 otherwise

x2 =

{
1 if “wi ∈ AcronymDict”
0 otherwise

x3 =

{
1 if “wi = St. & Case(wi−1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.
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For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions
For many tasks (especially when feature values can reference specific words)

we’ll need large numbers of features. Often these are created automatically via fea-
ture templates, abstract specifications of features. For example a bigram templatefeature

templates
for period disambiguation might create a feature for every pair of words that occurs
before a period in the training set. Thus the feature space is sparse, since we only
have to create a feature if that n-gram exists in that position in the training set. The
feature is generally created as a hash from the string descriptions. A user description
of a feature as, “bigram(American breakfast)” is hashed into a unique integer i that
becomes the feature number fi.

In order to avoid the extensive human effort of feature design, recent research in
NLP has focused on representation learning: ways to learn features automatically
in an unsupervised way from the input. We’ll introduce methods for representation
learning in Chapter 6 and Chapter 7.

Choosing a classifier Logistic regression has a number of advantages over naive
Bayes. Naive Bayes has overly strong conditional independence assumptions. Con-
sider two features which are strongly correlated; in fact, imagine that we just add the
same feature f1 twice. Naive Bayes will treat both copies of f1 as if they were sep-
arate, multiplying them both in, overestimating the evidence. By contrast, logistic
regression is much more robust to correlated features; if two features f1 and f2 are
perfectly correlated, regression will simply assign part of the weight to w1 and part
to w2. Thus when there are many correlated features, logistic regression will assign
a more accurate probability than naive Bayes. So logistic regression generally works
better on larger documents or datasets and is a common default.

Despite the less accurate probabilities, naive Bayes still often makes the correct
classification decision. Furthermore, naive Bayes can work extremely well (some-
times even better than logistic regression) on very small datasets (Ng and Jordan,
2002) or short documents (Wang and Manning, 2012). Furthermore, naive Bayes is
easy to implement and very fast to train (there’s no optimization step). So it’s still a
reasonable approach to use in some situations.

5.2 Learning in Logistic Regression

How are the parameters of the model, the weights w and bias b, learned? Logistic
regression is an instance of supervised classification in which we know the correct
label y (either 0 or 1) for each observation x. What the system produces via Eq. 5.5
is ŷ, the system’s estimate of the true y. We want to learn parameters (meaning w
and b) that make ŷ for each training observation as close as possible to the true y.

This requires two components that we foreshadowed in the introduction to the
chapter. The first is a metric for how close the current label (ŷ) is to the true gold
label y. Rather than measure similarity, we usually talk about the opposite of this:
the distance between the system output and the gold output, and we call this distance
the loss function or the cost function. In the next section we’ll introduce the lossloss

function that is commonly used for logistic regression and also for neural networks,
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the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = σ(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1− ŷ):

p(y|x) = ŷ y (1− ŷ)1−y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
[
ŷ y (1− ŷ)1−y]

= y log ŷ+(1− y) log(1− ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =− log p(y|x) = − [y log ŷ+(1− y) log(1− ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = σ(w · x+b):

LCE(ŷ,y) = − [y logσ(w · x+b)+(1− y) log(1−σ(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug σ(w · x+b) = .69 and y = 1 into Eq. 5.12, the right
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side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = −[y logσ(w · x+b)+(1− y) log(1−σ(w · x+b))]

= − [logσ(w · x+b)]

= − log(.69)
= .37

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1−σ(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = −[y logσ(w · x+b)+(1− y) log(1−σ(w · x+b))]

= − [log(1−σ(w · x+b))]

= − log(.31)
= 1.17

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as θ (in the case of logistic regression θ = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

θ̂ = argmin
θ

1
m

m∑

i=1

LCE( f (x(i);θ),y(i)) (5.13)
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How shall we find the minimum of this (or any) loss function? Gradient descent
is a method that finds a minimum of a function by figuring out in which direction
(in the space of the parameters θ ) the function’s slope is rising the most steeply,
and moving in the opposite direction. The intuition is that if you are hiking in a
canyon and trying to descend most quickly down to the river at the bottom, you might
look around yourself 360 degrees, find the direction where the ground is sloping the
steepest, and walk downhill in that direction.

For logistic regression, this loss function is conveniently convex. A convex func-convex

tion has just one minimum; there are no local minima to get stuck in, so gradient
descent starting from any point is guaranteed to find the minimum. (By contrast,
the loss for multi-layer neural networks is non-convex, and gradient descent may
get stuck in local minima for neural network training and never find the global opti-
mum.)

Although the algorithm (and the concept of gradient) are designed for direction
vectors, let’s first consider a visualization of the case where the parameter of our
system is just a single scalar w, shown in Fig. 5.3.

Given a random initialization of w at some value w1, and assuming the loss
function L happened to have the shape in Fig. 5.3, we need the algorithm to tell us
whether at the next iteration we should move left (making w2 smaller than w1) or
right (making w2 bigger than w1) to reach the minimum.

w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)

one step
of gradient

descent

Figure 5.3 The first step in iteratively finding the minimum of this loss function, by moving
w in the reverse direction from the slope of the function. Since the slope is negative, we need
to move w in a positive direction, to the right. Here superscripts are used for learning steps,
so w1 means the initial value of w (which is 0), w2 at the second step, and so on.

The gradient descent algorithm answers this question by finding the gradientgradient

of the loss function at the current point and moving in the opposite direction. The
gradient of a function of many variables is a vector pointing in the direction of the
greatest increase in a function. The gradient is a multi-variable generalization of the
slope, so for a function of one variable like the one in Fig. 5.3, we can informally
think of the gradient as the slope. The dotted line in Fig. 5.3 shows the slope of this
hypothetical loss function at point w = w1. You can see that the slope of this dotted
line is negative. Thus to find the minimum, gradient descent tells us to go in the
opposite direction: moving w in a positive direction.

The magnitude of the amount to move in gradient descent is the value of the slope
d

dw f (x;w) weighted by a learning rate η . A higher (faster) learning rate means thatlearning rate

we should move w more on each step. The change we make in our parameter is the
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt −η
d

dw
f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up θ ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂

∂wi
of the loss

function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;θ) to make the dependence on θ more obvious:

∇θ L( f (x;θ),y)) =




∂

∂w1
L( f (x;θ),y)

∂

∂w2
L( f (x;θ),y)

...
∂

∂wn
L( f (x;θ),y)




(5.15)

The final equation for updating θ based on the gradient is thus

θt+1 = θt −η∇L( f (x;θ),y) (5.16)
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5.4.1 The Gradient for Logistic Regression
In order to update θ , we need a definition for the gradient ∇L( f (x;θ),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = − [y logσ(w · x+b)+(1− y) log(1−σ(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [σ(w · x+b)− y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = σ(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging θ in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns θ

# where: L is the loss function
# f is a function parameterized by θ

# x is the set of training inputs x(1), x(2), ..., x(m)

# y is the set of training outputs (labels) y(1), y(2), ..., y(m)

θ←0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);θ) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g←∇θ L( f (x(i);θ),y(i)) # How should we move θ to maximize loss?
3. θ←θ − η g # Go the other way instead

return θ

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ε), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate η is a hyperparameter that must be adjusted. If it’s too high,hyperparameter

the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
ηk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.
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5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in θ 0 are all set to 0, and the initial learning
rate η is 0.1:

w1 = w2 = b = 0
η = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

θ
t+1 = θ

t −η∇θ L( f (x(i);θ),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

∇w,b =




∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b


=



(σ(w · x+b)− y)x1
(σ(w · x+b)− y)x2
σ(w · x+b)− y


=



(σ(0)−1)x1
(σ(0)−1)x2
σ(0)−1


=



−0.5x1
−0.5x2
−0.5


=



−1.5
−1.0
−0.5




Now that we have a gradient, we compute the new parameter vector θ 1 by moving
θ 0 in the opposite direction from the gradient:

θ
1 =




w1
w2
b


−η



−1.5
−1.0
−0.5


=



.15
.1
.05




So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch

haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,
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then we are doing batch gradient descent; if m = 1, we are back to doing stochas-
tic gradient descent). Mini-batch training also has the advantage of computational
efficiency. The mini-batches can easily be vectorized, choosing the size of the mini-
batch based on the computational resources. This allows us to process all the exam-
ples in one mini-batch in parallel and then accumulate the loss, something that’s not
possible with individual or batch training.

We just need to define mini-batch versions of the cross-entropy loss function
we defined in Section 5.3 and the gradient in Section 5.4.1. Let’s extend the cross-
entropy loss for one example from Eq. 5.11 to mini-batches of size m. We’ll continue
to use the notation that x(i) and y(i) mean the ith training features and training label,
respectively. We make the assumption that the training examples are independent:

log p(training labels) = log
m∏

i=1

p(y(i)|x(i))

=

m∑

i=1

log p(y(i)|x(i))

= −
m∑

i=1

LCE(ŷ(i),y(i)) (5.19)

Now the cost function for the mini-batch of m examples is the average loss for each
example:

Cost(ŷ,y) =
1
m

m∑

i=1

LCE(ŷ(i),y(i))

= − 1
m

m∑

i=1

y(i) logσ(w · x(i)+b)+(1− y(i)) log
(

1−σ(w · x(i)+b)
)

(5.20)

The mini-batch gradient is the average of the individual gradients from Eq. 5.18:

∂Cost(ŷ,y)
∂w j

=
1
m

m∑

i=1

[
σ(w · x(i)+b)− y(i)

]
x(i)j (5.21)

5.5 Regularization

Numquam ponenda est pluralitas sine necessitate
‘Plurality should never be proposed unless needed’

William of Occam

There is a problem with learning weights that make the model perfectly match the
training data. If a feature is perfectly predictive of the outcome because it happens
to only occur in one class, it will be assigned a very high weight. The weights for
features will attempt to perfectly fit details of the training set, in fact too perfectly,
modeling noisy factors that just accidentally correlate with the class. This problem is
called overfitting. A good model should be able to generalize well from the trainingoverfitting

generalize
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(θ) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

θ̂ = argmax
θ

m∑

i=1

logP(y(i)|x(i))−αR(θ) (5.22)

The new regularization term R(θ) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(θ). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||θ ||2, is the same as the Euclidean distance of the vector θ

from the origin. If θ consists of n weights, then:

R(θ) = ||θ ||22 =
n∑

j=1

θ
2
j (5.23)

The L2 regularized objective function becomes:

θ̂ = argmax
θ

[
m∑

i=1

logP(y(i)|x(i))
]
−α

n∑

j=1

θ
2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(θ) = ||θ ||1 =
n∑

i=1

|θi| (5.25)

The L1 regularized objective function becomes:

θ̂ = argmax
θ

[
m∑

1=i

logP(y(i)|x(i))
]
−α

n∑

j=1

|θ j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of θ 2 is just 2θ ), while
L1 regularization is more complex (the derivative of |θ | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are
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distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance σ ). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight θ j is

1√
2πσ2

j

exp

(
− (θ j−µ j)

2

2σ2
j

)
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

θ̂ = argmax
θ

M∏

i=1

P(y(i)|x(i))×
n∏

j=1

1√
2πσ2

j

exp

(
− (θ j−µ j)

2

2σ2
j

)
(5.28)

which in log space, with µ = 0, and assuming 2σ2 = 1, corresponds to

θ̂ = argmax
θ

m∑

i=1

logP(y(i)|x(i))−α

n∑

j=1

θ
2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c ∈C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax

takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)∑k
j=1 exp(z j)

1≤ i≤ k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

[
exp(z1)∑k
i=1 exp(zi)

,
exp(z2)∑k
i=1 exp(zi)

, ...,
exp(zk)∑k
i=1 exp(zi)

]
(5.31)
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The denominator
∑k

i=1 exp(zi) is used to normalize all the values into probabil-
ities. Thus for example given a vector:

z = [0.6,1.1,−1.5,1.2,3.2,−1.1]

the resulting (rounded) softmax(z) is

[0.055,0.090,0.006,0.099,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
exp(wc · x+bc)

k∑

j=1

exp(w j · x+b j)

(5.32)

Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.
Thus if one of the inputs is larger than the others, it will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
Features in multinomial logistic regression function similarly to binary logistic re-
gression, with one difference that we’ll need separate weight vectors (and biases) for
each of the K classes. Recall our binary exclamation point feature x5 from page 79:

x5 =

{
1 if “!” ∈ doc
0 otherwise

In binary classification a positive weight w5 on a feature influences the classifier
toward y = 1 (positive sentiment) and a negative weight influences it toward y = 0
(negative sentiment) with the absolute value indicating how important the feature
is. For multinominal logistic regression, by contrast, with separate weights for each
class, a feature can be evidence for or against each individual class.

In 3-way multiclass sentiment classification, for example, we must assign each
document one of the 3 classes +, −, or 0 (neutral). Now a feature related to excla-
mation marks might have a negative weight for 0 documents, and a positive weight
for + or − documents:

Feature Definition w5,+ w5,− w5,0

f5(x)
{

1 if “!” ∈ doc
0 otherwise 3.5 3.1 −5.3

5.6.2 Learning in Multinomial Logistic Regression
The loss function for multinomial logistic regression generalizes the loss function
for binary logistic regression from 2 to K classes. Recall that that the cross-entropy
loss for binary logistic regression (repeated from Eq. 5.11) is:

LCE(ŷ,y) =− log p(y|x) = − [y log ŷ+(1− y) log(1− ŷ)] (5.33)
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The loss function for multinominal logistic regression generalizes the two terms in
Eq. 5.33 (one that is non-zero when y = 1 and one that is non-zero when y = 0) to K
terms. The loss function for a single example x is thus the sum of the logs of the K
output classes, each weighted by yk, the probability of the true class :

LCE(ŷ,y) = −
K∑

k=1

yk log ŷk

= −
K∑

k=1

yk log p̂(y = k|x) (5.34)

Because only one class (let’s call it i) is the correct one, the vector y takes the value
1 only for this value of k, i.e., has yi = 1 and y j = 0 ∀ j 6= i. A vector like this,
with one value=1 and the rest 0, is called a one-hot vector. The terms in the sum in
Eq. 5.34 will thus be 0 except for the term corresponding to the true class, i.e.:

LCE(ŷ,y) = −
K∑

k=1

1{y = k} log p̂(y = k|x)

= −
K∑

k=1

1{y = k} log
exp(wk · x+bk)∑K
j=1 exp(w j · x+b j)

(5.35)

Hence the cross-entropy loss is simply the log of the output probability correspond-
ing to the correct class, and we therefore also call this the negative log likelihood
loss:negative log

likelihood loss

LCE(ŷ,y) = − log ŷk, (where k is the correct class)

= − log
exp(wk · x+bk)∑K
j=1 exp(w j · x+b j)

(where k is the correct class)(5.36)

The gradient for a single example turns out to be very similar to the gradient
for binary logistic regression, although we don’t show the derivation here. It is the
difference between the value for the true class k (which is 1) and the probability the
classifier outputs for class k, weighted by the value of the input xi corresponding to
the ith element of the weight for class k wk,i:

∂LCE

∂wk,i
= −(1{y = k}− p(y = k|x))xi

= −
(
1{y = k}− exp(wk · x+bk)∑K

j=1 exp(w j · x+b j)

)
xi (5.37)

5.7 Interpreting models

Often we want to know more than just the correct classification of an observation.
We want to know why the classifier made the decision it did. That is, we want our
decision to be interpretable. Interpretability can be hard to define strictly, but theinterpretable

core idea is that as humans we should know why our algorithms reach the conclu-
sions they do. Because the features to logistic regression are often human-designed,
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one way to understand a classifier’s decision is to understand the role each feature
plays in the decision. Logistic regression can be combined with statistical tests (the
likelihood ratio test, or the Wald test); investigating whether a particular feature is
significant by one of these tests, or inspecting its magnitude (how large is the weight
w associated with the feature?) can help us interpret why the classifier made the
decision it makes. This is enormously important for building transparent models.

Furthermore, in addition to its use as a classifier, logistic regression in NLP and
many other fields is widely used as an analytic tool for testing hypotheses about the
effect of various explanatory variables (features). In text classification, perhaps we
want to know if logically negative words (no, not, never) are more likely to be asso-
ciated with negative sentiment, or if negative reviews of movies are more likely to
discuss the cinematography. However, in doing so it’s necessary to control for po-
tential confounds: other factors that might influence sentiment (the movie genre, the
year it was made, perhaps the length of the review in words). Or we might be study-
ing the relationship between NLP-extracted linguistic features and non-linguistic
outcomes (hospital readmissions, political outcomes, or product sales), but need to
control for confounds (the age of the patient, the county of voting, the brand of the
product). In such cases, logistic regression allows us to test whether some feature is
associated with some outcome above and beyond the effect of other features.

5.8 Advanced: Deriving the Gradient Equation

In this section we give the derivation of the gradient of the cross-entropy loss func-
tion LCE for logistic regression. Let’s start with some quick calculus refreshers.
First, the derivative of ln(x):

d
dx

ln(x) =
1
x

(5.38)

Second, the (very elegant) derivative of the sigmoid:

dσ(z)
dz

= σ(z)(1−σ(z)) (5.39)

Finally, the chain rule of derivatives. Suppose we are computing the derivativechain rule

of a composite function f (x) = u(v(x)). The derivative of f (x) is the derivative of
u(x) with respect to v(x) times the derivative of v(x) with respect to x:

d f
dx

=
du
dv
· dv

dx
(5.40)

First, we want to know the derivative of the loss function with respect to a single
weight w j (we’ll need to compute it for each weight, and for the bias):

∂LCE

∂w j
=

∂

∂w j
− [y logσ(w · x+b)+(1− y) log(1−σ(w · x+b))]

= −
[

∂

∂w j
y logσ(w · x+b)+

∂

∂w j
(1− y) log [1−σ(w · x+b)]

]

(5.41)
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Next, using the chain rule, and relying on the derivative of log:

∂LCE

∂w j
= − y

σ(w · x+b)
∂

∂w j
σ(w · x+b)− 1− y

1−σ(w · x+b)
∂

∂w j
1−σ(w · x+b)

(5.42)

Rearranging terms:

∂LCE

∂w j
= −

[
y

σ(w · x+b)
− 1− y

1−σ(w · x+b)

]
∂

∂w j
σ(w · x+b)

(5.43)

And now plugging in the derivative of the sigmoid, and using the chain rule one
more time, we end up with Eq. 5.44:

∂LCE

∂w j
= −

[
y−σ(w · x+b)

σ(w · x+b)[1−σ(w · x+b)]

]
σ(w · x+b)[1−σ(w · x+b)]

∂ (w · x+b)
∂w j

= −
[

y−σ(w · x+b)
σ(w · x+b)[1−σ(w · x+b)]

]
σ(w · x+b)[1−σ(w · x+b)]x j

= −[y−σ(w · x+b)]x j

= [σ(w · x+b)− y]x j (5.44)

5.9 Summary

This chapter introduced the logistic regression model of classification.

• Logistic regression is a supervised machine learning classifier that extracts
real-valued features from the input, multiplies each by a weight, sums them,
and passes the sum through a sigmoid function to generate a probability. A
threshold is used to make a decision.

• Logistic regression can be used with two classes (e.g., positive and negative
sentiment) or with multiple classes (multinomial logistic regression, for ex-
ample for n-ary text classification, part-of-speech labeling, etc.).

• Multinomial logistic regression uses the softmax function to compute proba-
bilities.

• The weights (vector w and bias b) are learned from a labeled training set via a
loss function, such as the cross-entropy loss, that must be minimized.

• Minimizing this loss function is a convex optimization problem, and iterative
algorithms like gradient descent are used to find the optimal weights.

• Regularization is used to avoid overfitting.
• Logistic regression is also one of the most useful analytic tools, because of its

ability to transparently study the importance of individual features.

Bibliographical and Historical Notes
Logistic regression was developed in the field of statistics, where it was used for
the analysis of binary data by the 1960s, and was particularly common in medicine
(Cox, 1969). Starting in the late 1970s it became widely used in linguistics as one
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of the formal foundations of the study of linguistic variation (Sankoff and Labov,
1979).

Nonetheless, logistic regression didn’t become common in natural language pro-
cessing until the 1990s, when it seems to have appeared simultaneously from two
directions. The first source was the neighboring fields of information retrieval and
speech processing, both of which had made use of regression, and both of which
lent many other statistical techniques to NLP. Indeed a very early use of logistic
regression for document routing was one of the first NLP applications to use (LSI)
embeddings as word representations (Schütze et al., 1995).

At the same time in the early 1990s logistic regression was developed and ap-
plied to NLP at IBM Research under the name maximum entropy modeling ormaximum

entropy
maxent (Berger et al., 1996), seemingly independent of the statistical literature. Un-
der that name it was applied to language modeling (Rosenfeld, 1996), part-of-speech
tagging (Ratnaparkhi, 1996), parsing (Ratnaparkhi, 1997), coreference resolution
(Kehler, 1997b), and text classification (Nigam et al., 1999).

More on classification can be found in machine learning textbooks (Hastie et al. 2001,
Witten and Frank 2005, Bishop 2006, Murphy 2012).

Exercises
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CHAPTER

6 Vector Semantics and
Embeddings
荃者所以在鱼，得鱼而忘荃 Nets are for fish;

Once you get the fish, you can forget the net.
言者所以在意，得意而忘言 Words are for meaning;

Once you get the meaning, you can forget the words
庄子(Zhuangzi), Chapter 26

The asphalt that Los Angeles is famous for occurs mainly on its freeways. But
in the middle of the city is another patch of asphalt, the La Brea tar pits, and this
asphalt preserves millions of fossil bones from the last of the Ice Ages of the Pleis-
tocene Epoch. One of these fossils is the Smilodon, or saber-toothed tiger, instantly
recognizable by its long canines. Five million years ago or so, a completely different
sabre-tooth tiger called Thylacosmilus lived
in Argentina and other parts of South Amer-
ica. Thylacosmilus was a marsupial whereas
Smilodon was a placental mammal, but Thy-
lacosmilus had the same long upper canines
and, like Smilodon, had a protective bone
flange on the lower jaw. The similarity of
these two mammals is one of many examples
of parallel or convergent evolution, in which particular contexts or environments
lead to the evolution of very similar structures in different species (Gould, 1980).

The role of context is also important in the similarity of a less biological kind
of organism: the word. Words that occur in similar contexts tend to have similar
meanings. This link between similarity in how words are distributed and similarity
in what they mean is called the distributional hypothesis. The hypothesis wasdistributional

hypothesis
first formulated in the 1950s by linguists like Joos (1950), Harris (1954), and Firth
(1957), who noticed that words which are synonyms (like oculist and eye-doctor)
tended to occur in the same environment (e.g., near words like eye or examined)
with the amount of meaning difference between two words “corresponding roughly
to the amount of difference in their environments” (Harris, 1954, 157).

In this chapter we introduce vector semantics, which instantiates this linguisticvector
semantics

hypothesis by learning representations of the meaning of words, called embeddings,embeddings

directly from their distributions in texts. These representations are used in every nat-
ural language processing application that makes use of meaning, and the static em-
beddings we introduce here underlie the more powerful dynamic or contextualized
embeddings like BERT that we will see in Chapter 10.

These word representations are also the first example in this book of repre-
sentation learning, automatically learning useful representations of the input text.representation

learning
Finding such self-supervised ways to learn representations of the input, instead of
creating representations by hand via feature engineering, is an important focus of
NLP research (Bengio et al., 2013).
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6.1 Lexical Semantics

Let’s begin by introducing some basic principles of word meaning. How should we
represent the meaning of a word? In the n-gram models of Chapter 3, and in classical
NLP applications, our only representation of a word is as a string of letters, or an
index in a vocabulary list. This representation is not that different from a tradition
in philosophy, perhaps you’ve seen it in introductory logic classes, in which the
meaning of words is represented by just spelling the word with small capital letters;
representing the meaning of “dog” as DOG, and “cat” as CAT.

Representing the meaning of a word by capitalizing it is a pretty unsatisfactory
model. You might have seen a joke due originally to semanticist Barbara Partee
(Carlson, 1977):

Q: What’s the meaning of life?
A: LIFE’

Surely we can do better than this! After all, we’ll want a model of word meaning
to do all sorts of things for us. It should tell us that some words have similar mean-
ings (cat is similar to dog), others are antonyms (cold is the opposite of hot), some
have positive connotations (happy) while others have negative connotations (sad).
It should represent the fact that the meanings of buy, sell, and pay offer differing
perspectives on the same underlying purchasing event (If I buy something from you,
you’ve probably sold it to me, and I likely paid you). More generally, a model of
word meaning should allow us to draw inferences to address meaning-related tasks
like question-answering or dialogue.

In this section we summarize some of these desiderata, drawing on results in the
linguistic study of word meaning, which is called lexical semantics; we’ll return tolexical

semantics
and expand on this list in Chapter 18 and Chapter 10.

Lemmas and Senses Let’s start by looking at how one word (we’ll choose mouse)
might be defined in a dictionary (simplified from the online dictionary WordNet):
mouse (N)

1. any of numerous small rodents...

2. a hand-operated device that controls a cursor...

Here the form mouse is the lemma, also called the citation form. The formlemma

citation form mouse would also be the lemma for the word mice; dictionaries don’t have separate
definitions for inflected forms like mice. Similarly sing is the lemma for sing, sang,
sung. In many languages the infinitive form is used as the lemma for the verb, so
Spanish dormir “to sleep” is the lemma for duermes “you sleep”. The specific forms
sung or carpets or sing or duermes are called wordforms.wordform

As the example above shows, each lemma can have multiple meanings; the
lemma mouse can refer to the rodent or the cursor control device. We call each
of these aspects of the meaning of mouse a word sense. The fact that lemmas can
be polysemous (have multiple senses) can make interpretation difficult (is someone
who types “mouse info” into a search engine looking for a pet or a tool?). Chapter 18
will discuss the problem of polysemy, and introduce word sense disambiguation,
the task of determining which sense of a word is being used in a particular context.

Synonymy One important component of word meaning is the relationship be-
tween word senses. For example when one word has a sense whose meaning is
identical to a sense of another word, or nearly identical, we say the two senses of
those two words are synonyms. Synonyms include such pairs assynonym
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couch/sofa vomit/throw up filbert/hazelnut car/automobile

A more formal definition of synonymy (between words rather than senses) is that
two words are synonymous if they are substitutable for one another in any sentence
without changing the truth conditions of the sentence, the situations in which the
sentence would be true. We often say in this case that the two words have the same
propositional meaning.propositional

meaning
While substitutions between some pairs of words like car / automobile or wa-

ter / H2O are truth preserving, the words are still not identical in meaning. Indeed,
probably no two words are absolutely identical in meaning. One of the fundamen-
tal tenets of semantics, called the principle of contrast (Girard 1718, Bréal 1897,principle of

contrast
Clark 1987), states that a difference in linguistic form is always associated with some
difference in meaning. For example, the word H2O is used in scientific contexts and
would be inappropriate in a hiking guide—water would be more appropriate— and
this genre difference is part of the meaning of the word. In practice, the word syn-
onym is therefore used to describe a relationship of approximate or rough synonymy.

Word Similarity While words don’t have many synonyms, most words do have
lots of similar words. Cat is not a synonym of dog, but cats and dogs are certainly
similar words. In moving from synonymy to similarity, it will be useful to shift from
talking about relations between word senses (like synonymy) to relations between
words (like similarity). Dealing with words avoids having to commit to a particular
representation of word senses, which will turn out to simplify our task.

The notion of word similarity is very useful in larger semantic tasks. Know-similarity

ing how similar two words are can help in computing how similar the meaning of
two phrases or sentences are, a very important component of natural language un-
derstanding tasks like question answering, paraphrasing, and summarization. One
way of getting values for word similarity is to ask humans to judge how similar one
word is to another. A number of datasets have resulted from such experiments. For
example the SimLex-999 dataset (Hill et al., 2015) gives values on a scale from 0 to
10, like the examples below, which range from near-synonyms (vanish, disappear)
to pairs that scarcely seem to have anything in common (hole, agreement):

vanish disappear 9.8
belief impression 5.95
muscle bone 3.65
modest flexible 0.98
hole agreement 0.3

Word Relatedness The meaning of two words can be related in ways other than
similarity. One such class of connections is called word relatedness (Budanitskyrelatedness

and Hirst, 2006), also traditionally called word association in psychology.association

Consider the meanings of the words coffee and cup. Coffee is not similar to cup;
they share practically no features (coffee is a plant or a beverage, while a cup is a
manufactured object with a particular shape). But coffee and cup are clearly related;
they are associated by co-participating in an everyday event (the event of drinking
coffee out of a cup). Similarly scalpel and surgeon are not similar but are related
eventively (a surgeon tends to make use of a scalpel).

One common kind of relatedness between words is if they belong to the same
semantic field. A semantic field is a set of words which cover a particular semanticsemantic field

domain and bear structured relations with each other. For example, words might be
related by being in the semantic field of hospitals (surgeon, scalpel, nurse, anes-
thetic, hospital), restaurants (waiter, menu, plate, food, chef), or houses (door, roof,
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kitchen, family, bed). Semantic fields are also related to topic models, like Latenttopic models

Dirichlet Allocation, LDA, which apply unsupervised learning on large sets of texts
to induce sets of associated words from text. Semantic fields and topic models are
very useful tools for discovering topical structure in documents.

In Chapter 18 we’ll introduce more relations between senses like hypernymy or
IS-A, antonymy (opposites) and meronymy (part-whole relations).

Semantic Frames and Roles Closely related to semantic fields is the idea of a
semantic frame. A semantic frame is a set of words that denote perspectives orsemantic frame

participants in a particular type of event. A commercial transaction, for example,
is a kind of event in which one entity trades money to another entity in return for
some good or service, after which the good changes hands or perhaps the service is
performed. This event can be encoded lexically by using verbs like buy (the event
from the perspective of the buyer), sell (from the perspective of the seller), pay
(focusing on the monetary aspect), or nouns like buyer. Frames have semantic roles
(like buyer, seller, goods, money), and words in a sentence can take on these roles.

Knowing that buy and sell have this relation makes it possible for a system to
know that a sentence like Sam bought the book from Ling could be paraphrased as
Ling sold the book to Sam, and that Sam has the role of the buyer in the frame and
Ling the seller. Being able to recognize such paraphrases is important for question
answering, and can help in shifting perspective for machine translation.

Connotation Finally, words have affective meanings or connotations. The wordconnotations

connotation has different meanings in different fields, but here we use it to mean
the aspects of a word’s meaning that are related to a writer or reader’s emotions,
sentiment, opinions, or evaluations. For example some words have positive conno-
tations (happy) while others have negative connotations (sad). Even words whose
meanings are similar in other ways can vary in connotation; consider the difference
in connotations between fake, knockoff, forgery, on the one hand, and copy, replica,
reproduction on the other, or innocent (positive connotation) and naive (negative
connotation). Some words describe positive evaluation (great, love) and others neg-
ative evaluation (terrible, hate). Positive or negative evaluation language is called
sentiment, as we saw in Chapter 4, and word sentiment plays a role in importantsentiment

tasks like sentiment analysis, stance detection, and applications of NLP to the lan-
guage of politics and consumer reviews.

Early work on affective meaning (Osgood et al., 1957) found that words varied
along three important dimensions of affective meaning:

valence: the pleasantness of the stimulus
arousal: the intensity of emotion provoked by the stimulus
dominance: the degree of control exerted by the stimulus

Thus words like happy or satisfied are high on valence, while unhappy or an-
noyed are low on valence. Excited is high on arousal, while calm is low on arousal.
Controlling is high on dominance, while awed or influenced are low on dominance.
Each word is thus represented by three numbers, corresponding to its value on each
of the three dimensions:

Valence Arousal Dominance
courageous 8.05 5.5 7.38
music 7.67 5.57 6.5
heartbreak 2.45 5.65 3.58
cub 6.71 3.95 4.24
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Osgood et al. (1957) noticed that in using these 3 numbers to represent the
meaning of a word, the model was representing each word as a point in a three-
dimensional space, a vector whose three dimensions corresponded to the word’s
rating on the three scales. This revolutionary idea that word meaning could be rep-
resented as a point in space (e.g., that part of the meaning of heartbreak can be
represented as the point [2.45,5.65,3.58]) was the first expression of the vector se-
mantics models that we introduce next.

6.2 Vector Semantics

Vectors semantics is the standard way to represent word meaning in NLP, helpingvector
semantics

us model many of the aspects of word meaning we saw in the previous section. The
roots of the model lie in the 1950s when two big ideas converged: Osgood’s (1957)
idea mentioned above to use a point in three-dimensional space to represent the
connotation of a word, and the proposal by linguists like Joos (1950), Harris (1954),
and Firth (1957) to define the meaning of a word by its distribution in language
use, meaning its neighboring words or grammatical environments. Their idea was
that two words that occur in very similar distributions (whose neighboring words are
similar) have similar meanings.

For example, suppose you didn’t know the meaning of the word ongchoi (a re-
cent borrowing from Cantonese) but you see it in the following contexts:

(6.1) Ongchoi is delicious sauteed with garlic.
(6.2) Ongchoi is superb over rice.
(6.3) ...ongchoi leaves with salty sauces...

And suppose that you had seen many of these context words in other contexts:

(6.4) ...spinach sauteed with garlic over rice...
(6.5) ...chard stems and leaves are delicious...
(6.6) ...collard greens and other salty leafy greens

The fact that ongchoi occurs with words like rice and garlic and delicious and
salty, as do words like spinach, chard, and collard greens might suggest that ongchoi
is a leafy green similar to these other leafy greens.1 We can do the same thing
computationally by just counting words in the context of ongchoi.

The idea of vector semantics is to represent a word as a point in a multidimen-
sional semantic space that is derived (in ways we’ll see) from the distributions of
word neighbors. Vectors for representing words are called embeddings (althoughembeddings

the term is sometimes more strictly applied only to dense vectors like word2vec
(Section 6.8), rather than sparse tf-idf or PPMI vectors (Section 6.3-Section 6.6)).
The word “embedding” derives from its mathematical sense as a mapping from one
space or structure to another, although the meaning has shifted; see the end of the
chapter.

Fig. 6.1 shows a visualization of embeddings learned for sentiment analysis,
showing the location of selected words projected down from 60-dimensional space
into a two dimensional space. Notice the distinct regions containing positive words,
negative words, and neutral function words.

1 It’s in fact Ipomoea aquatica, a relative of morning glory sometimes called water spinach in English.
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Figure 6.1 A two-dimensional (t-SNE) projection of embeddings for some words and
phrases, showing that words with similar meanings are nearby in space. The original 60-
dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015)
with colors added for explanation.

The fine-grained model of word similarity of vector semantics offers enormous
power to NLP applications. NLP applications like the sentiment classifiers of Chap-
ter 4 or Chapter 5 depend on the same words appearing in the training and test sets.
But by representing words as embeddings, classifiers can assign sentiment as long as
it sees some words with similar meanings. And as we’ll see, vector semantic models
can be learned automatically from text without supervision.

In this chapter we’ll introduce the two most commonly used models. In the tf-idf
model, an important baseline, the meaning of a word is defined by a simple function
of the counts of nearby words. We will see that this method results in very long
vectors that are sparse, i.e. mostly zeros (since most words simply never occur in
the context of others). We’ll introduce the word2vec model family for construct-
ing short, dense vectors that have useful semantic properties. We’ll also introduce
the cosine, the standard way to use embeddings to compute semantic similarity, be-
tween two words, two sentences, or two documents, an important tool in practical
applications like question answering, summarization, or automatic essay grading.

6.3 Words and Vectors

“The most important attributes of a vector in 3-space are {Location, Location, Location}”
Randall Munroe, https://xkcd.com/2358/

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. We’ll look at two popular
matrices: the term-document matrix and the term-term matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model

https://xkcd.com/2358/
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As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension

just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
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similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
Like It [1,114,36,20] and Twelfth Night [0,80,58,15] look a lot more like each other
(more fools and wit than battles) than they look like Julius Caesar [7,62,1,2] or
Henry V [13,89,4,3]. This is clear with the raw numbers; in the first dimension
(battle) the comedies have low numbers and the others have high numbers, and we
can see it visually in Fig. 6.4; we’ll see very shortly how to quantify this intuition
more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-
tion); as we’ll see, vocabulary sizes are generally in the tens of thousands, and the
number of documents can be enormous (think about all the pages on the web).

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors: document dimensions
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words. We do this
by associating each word with a word vector— a row vector rather than a columnrow vector

vector, hence with different dimensions, as shown in Fig. 6.5. The four dimensions
of the vector for fool, [36,58,1,4], correspond to the four Shakespeare plays. Word
counts in the same four dimensions are used to form the vectors for the other 3
words: wit, [20,15,2,3]; battle, [1,0,7,13]; and good [114,80,62,89].

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.5 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each word is represented as a row vector of length four.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

6.3.3 Words as vectors: word dimensions
An alternative to using the term-document matrix to represent words as vectors of
document counts, is to use the term-term matrix, also called the word-word ma-
trix or the term-context matrix, in which the columns are labeled by words ratherword-word

matrix
than documents. This matrix is thus of dimensionality |V |×|V | and each cell records
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the number of times the row (target) word and the column (context) word co-occur
in some context in some training corpus. The context could be the document, in
which case the cell represents the number of times the two words appear in the same
document. It is most common, however, to use smaller contexts, generally a win-
dow around the word, for example of 4 words to the left and 4 words to the right,
in which case the cell represents the number of times (in some training corpus) the
column word occurs in such a ±4 word window around the row word. For example
here is one example each of some words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the
context words around it, we get a word-word co-occurrence matrix. Fig. 6.6 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25 ...

strawberry 0 ... 0 0 1 60 19 ...
digital 0 ... 1670 1683 85 5 4 ...

information 0 ... 3325 3982 378 5 13 ...
Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Note in Fig. 6.6 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.7 shows a spatial visualization.
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Figure 6.7 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary, of-
ten between 10,000 and 50,000 words (using the most frequent words in the training
corpus; keeping words after about the most frequent 50,000 or so is generally not
helpful). Since most of these numbers are zero these are sparse vector representa-
tions; there are efficient algorithms for storing and computing with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss methods for weighting cells.
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6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =

N∑

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

√√√√
N∑

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosθ

a ·b
|a||b| = cosθ (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

N∑

i=1

viwi

√√√√
N∑

i=1

v2
i

√√√√
N∑

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.
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The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for orthogonal vectors, to -1 for vectors pointing in opposite directions. But since
raw frequency values are non-negative, the cosine for these vectors ranges from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442∗5+8∗3982+2∗3325√

4422 +82 +22
√

52 +39822 +33252
= .017

cos(digital, information) =
5∗5+1683∗3982+1670∗3325√

52 +16832 +16702
√

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.8 shows a visualization.
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Figure 6.8 A (rough) graphical demonstration of cosine similarity, showing vectors for
three words (cherry, digital, and information) in the two dimensional space defined by counts
of the words computer and pie nearby. Note that the angle between digital and information is
smaller than the angle between cherry and information. When two vectors are more similar,
the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the angle
between two vectors is smallest (0◦); the cosine of all other angles is less than 1.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrices above represent each cell by frequencies, either of words
with documents (Fig. 6.5), or words with other words (Fig. 6.6). But raw frequency
is not the best measure of association between words. Raw frequency is very skewed
and not very discriminative. If we want to know what kinds of contexts are shared
by cherry and strawberry but not by digital and information, we’re not going to get
good discrimination from words like the, it, or they, which occur frequently with
all sorts of words and aren’t informative about any particular word. We saw this
also in Fig. 6.3 for the Shakespeare corpus; the dimension for the word good is not
very discriminative between plays; good is simply a frequent word and has roughly
equivalent high frequencies in each of the plays.

It’s a bit of a paradox. Words that occur nearby frequently (maybe pie nearby
cherry) are more important than words that only appear once or twice. Yet words
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that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf algorithm, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:2

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 0 times in a document would have
tf = log10(1) = 0, 10 times in a document tf = log10(11) = 1.4, 100 times tf =
log10(101) = 2.004, 1000 times tf = 3.00044, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We emphasize discriminative words like Romeo via the inverse document fre-
quency or idf term weight (Sparck Jones, 1972). The idf is defined using the frac-idf

tion N/dft , where N is the total number of documents in the collection, and dft is
the number of documents in which term t occurs. The fewer documents in which a
term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. It’s usually clear what counts as a document: in Shake-
speare we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper articles,
the document is a single article. Occasionally your corpus might not have appropri-
ate document divisions and you might need to break up the corpus into documents
yourself for the purposes of computing idf.

2 Or we can use this alternative: tft,d =

{
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise
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Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

(
N
dft

)
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf

frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d× idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).



6.6 • POINTWISE MUTUAL INFORMATION (PMI) 109

6.6 Pointwise Mutual Information (PMI)

An alternative weighting function to tf-idf, PPMI (positive pointwise mutual infor-
mation), is used for term-term-matrices, when the vector dimensions correspond to
words rather than documents. PPMI draws on the intuition that the best way to weigh
the association between two words is to ask how much more the two words co-occur
in our corpus than we would have a priori expected them to appear by chance.

Pointwise mutual information (Fano, 1961)4 is one of the most important con-
pointwise

mutual
information cepts in NLP. It is a measure of how often two events x and y occur, compared with

what we would expect if they were independent:

I(x,y) = log2
P(x,y)

P(x)P(y)
(6.16)

The pointwise mutual information between a target word w and a context word
c (Church and Hanks 1989, Church and Hanks 1990) is then defined as:

PMI(w,c) = log2
P(w,c)

P(w)P(c)
(6.17)

The numerator tells us how often we observed the two words together (assuming
we compute probability by using the MLE). The denominator tells us how often
we would expect the two words to co-occur assuming they each occurred indepen-
dently; recall that the probability of two independent events both occurring is just
the product of the probabilities of the two events. Thus, the ratio gives us an esti-
mate of how much more the two words co-occur than we expect by chance. PMI is
a useful tool whenever we need to find words that are strongly associated.

PMI values range from negative to positive infinity. But negative PMI values
(which imply things are co-occurring less often than we would expect by chance)
tend to be unreliable unless our corpora are enormous. To distinguish whether
two words whose individual probability is each 10−6 occur together less often than
chance, we would need to be certain that the probability of the two occurring to-
gether is significantly different than 10−12, and this kind of granularity would require
an enormous corpus. Furthermore it’s not clear whether it’s even possible to evalu-
ate such scores of ‘unrelatedness’ with human judgments. For this reason it is more
common to use Positive PMI (called PPMI) which replaces all negative PMI valuesPPMI

with zero (Church and Hanks 1989, Dagan et al. 1993, Niwa and Nitta 1994)5:

PPMI(w,c) = max(log2
P(w,c)

P(w)P(c)
,0) (6.18)

More formally, let’s assume we have a co-occurrence matrix F with W rows (words)
and C columns (contexts), where fi j gives the number of times word wi occurs in

4 PMI is based on the mutual information between two random variables X and Y , defined as:

I(X ,Y ) =
∑

x

∑
y

P(x,y) log2
P(x,y)

P(x)P(y)
(6.15)

In a confusion of terminology, Fano used the phrase mutual information to refer to what we now call
pointwise mutual information and the phrase expectation of the mutual information for what we now call
mutual information
5 Positive PMI also cleanly solves the problem of what to do with zero counts, using 0 to replace the
−∞ from log(0).
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context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi j∑W

i=1
∑C

j=1 fi j
pi∗ =

∑C
j=1 fi j∑W

i=1
∑C

j=1 fi j
p∗ j =

∑W
i=1 fi j∑W

i=1
∑C

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi∗p∗ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other word-
s/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575∗ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
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computer data result pie sugar
cherry 0 0 0 4.38 3.30

strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0

information 0.02 0.09 0.28 0 0
Figure 6.12 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 6.11. Note that most of the 0 PPMI values are ones that had
a negative PMI; for example PMI(cherry,computer) = -6.7, meaning that cherry and computer
co-occur on Wikipedia less often than we would expect by chance, and with PPMI we replace
negative values by zero.

events is to slightly change the computation for P(c), using a different function Pα(c)
that raises the probability of the context word to the power of α:

PPMIα(w,c) = max(log2
P(w,c)

P(w)Pα(c)
,0) (6.21)

Pα(c) =
count(c)α

∑
c count(c)α

(6.22)

Levy et al. (2015) found that a setting of α = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams described below in Eq. 6.32). This works because raising the count to α =
0.75 increases the probability assigned to rare contexts, and hence lowers their PMI
(Pα(c)> P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

6.7 Applications of the tf-idf or PPMI vector models

In summary, the vector semantics model we’ve described so far represents a target
word as a vector with dimensions corresponding either to to the documents in a large
collection (the term-document matrix) or to the counts of words in some neighboring
window (the term-term matrix). The values in each dimension are counts, weighted
by tf-idf (for term-document matrices) or PPMI (for term-term matrices), and the
vectors are sparse (since most values are zero).

The model computes the similarity between two words x and y by taking the
cosine of their tf-idf or PPMI vectors; high cosine, high similarity. This entire model
is sometimes referred to as the tf-idf model or the PPMI model, after the weighting
function.

The tf-idf model of meaning is often used for document functions like deciding
if two documents are similar. We represent a document by taking the vectors of
all the words in the document, and computing the centroid of all those vectors.centroid

The centroid is the multidimensional version of the mean; the centroid of a set of
vectors is a single vector that has the minimum sum of squared distances to each of
the vectors in the set. Given k word vectors w1,w2, ...,wk, the centroid document
vector d is:document

vector

d =
w1 +w2 + ...+wk

k
(6.23)
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Given two documents, we can then compute their document vectors d1 and d2, and
estimate the similarity between the two documents by cos(d1,d2). Document sim-
ilarity is also useful for all sorts of applications; information retrieval, plagiarism
detection, news recommender systems, and even for digital humanities tasks like
comparing different versions of a text to see which are similar to each other.

Either the PPMI model or the tf-idf model can be used to compute word simi-
larity, for tasks like finding word paraphrases, tracking changes in word meaning, or
automatically discovering meanings of words in different corpora. For example, we
can find the 10 most similar words to any target word w by computing the cosines
between w and each of the V −1 other words, sorting, and looking at the top 10.

6.8 Word2vec

In the previous sections we saw how to represent a word as a sparse, long vector with
dimensions corresponding to words in the vocabulary or documents in a collection.
We now introduce a more powerful word representation: embeddings, short dense
vectors. Unlike the vectors we’ve seen so far, embeddings are short, with number
of dimensions d ranging from 50-1000, rather than the much larger vocabulary size
|V | or number of documents D we’ve seen. These d dimensions don’t have a clear
interpretation. And the vectors are dense: instead of vector entries being sparse,
mostly-zero counts or functions of counts, the values will be real-valued numbers
that can be negative.

It turns out that dense vectors work better in every NLP task than sparse vectors.
While we don’t completely understand all the reasons for this, we have some intu-
itions. Representing words as 300-dimensional dense vectors requires our classifiers
to learn far fewer weights than if we represented words as 50,000-dimensional vec-
tors, and the smaller parameter space possibly helps with generalization and avoid-
ing overfitting. Dense vectors may also do a better job of capturing synonymy.
For example, in a sparse vector representation, dimensions for synonyms like car
and automobile dimension are distinct and unrelated; sparse vectors may thus fail
to capture the similarity between a word with car as a neighbor and a word with
automobile as a neighbor.

In this section we introduce one method for computing embeddings: skip-gramskip-gram

with negative sampling, sometimes called SGNS. The skip-gram algorithm is oneSGNS

of two algorithms in a software package called word2vec, and so sometimes the al-word2vec

gorithm is loosely referred to as word2vec (Mikolov et al. 2013, Mikolov et al. 2013a).
The word2vec methods are fast, efficient to train, and easily available online with
code and pretrained embeddings. Word2vec embeddings are static embeddings,static

embeddings
meaning that the method learns one fixed embedding for each word in the vocabu-
lary. In Chapter 10 we’ll introduce methods for learning dynamic contextual em-
beddings like the popular BERT or ELMO representations, in which the vector for
each word is different in different contexts.

The intuition of word2vec is that instead of counting how often each word w oc-
curs near, say, apricot, we’ll instead train a classifier on a binary prediction task: “Is
word w likely to show up near apricot?” We don’t actually care about this prediction
task; instead we’ll take the learned classifier weights as the word embeddings.

The revolutionary intuition here is that we can just use running text as implicitly
supervised training data for such a classifier; a word c that occurs near the target
word apricot acts as gold ‘correct answer’ to the question “Is word c likely to show
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up near apricot?” This method, often called self-supervision, avoids the need forself-supervision

any sort of hand-labeled supervision signal. This idea was first proposed in the task
of neural language modeling, when Bengio et al. (2003) and Collobert et al. (2011)
showed that a neural language model (a neural network that learned to predict the
next word from prior words) could just use the next word in running text as its
supervision signal, and could be used to learn an embedding representation for each
word as part of doing this prediction task.

We’ll see how to do neural networks in the next chapter, but word2vec is a
much simpler model than the neural network language model, in two ways. First,
word2vec simplifies the task (making it binary classification instead of word pre-
diction). Second, word2vec simplifies the architecture (training a logistic regression
classifier instead of a multi-layer neural network with hidden layers that demand
more sophisticated training algorithms). The intuition of skip-gram is:

1. Treat the target word and a neighboring context word as positive examples.
2. Randomly sample other words in the lexicon to get negative samples.
3. Use logistic regression to train a classifier to distinguish those two cases.
4. Use the learned weights as the embeddings.

6.8.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot, and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 w c3 c4

Our goal is to train a classifier such that, given a tuple (w,c) of a target word
w paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark)) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|w,c) (6.24)

The probability that word c is not a real context word for w is just 1 minus
Eq. 6.24:

P(−|w,c) = 1−P(+|w,c) (6.25)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on embedding similarity: a word is likely to
occur near the target if its embedding is similar to the target embedding. To compute
similarity between these dense embeddings, we rely on the intuition that two vectors
are similar if they have a high dot product (after all, cosine is just a normalized dot
product). In other words:

Similarity(w,c)≈ c ·w (6.26)

The dot product c ·w is not a probability, it’s just a number ranging from −∞ to ∞

(since the elements in word2vec embeddings can be negative, the dot product can be
negative). To turn the dot product into a probability, we’ll use the logistic or sigmoid
function σ(x), the fundamental core of logistic regression:

σ(x) =
1

1+ exp(−x)
(6.27)
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We model the probability that word c is a real context word for target word w as:

P(+|w,c) = σ(c ·w) = 1
1+ exp(−c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(−|w,c) = 1−P(+|w,c)

= σ(−c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =

L∏

i=1

σ(−ci ·w) (6.30)

logP(+|w,c1:L) =

L∑

i=1

logσ(−ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

1

W

C

aardvark

zebra

zebra

aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter θ that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the
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word considered as context. Thus the parameters we need to learn are two matrices
W and C, each containing an embedding for every one of the |V | words in the vo-
cabulary V .6 Let’s now turn to learning these embeddings (which is the real goal of
training this classifier in the first place).

6.8.2 Learning skip-gram embeddings
Skip-gram learns embeddings by starting with random embedding vectors and then
iteratively shifting the embedding of each word w to be more like the embeddings
of words that occur nearby in texts, and less like the embeddings of words that don’t
occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 w c3 c4

This example has a target word w (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
w cpos

apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
w cneg w cneg
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram with negative sampling (SGNS) uses more negative examples than positive
examples (with the ratio between them set by a parameter k). So for each of these
(w,cpos) training instances we’ll create k negative samples, each consisting of the
target w plus a ‘noise word’ cneg. A noise word is a random word from the lexicon,
constrained not to be the target word w. The right above shows the setting where
k = 2, so we’ll have 2 negative examples in the negative training set − for each
positive example w,cpos.

The noise words are chosen according to their weighted unigram frequency
pα(w), where α is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set α = .75, i.e. use the
weighting p

3
4 (w):

Pα(w) =
count(w)α

∑
w′ count(w′)α

(6.32)

Setting α = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pα(w) > P(w). To illustrate this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pα(a) =
.99.75

.99.75 + .01.75 = .97

Pα(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

6 In principle the target matrix and the context matrix could use different vocabularies, but we’ll simplify
by assuming one shared vocabulary V .
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Given the set of positive and negative training instances, and an initial set of embed-
dings, the goal of the learning algorithm is to adjust those embeddings to

• Maximize the similarity of the target word, context word pairs (w,cpos) drawn
from the positive examples

• Minimize the similarity of the (w,cneg) pairs from the negative examples.
If we consider one word/context pair (w,cpos) with its k noise words cneg1 ...cnegk ,

we can express these two goals as the following loss function L to be minimized
(hence the −); here the first term expresses that we want the classifier to assign the
real context word cpos a high probability of being a neighbor, and the second term
expresses that we want to assign each of the noise words cnegi a high probability of
being a non-neighbor, all multiplied because we assume independence:

LCE = − log

[
P(+|w,cpos)

k∏

i=1

P(−|w,cnegi)

]

= −
[

logP(+|w,cpos)+

k∑

i=1

logP(−|w,cnegi)

]

= −
[

logP(+|w,cpos)+

k∑

i=1

log
(
1−P(+|w,cnegi)

)
]

= −
[

logσ(cpos ·w)+
k∑

i=1

logσ(−cnegi ·w)
]

(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We minimize this loss function using stochastic gradient descent. Fig. 6.14
shows the intuition of one step of learning.

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

Figure 6.14 Intuition of one step of gradient descent. The skip-gram model tries to shift
embeddings so the target embeddings (here for apricot) are closer to (have a higher dot prod-
uct with) context embeddings for nearby words (here jam) and further from (lower dot product
with) context embeddings for noise words that don’t occur nearby (here Tolstoy and matrix).

To get the gradient, we need to take the derivative of Eq. 6.34 with respect to
the different embeddings. It turns out the derivatives are the following (we leave the
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proof as an exercise at the end of the chapter):

∂LCE

∂cpos
= [σ(cpos ·w)−1]w (6.35)

∂LCE

∂cneg
= [σ(cneg ·w)]w (6.36)

∂LCE

∂w
= [σ(cpos ·w)−1]cpos +

k∑

i=1

[σ(cnegi ·w)]cnegi (6.37)

The update equations going from time step t to t + 1 in stochastic gradient descent
are thus:

ct+1
pos = ct

pos−η [σ(ct
pos ·w)−1]w (6.38)

ct+1
neg = ct

neg−η [σ(ct
neg ·w)]w (6.39)

wt+1 = wt −η [σ(cpos ·wt)−1]cpos +

k∑

i=1

[σ(cnegi ·wt)]cnegi (6.40)

Just as in logistic regression, then, the learning algorithm starts with randomly ini-
tialized W and C matrices, and then walks through the training corpus using gradient
descent to move W and C so as to maximize the objective in Eq. 6.34 by making the
updates in (Eq. 6.39)-(Eq. 6.40).

Recall that the skip-gram model learns two separate embeddings for each word i:
the target embedding wi and the context embedding ci, stored in two matrices, thetarget

embedding
context

embedding target matrix W and the context matrix C. It’s common to just add them together,
representing word i with the vector wi + ci. Alternatively we can throw away the C
matrix and just represent each word i by the vector wi.

As with the simple count-based methods like tf-idf, the context window size L
affects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a devset.

6.8.3 Other kinds of static embeddings
There are many kinds of static embeddings. An extension of word2vec, fasttextfasttext

(Bojanowski et al., 2017), deals with unknown words and sparsity in languages with
rich morphology, by using subword models. Each word in fasttext is represented as
itself plus a bag of constituent n-grams, with special boundary symbols < and >
added to each word. For example, with n = 3 the word where would be represented
by the sequence <where> plus the character n-grams:

<wh, whe, her, ere, re>

Then a skipgram embedding is learned for each constituent n-gram, and the word
where is represented by the sum of all of the embeddings of its constituent n-grams.
A fasttext open-source library, including pretrained embeddings for 157 languages,
is available at https://fasttext.cc.

The most widely used static embedding model besides word2vec is GloVe (Pen-
nington et al., 2014), short for Global Vectors, because the model is based on cap-
turing global corpus statistics. GloVe is based on ratios of probabilities from the
word-word co-occurrence matrix, combining the intuitions of count-based models
like PPMI while also capturing the linear structures used by methods like word2vec.

https://fasttext.cc
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It turns out that dense embeddings like word2vec actually have an elegant math-
ematical relationships with sparse embeddings like PPMI, in which word2vec can
be seen as implicitly optimizing a shifted version of a PPMI matrix (Levy and Gold-
berg, 2014c).

6.9 Visualizing Embeddings

“I see well in many dimensions as long as the dimensions are around two.”
The late economist Martin Shubik

Visualizing embeddings is an important goal in helping understand, apply, and
improve these models of word meaning. But how can we visualize a (for example)
100-dimensional vector?

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 8: Multidimensional scaling for three noun classes.
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Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.
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The simplest way to visualize the meaning of a word
w embedded in a space is to list the most similar words to
w by sorting the vectors for all words in the vocabulary by
their cosine with the vector for w. For example the 7 closest
words to frog using the GloVe embeddings are: frogs, toad,
litoria, leptodactylidae, rana, lizard, and eleutherodactylus
(Pennington et al., 2014).

Yet another visualization method is to use a clustering
algorithm to show a hierarchical representation of which
words are similar to others in the embedding space. The
uncaptioned figure on the left uses hierarchical clustering
of some embedding vectors for nouns as a visualization
method (Rohde et al., 2006).

Probably the most common visualization method, how-
ever, is to project the 100 dimensions of a word down into 2
dimensions. Fig. 6.1 showed one such visualization, as does
Fig. 6.16, using a projection method called t-SNE (van der
Maaten and Hinton, 2008).

6.10 Semantic properties of embeddings

In this section we briefly summarize some of the semantic properties of embeddings
that have been studied.

Different types of similarity or association: One parameter of vector semantic
models that is relevant to both sparse tf-idf vectors and dense word2vec vectors is
the size of the context window used to collect counts. This is generally between 1
and 10 words on each side of the target word (for a total context of 2-20 words).

The choice depends on the goals of the representation. Shorter context windows
tend to lead to representations that are a bit more syntactic, since the information is
coming from immediately nearby words. When the vectors are computed from short
context windows, the most similar words to a target word w tend to be semantically
similar words with the same parts of speech. When vectors are computed from long
context windows, the highest cosine words to a target word w tend to be words that
are topically related but not similar.
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For example Levy and Goldberg (2014a) showed that using skip-gram with a
window of±2, the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series). With a window of±5, the most similar
words to Hogwarts were other words topically related to the Harry Potter series:
Dumbledore, Malfoy, and half-blood.

It’s also often useful to distinguish two kinds of similarity or association between
words (Schütze and Pedersen, 1993). Two words have first-order co-occurrencefirst-order

co-occurrence
(sometimes called syntagmatic association) if they are typically nearby each other.
Thus wrote is a first-order associate of book or poem. Two words have second-order
co-occurrence (sometimes called paradigmatic association) if they have similarsecond-order

co-occurrence
neighbors. Thus wrote is a second-order associate of words like said or remarked.

Analogy/Relational Similarity: Another semantic property of embeddings is their
ability to capture relational meanings. In an important early vector space model of
cognition, Rumelhart and Abrahamson (1973) proposed the parallelogram modelparallelogram

model
for solving simple analogy problems of the form a is to b as a* is to what?. In such
problems, a system given a problem like apple:tree::grape:?, i.e., apple is to tree as
grape is to , and must fill in the word vine. In the parallelogram model, illus-
trated in Fig. 6.15, the vector from the word apple to the word tree (=

#       »
apple− #   »tree)

is added to the vector for grape ( #        »grape); the nearest word to that point is returned.

tree

apple

grape
vine

Figure 6.15 The parallelogram model for analogy problems (Rumelhart and Abrahamson,
1973): the location of

#     »
vine can be found by subtracting #   »tree from

#       »
apple and adding #       »grape.

In early work with sparse embeddings, scholars showed that sparse vector mod-
els of meaning could solve such analogy problems (Turney and Littman, 2005), but
the parallelogram method received more modern attention because of its success
with word2vec or GloVe vectors (Mikolov et al. 2013b, Levy and Goldberg 2014b,
Pennington et al. 2014). For example, the result of the expression (

#     »
king)− #     »man+

#            »woman is a vector close to #         »queen. Similarly,
#      »
Paris− #           »

France+
#     »
Italy) results in a

vector that is close to
#         »
Rome. The embedding model thus seems to be extracting rep-

resentations of relations like MALE-FEMALE, or CAPITAL-CITY-OF, or even COM-
PARATIVE/SUPERLATIVE, as shown in Fig. 6.16 from GloVe.

For a a:b::a*:b* problem, meaning the algorithm is given a, b, and a* and must
find b*, the parallelogram method is thus:

b̂∗ = argmax
x

distance(x,a∗−a+b) (6.41)

with the distance function defined either as cosine or as Euclidean distance.
There are some caveats. For example, the closest value returned by the paral-

lelogram algorithm in word2vec or GloVe embedding spaces is usually not in fact
b* but one of the 3 input words or their morphological variants (i.e., cherry:red ::
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(a) (b)

Figure 6.16 Relational properties of the GloVe vector space, shown by projecting vectors onto two dimen-
sions. (a) (

#     »
king)− #     »man+ #            »woman is close to #        »queen. (b) offsets seem to capture comparative and superlative

morphology (Pennington et al., 2014).

potato:x returns potato or potatoes instead of brown), so these must be explicitly
excluded. Furthermore while embedding spaces perform well if the task involves
frequent words, small distances, and certain relations (like relating countries with
their capitals or verbs/nouns with their inflected forms), the parallelogram method
with embeddings doesn’t work as well for other relations (Linzen 2016, Gladkova
et al. 2016, Ethayarajh et al. 2019a), and indeed Peterson et al. (2020) argue that the
parallelogram method is in general too simple to model the human cognitive process
of forming analogies of this kind.

6.10.1 Embeddings and Historical Semantics
Embeddings can also be a useful tool for studying how meaning changes over time,
by computing multiple embedding spaces, each from texts written in a particular
time period. For example Fig. 6.17 shows a visualization of changes in meaning in
English words over the last two centuries, computed by building separate embedding
spaces for each decade from historical corpora like Google N-grams (Lin et al.,
2012b) and the Corpus of Historical American English (Davies, 2012).

6.11 Bias and Embeddings

In addition to their ability to learn word meaning from text, embeddings, alas,
also reproduce the implicit biases and stereotypes that were latent in the text. As
the prior section just showed, embeddings can roughly model relational similar-
ity: ‘queen’ as the closest word to ‘king’ - ‘man’ + ‘woman’ implies the analogy
man:woman::king:queen. But these same embedding analogies also exhibit gender
stereotypes. For example Bolukbasi et al. (2016) find that the closest occupation
to ‘man’ - ‘computer programmer’ + ‘woman’ in word2vec embeddings trained on
news text is ‘homemaker’, and that the embeddings similarly suggest the analogy
‘father’ is to ‘doctor’ as ‘mother’ is to ‘nurse’. This could result in what Crawford
(2017) and Blodgett et al. (2020) call an allocational harm, when a system allo-allocational

harm
cates resources (jobs or credit) unfairly to different groups. For example algorithms
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Figure 5.1: Two-dimensional visualization of semantic change in English using SGNS
vectors (see Section 5.8 for the visualization algorithm). A, The word gay shifted
from meaning “cheerful” or “frolicsome” to referring to homosexuality. A, In the early
20th century broadcast referred to “casting out seeds”; with the rise of television and
radio its meaning shifted to “transmitting signals”. C, Awful underwent a process of
pejoration, as it shifted from meaning “full of awe” to meaning “terrible or appalling”
[212].

that adverbials (e.g., actually) have a general tendency to undergo subjectification

where they shift from objective statements about the world (e.g., “Sorry, the car is

actually broken”) to subjective statements (e.g., “I can’t believe he actually did that”,

indicating surprise/disbelief).

5.2.2 Computational linguistic studies

There are also a number of recent works analyzing semantic change using computational

methods. [200] use latent semantic analysis to analyze how word meanings broaden

and narrow over time. [113] use raw co-occurrence vectors to perform a number of

historical case-studies on semantic change, and [252] perform a similar set of small-

scale case-studies using temporal topic models. [87] construct point-wise mutual

information-based embeddings and found that semantic changes uncovered by their

method had reasonable agreement with human judgments. [129] and [119] use “neural”

word-embedding methods to detect linguistic change points. Finally, [257] analyze

historical co-occurrences to test whether synonyms tend to change in similar ways.

Figure 6.17 A t-SNE visualization of the semantic change of 3 words in English using
word2vec vectors. The modern sense of each word, and the grey context words, are com-
puted from the most recent (modern) time-point embedding space. Earlier points are com-
puted from earlier historical embedding spaces. The visualizations show the changes in the
word gay from meanings related to “cheerful” or “frolicsome” to referring to homosexuality,
the development of the modern “transmission” sense of broadcast from its original sense of
sowing seeds, and the pejoration of the word awful as it shifted from meaning “full of awe”
to meaning “terrible or appalling” (Hamilton et al., 2016b).

that use embeddings as part of a search for hiring potential programmers or doctors
might thus incorrectly downweight documents with women’s names.

It turns out that embeddings don’t just reflect the statistics of their input, but
also amplify bias; gendered terms become more gendered in embedding space thanbias

amplification
they were in the input text statistics (Zhao et al. 2017, Ethayarajh et al. 2019b, Jia
et al. 2020), and biases are more exaggerated than in actual labor employment statis-
tics (Garg et al., 2018).

Embeddings also encode the implicit associations that are a property of human
reasoning. The Implicit Association Test (Greenwald et al., 1998) measures peo-
ple’s associations between concepts (like ‘flowers’ or ‘insects’) and attributes (like
‘pleasantness’ and ‘unpleasantness’) by measuring differences in the latency with
which they label words in the various categories.7 Using such methods, people
in the United States have been shown to associate African-American names with
unpleasant words (more than European-American names), male names more with
mathematics and female names with the arts, and old people’s names with unpleas-
ant words (Greenwald et al. 1998, Nosek et al. 2002a, Nosek et al. 2002b). Caliskan
et al. (2017) replicated all these findings of implicit associations using GloVe vectors
and cosine similarity instead of human latencies. For example African-American
names like ‘Leroy’ and ‘Shaniqua’ had a higher GloVe cosine with unpleasant words
while European-American names (‘Brad’, ‘Greg’, ‘Courtney’) had a higher cosine
with pleasant words. These problems with embeddings are an example of a repre-
sentational harm (Crawford 2017, Blodgett et al. 2020), which is a harm caused byrepresentational

harm
a system demeaning or even ignoring some social groups. Any embedding-aware al-
gorithm that made use of word sentiment could thus exacerbate bias against African
Americans.

Recent research focuses on ways to try to remove these kinds of biases, for ex-
ample by developing a transformation of the embedding space that removes gender
stereotypes but preserves definitional gender (Bolukbasi et al. 2016, Zhao et al. 2017)

7 Roughly speaking, if humans associate ‘flowers’ with ‘pleasantness’ and ‘insects’ with ‘unpleasant-
ness’, when they are instructed to push a green button for ‘flowers’ (daisy, iris, lilac) and ‘pleasant words’
(love, laughter, pleasure) and a red button for ‘insects’ (flea, spider, mosquito) and ‘unpleasant words’
(abuse, hatred, ugly) they are faster than in an incongruous condition where they push a red button for
‘flowers’ and ‘unpleasant words’ and a green button for ‘insects’ and ‘pleasant words’.
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or changing the training procedure (Zhao et al., 2018b). However, although these
sorts of debiasing may reduce bias in embeddings, they do not eliminate it (Gonendebiasing

and Goldberg, 2019), and this remains an open problem.
Historical embeddings are also being used to measure biases in the past. Garg

et al. (2018) used embeddings from historical texts to measure the association be-
tween embeddings for occupations and embeddings for names of various ethnici-
ties or genders (for example the relative cosine similarity of women’s names versus
men’s to occupation words like ‘librarian’ or ‘carpenter’) across the 20th century.
They found that the cosines correlate with the empirical historical percentages of
women or ethnic groups in those occupations. Historical embeddings also repli-
cated old surveys of ethnic stereotypes; the tendency of experimental participants in
1933 to associate adjectives like ‘industrious’ or ‘superstitious’ with, e.g., Chinese
ethnicity, correlates with the cosine between Chinese last names and those adjectives
using embeddings trained on 1930s text. They also were able to document historical
gender biases, such as the fact that embeddings for adjectives related to competence
(‘smart’, ‘wise’, ‘thoughtful’, ‘resourceful’) had a higher cosine with male than fe-
male words, and showed that this bias has been slowly decreasing since 1960. We
return in later chapters to this question about the role of bias in natural language
processing.

6.12 Evaluating Vector Models

The most important evaluation metric for vector models is extrinsic evaluation on
tasks, i.e., using vectors in an NLP task and seeing whether this improves perfor-
mance over some other model.

Nonetheless it is useful to have intrinsic evaluations. The most common metric
is to test their performance on similarity, computing the correlation between an
algorithm’s word similarity scores and word similarity ratings assigned by humans.
WordSim-353 (Finkelstein et al., 2002) is a commonly used set of ratings from 0
to 10 for 353 noun pairs; for example (plane, car) had an average score of 5.77.
SimLex-999 (Hill et al., 2015) is a more difficult dataset that quantifies similarity
(cup, mug) rather than relatedness (cup, coffee), and including both concrete and
abstract adjective, noun and verb pairs. The TOEFL dataset is a set of 80 questions,
each consisting of a target word with 4 additional word choices; the task is to choose
which is the correct synonym, as in the example: Levied is closest in meaning to:
imposed, believed, requested, correlated (Landauer and Dumais, 1997). All of these
datasets present words without context.

Slightly more realistic are intrinsic similarity tasks that include context. The
Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012) and the
Word-in-Context (WiC) dataset (Pilehvar and Camacho-Collados, 2019) offer richer
evaluation scenarios. SCWS gives human judgments on 2,003 pairs of words in their
sentential context, while WiC gives target words in two sentential contexts that are
either in the same or different senses; see Section 18.5.3. The semantic textual
similarity task (Agirre et al. 2012, Agirre et al. 2015) evaluates the performance of
sentence-level similarity algorithms, consisting of a set of pairs of sentences, each
pair with human-labeled similarity scores.

Another task used for evaluation is the analogy task, discussed on page 119,
where the system has to solve problems of the form a is to b as a* is to b*, given a, b,
and a* and having to find b* (Turney and Littman, 2005). A number of sets of tuples
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have been created for this task, (Mikolov et al. 2013, Mikolov et al. 2013b, Gladkova
et al. 2016), covering morphology (city:cities::child:children), lexicographic rela-
tions (leg:table::spout::teapot) and encyclopedia relations (Beijing:China::Dublin:Ireland),
some drawing from the SemEval-2012 Task 2 dataset of 79 different relations (Jur-
gens et al., 2012).

All embedding algorithms suffer from inherent variability. For example because
of randomness in the initialization and the random negative sampling, algorithms
like word2vec may produce different results even from the same dataset, and in-
dividual documents in a collection may strongly impact the resulting embeddings
(Hellrich and Hahn 2016, Antoniak and Mimno 2018). When embeddings are used
to study word associations in particular corpora, therefore, it is best practice to train
multiple embeddings with bootstrap sampling over documents and average the re-
sults (Antoniak and Mimno, 2018).

6.13 Summary

• In vector semantics, a word is modeled as a vector—a point in high-dimensional
space, also called an embedding. In this chapter we focus on static embed-
dings, in each each word is mapped to a fixed embedding.

• Vector semantic models fall into two classes: sparse and dense. In sparse
models each dimension corresponds to a word in the vocabulary V and cells
are functions of co-occurrence counts. The term-document matrix has a row
for each word (term) in the vocabulary and a column for each document. The
word-context or term-term matrix has a row for each (target) word in the
vocabulary and a column for each context term in the vocabulary. Two sparse
weightings are common: the tf-idf weighting which weights each cell by its
term frequency and inverse document frequency, and PPMI (pointwise
positive mutual information) most common for for word-context matrices.

• Dense vector models have dimensionality 50–1000. Word2vec algorithms
like skip-gram are a popular way to compute dense embeddings. Skip-gram
trains a logistic regression classifier to compute the probability that two words
are ‘likely to occur nearby in text’. This probability is computed from the dot
product between the embeddings for the two words.

• Skip-gram uses stochastic gradient descent to train the classifier, by learning
embeddings that have a high dot product with embeddings of words that occur
nearby and a low dot product with noise words.

• Other important embedding algorithms include GloVe, a method based on
ratios of word co-occurrence probabilities.

• Whether using sparse or dense vectors, word and document similarities are
computed by some function of the dot product between vectors. The cosine
of two vectors—a normalized dot product—is the most popular such metric.

Bibliographical and Historical Notes
The idea of vector semantics arose out of research in the 1950s in three distinct
fields: linguistics, psychology, and computer science, each of which contributed a
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fundamental aspect of the model.
The idea that meaning is related to the distribution of words in context was

widespread in linguistic theory of the 1950s, among distributionalists like Zellig
Harris, Martin Joos, and J. R. Firth, and semioticians like Thomas Sebeok. As Joos
(1950) put it,

the linguist’s “meaning” of a morpheme. . . is by definition the set of conditional
probabilities of its occurrence in context with all other morphemes.

The idea that the meaning of a word might be modeled as a point in a multi-
dimensional semantic space came from psychologists like Charles E. Osgood, who
had been studying how people responded to the meaning of words by assigning val-
ues along scales like happy/sad or hard/soft. Osgood et al. (1957) proposed that the
meaning of a word in general could be modeled as a point in a multidimensional
Euclidean space, and that the similarity of meaning between two words could be
modeled as the distance between these points in the space.

A final intellectual source in the 1950s and early 1960s was the field then called
mechanical indexing, now known as information retrieval. In what became knownmechanical

indexing
as the vector space model for information retrieval (Salton 1971, Sparck Jones 1986),
researchers demonstrated new ways to define the meaning of words in terms of vec-
tors (Switzer, 1965), and refined methods for word similarity based on measures
of statistical association between words like mutual information (Giuliano, 1965)
and idf (Sparck Jones, 1972), and showed that the meaning of documents could be
represented in the same vector spaces used for words.

Some of the philosophical underpinning of the distributional way of thinking
came from the late writings of the philosopher Wittgenstein, who was skeptical of
the possibility of building a completely formal theory of meaning definitions for
each word, suggesting instead that “the meaning of a word is its use in the language”
(Wittgenstein, 1953, PI 43). That is, instead of using some logical language to define
each word, or drawing on denotations or truth values, Wittgenstein’s idea is that we
should define a word by how it is used by people in speaking and understanding in
their day-to-day interactions, thus prefiguring the movement toward embodied and
experiential models in linguistics and NLP (Glenberg and Robertson 2000, Lake and
Murphy 2020, Bisk et al. 2020, Bender and Koller 2020).

More distantly related is the idea of defining words by a vector of discrete fea-
tures, which has roots at least as far back as Descartes and Leibniz (Wierzbicka 1992,
Wierzbicka 1996). By the middle of the 20th century, beginning with the work of
Hjelmslev (Hjelmslev, 1969) (originally 1943) and fleshed out in early models of
generative grammar (Katz and Fodor, 1963), the idea arose of representing mean-
ing with semantic features, symbols that represent some sort of primitive meaning.semantic

feature
For example words like hen, rooster, or chick, have something in common (they all
describe chickens) and something different (their age and sex), representable as:

hen +female, +chicken, +adult

rooster -female, +chicken, +adult

chick +chicken, -adult

The dimensions used by vector models of meaning to define words, however, are
only abstractly related to this idea of a small fixed number of hand-built dimensions.
Nonetheless, there has been some attempt to show that certain dimensions of em-
bedding models do contribute some specific compositional aspect of meaning like
these early semantic features.

The use of dense vectors to model word meaning, and indeed the term embed-
ding, grew out of the latent semantic indexing (LSI) model (Deerwester et al.,
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1988) recast as LSA (latent semantic analysis) (Deerwester et al., 1990). In LSA
singular value decomposition—SVD— is applied to a term-document matrix (eachSVD

cell weighted by log frequency and normalized by entropy), and then the first 300
dimensions are used as the LSA embedding. Singular Value Decomposition (SVD)
is a method for finding the most important dimensions of a data set, those dimen-
sions along which the data varies the most. LSA was then quickly widely applied:
as a cognitive model Landauer and Dumais (1997), and for tasks like spell check-
ing (Jones and Martin, 1997), language modeling (Bellegarda 1997, Coccaro and
Jurafsky 1998, Bellegarda 2000) morphology induction (Schone and Jurafsky 2000,
Schone and Jurafsky 2001b), multiword expressions (MWEs) (Schone and Jurafsky,
2001a), and essay grading (Rehder et al., 1998). Related models were simulta-
neously developed and applied to word sense disambiguation by Schütze (1992b).
LSA also led to the earliest use of embeddings to represent words in a probabilis-
tic classifier, in the logistic regression document router of Schütze et al. (1995).
The idea of SVD on the term-term matrix (rather than the term-document matrix)
as a model of meaning for NLP was proposed soon after LSA by Schütze (1992b).
Schütze applied the low-rank (97-dimensional) embeddings produced by SVD to the
task of word sense disambiguation, analyzed the resulting semantic space, and also
suggested possible techniques like dropping high-order dimensions. See Schütze
(1997a).

A number of alternative matrix models followed on from the early SVD work,
including Probabilistic Latent Semantic Indexing (PLSI) (Hofmann, 1999), Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), and Non-negative Matrix Factoriza-
tion (NMF) (Lee and Seung, 1999).

The LSA community seems to have first used the word “embedding” in Landauer
et al. (1997), in a variant of its mathematical meaning as a mapping from one space
or mathematical structure to another. In LSA, the word embedding seems to have
described the mapping from the space of sparse count vectors to the latent space of
SVD dense vectors. Although the word thus originally meant the mapping from one
space to another, it has metonymically shifted to mean the resulting dense vector in
the latent space. and it is in this sense that we currently use the word.

By the next decade, Bengio et al. (2003) and Bengio et al. (2006) showed that
neural language models could also be used to develop embeddings as part of the task
of word prediction. Collobert and Weston (2007), Collobert and Weston (2008), and
Collobert et al. (2011) then demonstrated that embeddings could be used to rep-
resent word meanings for a number of NLP tasks. Turian et al. (2010) compared
the value of different kinds of embeddings for different NLP tasks. Mikolov et al.
(2011) showed that recurrent neural nets could be used as language models. The
idea of simplifying the hidden layer of these neural net language models to create
the skip-gram (and also CBOW) algorithms was proposed by Mikolov et al. (2013).
The negative sampling training algorithm was proposed in Mikolov et al. (2013a).
There are numerous surveys of static embeddings and their parameterizations (Bul-
linaria and Levy 2007, Bullinaria and Levy 2012, Lapesa and Evert 2014, Kiela and
Clark 2014, Levy et al. 2015).

See Manning et al. (2008) for a deeper understanding of the role of vectors in in-
formation retrieval, including how to compare queries with documents, more details
on tf-idf, and issues of scaling to very large datasets. See Kim (2019) for a clear and
comprehensive tutorial on word2vec. Cruse (2004) is a useful introductory linguistic
text on lexical semantics.



126 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

Exercises



CHAPTER

7 Neural Networks and Neural
Language Models

“[M]achines of this character can behave in a very complicated manner when
the number of units is large.”

Alan Turing (1948) “Intelligent Machines”, page 6

Neural networks are a fundamental computational tool for language process-
ing, and a very old one. They are called neural because their origins lie in the
McCulloch-Pitts neuron (McCulloch and Pitts, 1943), a simplified model of the
human neuron as a kind of computing element that could be described in terms of
propositional logic. But the modern use in language processing no longer draws on
these early biological inspirations.

Instead, a modern neural network is a network of small computing units, each
of which takes a vector of input values and produces a single output value. In this
chapter we introduce the neural net applied to classification. The architecture we
introduce is called a feedforward network because the computation proceeds iter-feedforward

atively from one layer of units to the next. The use of modern neural nets is often
called deep learning, because modern networks are often deep (have many layers).deep learning

Neural networks share much of the same mathematics as logistic regression. But
neural networks are a more powerful classifier than logistic regression, and indeed a
minimal neural network (technically one with a single ‘hidden layer’) can be shown
to learn any function.

Neural net classifiers are different from logistic regression in another way. With
logistic regression, we applied the regression classifier to many different tasks by
developing many rich kinds of feature templates based on domain knowledge. When
working with neural networks, it is more common to avoid most uses of rich hand-
derived features, instead building neural networks that take raw words as inputs
and learn to induce features as part of the process of learning to classify. We saw
examples of this kind of representation learning for embeddings in Chapter 6. Nets
that are very deep are particularly good at representation learning. For that reason
deep neural nets are the right tool for large scale problems that offer sufficient data
to learn features automatically.

In this chapter we’ll introduce feedforward networks as classifiers, and also ap-
ply them to the simple task of language modeling: assigning probabilities to word
sequences and predicting upcoming words. In subsequent chapters we’ll introduce
many other aspects of neural models, such as recurrent neural networks and the
Transformer (Chapter 9), contextual embeddings like BERT (Chapter 10), and
encoder-decoder models and attention (Chapter 11).
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7.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
∑

i

wixi (7.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z = w · x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,
and the rectified linear ReLU) but it’s pedagogically convenient to start with the
sigmoid function since we saw it in Chapter 5:sigmoid

y = σ(z) =
1

1+ e−z (7.3)

The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section 5.8 will be handy for learning.

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.



7.1 • UNITS 129

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = σ(w · x+b) =
1

1+ exp(−(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = σ(w · x+b) =
1

1+ e−(w·x+b)
=

1
1+ e−(.5∗.2+.6∗.3+.1∗.9+.5)

=
1

1+ e−0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh

tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez− e−z

ez + e−z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x is positive, and 0 otherwise:

y = max(x,0) (7.6)
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(a) (b)

Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example, the tanh func-
tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,
because as we’ll see in Section 7.4, we’ll train networks by propagating an error
signal backwards, multiplying gradients (partial derivatives) from each layer of the
network; gradients that are almost 0 cause the error signal to get smaller and smaller
until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The
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output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
{

0, if w · x+b≤ 0
1, if w · x+b> 0 (7.7)

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.

x1

x2

+1
-1

1
1

x1

x2

+1
0

1
1

(a) (b)

Figure 7.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = −1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (−w1/w2)x1 +(−b/w2).) This line acts as a
decision boundary in two-dimensional space in which the output 0 is assigned to alldecision

boundary
inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the
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0
0 1

1

x1

x2

0
0 1

1

x1

x2

0
0 1

1

x1

x2

a)  x1 AND x2 b)  x1 OR x2 c)  x1 XOR x2

?

Figure 7.5 The functions AND, OR, and XOR, represented with input x1 on the x-axis and input x2 on the
y axis. Filled circles represent perceptron outputs of 1, and white circles perceptron outputs of 0. There is no
way to draw a line that correctly separates the two categories for XOR. Figure styled after Russell and Norvig
(2002).

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0

Figure 7.6 XOR solution after Goodfellow et al. (2016). There are three ReLU units, in
two layers; we’ve called them h1, h2 (h for “hidden layer”) and y1. As before, the numbers
on the arrows represent the weights w for each unit, and we represent the bias b as a weight
on a unit clamped to +1, with the bias weights/units in gray.

vector [0 -1], and we then apply the rectified linear transformation to give the output
of the h layer as [0 0]. Now we once again multiply by the weights, sum, and add
the bias (0 in this case) resulting in the value 0. The reader should work through the
computation of the remaining 3 possible input pairs to see that the resulting y values
are 1 for the inputs [0 1] and [1 0] and 0 for [0 0] and [1 1].

It’s also instructive to look at the intermediate results, the outputs of the two
hidden nodes h1 and h2. We showed in the previous paragraph that the h vector for
the inputs x = [0 0] was [0 0]. Fig. 7.7b shows the values of the h layer for all 4
inputs. Notice that hidden representations of the two input points x = [0 1] and x
= [1 0] (the two cases with XOR output = 1) are merged to the single point h = [1
0]. The merger makes it easy to linearly separate the positive and negative cases
of XOR. In other words, we can view the hidden layer of the network as forming a
representation for the input.

In this example we just stipulated the weights in Fig. 7.6. But for real examples
the weights for neural networks are learned automatically using the error backprop-
agation algorithm to be introduced in Section 7.4. That means the hidden layers will
learn to form useful representations. This intuition, that neural networks can auto-
matically learn useful representations of the input, is one of their key advantages,
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a) The original x space

0
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1

h1
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2

b) The new (linearly separable) h space

Figure 7.7 The hidden layer forming a new representation of the input. (b) shows the
representation of the hidden layer, h, compared to the original input representation x in (a).
Notice that the input point [0 1] has been collapsed with the input point [1 0], making it
possible to linearly separate the positive and negative cases of XOR. After Goodfellow et al.
(2016).

and one that we will return to again and again in later chapters.
Note that the solution to the XOR problem requires a network of units with non-

linear activation functions. A network made up of simple linear (perceptron) units
cannot solve the XOR problem. This is because a network formed by many layers of
purely linear units can always be reduced (i.e., shown to be computationally identical
to) a single layer of linear units with appropriate weights, and we’ve already shown
(visually, in Fig. 7.5) that a single unit cannot solve the XOR problem.

7.3 Feed-Forward Neural Networks

Let’s now walk through a slightly more formal presentation of the simplest kind of
neural network, the feedforward network. A feedforward network is a multilayerfeedforward

network
network in which the units are connected with no cycles; the outputs from units in
each layer are passed to units in the next higher layer, and no outputs are passed
back to lower layers. (In Chapter 9 we’ll introduce networks with cycles, called
recurrent neural networks.)

For historical reasons multilayer networks, especially feedforward networks, are
sometimes called multi-layer perceptrons (or MLPs); this is a technical misnomer,multi-layer

perceptrons
MLP since the units in modern multilayer networks aren’t perceptrons (perceptrons are

purely linear, but modern networks are made up of units with non-linearities like
sigmoids), but at some point the name stuck.

Simple feedforward networks have three kinds of nodes: input units, hidden
units, and output units. Fig. 7.8 shows a picture.

The input units are simply scalar values just as we saw in Fig. 7.2.
The core of the neural network is the hidden layer formed of hidden units,hidden layer

each of which is a neural unit as described in Section 7.1, taking a weighted sum of
its inputs and then applying a non-linearity. In the standard architecture, each layer
is fully-connected, meaning that each unit in each layer takes as input the outputsfully-connected

from all the units in the previous layer, and there is a link between every pair of units
from two adjacent layers. Thus each hidden unit sums over all the input units.
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Figure 7.8 A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight vector wi and bias bi for each unit i into a single weight matrix W and
a single bias vector b for the whole layer (see Fig. 7.8). Each element Wji of the
weight matrix W represents the weight of the connection from the ith input unit xi to
the jth hidden unit h j.

The advantage of using a single matrix W for the weights of the entire layer is
that now the hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or ReLU activation
function defined above).

The output of the hidden layer, the vector h, is thus the following, using the
sigmoid function σ :

h = σ(Wx+b) (7.8)

Notice that we’re applying the σ function here to a vector, while in Eq. 7.3 it was
applied to a scalar. We’re thus allowing σ(·), and indeed any activation function
g(·), to apply to a vector element-wise, so g[z1,z2,z3] = [g(z1),g(z2),g(z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer 0 of the network, and have n0
represent the number of inputs, so x is a vector of real numbers of dimension n0,
or more formally x ∈ Rn0 , a column vector of dimensionality [n0,1]. Let’s call the
hidden layer layer 1 and the output layer layer 2. The hidden layer has dimensional-
ity n1, so h ∈ Rn1 and also b ∈ Rn1 (since each hidden unit can take a different bias
value). And the weight matrix W has dimensionality W ∈ Rn1×n0 , i.e. [n1,n0].

Take a moment to convince yourself that the matrix multiplication in Eq. 7.8 will
compute the value of each h j as σ

(∑n0
i=1 Wjixi +b j

)
.

As we saw in Section 7.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single
output node, and its value y is the probability of positive versus negative sentiment.
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If we are doing multinomial classification, such as assigning a part-of-speech tag, we
might have one output node for each potential part-of-speech, whose output value
is the probability of that part-of-speech, and the values of all the output nodes must
sum to one. The output layer thus gives a probability distribution across the output
nodes.

Let’s see how this happens. Like the hidden layer, the output layer has a weight
matrix (let’s call it U), but some models don’t include a bias vector b in the output
layer, so we’ll simplify by eliminating the bias vector in this example. The weight
matrix is multiplied by its input vector (h) to produce the intermediate output z.

z =Uh

There are n2 output nodes, so z ∈ Rn2 , weight matrix U has dimensionality U ∈
Rn2×n1 , and element Ui j is the weight from unit j in the hidden layer to unit i in the
output layer.

However, z can’t be the output of the classifier, since it’s a vector of real-valued
numbers, while what we need for classification is a vector of probabilities. There is
a convenient function for normalizing a vector of real values, by which we meannormalizing

converting it to a vector that encodes a probability distribution (all the numbers lie
between 0 and 1 and sum to 1): the softmax function that we saw on page 90 ofsoftmax

Chapter 5. For a vector z of dimensionality d, the softmax is defined as:

softmax(zi) =
ezi

∑d
j=1 ez j

1≤ i≤ d (7.9)

Thus for example given a vector z=[0.6, 1.1, -1.5, 1.2, 3.2, -1.1], softmax(z) is
[0.055, 0.090, 0.0067, 0.10, 0.74, 0.010].

You may recall that softmax was exactly what is used to create a probability
distribution from a vector of real-valued numbers (computed from summing weights
times features) in logistic regression in Chapter 5.

That means we can think of a neural network classifier with one hidden layer
as building a vector h which is a hidden layer representation of the input, and then
running standard logistic regression on the features that the network develops in h.
By contrast, in Chapter 5 the features were mainly designed by hand via feature
templates. So a neural network is like logistic regression, but (a) with many layers,
since a deep neural network is like layer after layer of logistic regression classifiers,
and (b) rather than forming the features by feature templates, the prior layers of the
network induce the feature representations themselves.

Here are the final equations for a feedforward network with a single hidden layer,
which takes an input vector x, outputs a probability distribution y, and is parameter-
ized by weight matrices W and U and a bias vector b:

h = σ(Wx+b)

z = Uh

y = softmax(z) (7.10)

We’ll call this network a 2-layer network (we traditionally don’t count the input
layer when numbering layers, but do count the output layer). So by this terminology
logistic regression is a 1-layer network.

Let’s now set up some notation to make it easier to talk about deeper networks
of depth more than 2. We’ll use superscripts in square brackets to mean layer num-
bers, starting at 0 for the input layer. So W [1] will mean the weight matrix for the
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(first) hidden layer, and b[1] will mean the bias vector for the (first) hidden layer. n j
will mean the number of units at layer j. We’ll use g(·) to stand for the activation
function, which will tend to be ReLU or tanh for intermediate layers and softmax
for output layers. We’ll use a[i] to mean the output from layer i, and z[i] to mean the
combination of weights and biases W [i]a[i−1]+b[i]. The 0th layer is for inputs, so the
inputs x we’ll refer to more generally as a[0].

Thus we can re-represent our 2-layer net from Eq. 7.10 as follows:

z[1] = W [1]a[0]+b[1]

a[1] = g[1](z[1])

z[2] = W [2]a[1]+b[2]

a[2] = g[2](z[2])

ŷ = a[2] (7.11)

Note that with this notation, the equations for the computation done at each layer are
the same. The algorithm for computing the forward step in an n-layer feedforward
network, given the input vector a[0] is thus simply:

for i in 1..n
z[i] = W [i] a[i−1] + b[i]

a[i] = g[i](z[i])
ŷ = a[n]

The activation functions g(·) are generally different at the final layer. Thus g[2]

might be softmax for multinomial classification or sigmoid for binary classification,
while ReLU or tanh might be the activation function g(·) at the internal layers.

Replacing the bias unit In describing networks, we will often use a slightly sim-
plified notation that represents exactly the same function without referring to an ex-
plicit bias node b. Instead, we add a dummy node a0 to each layer whose value will
always be 1. Thus layer 0, the input layer, will have a dummy node a[0]0 = 1, layer 1

will have a[1]0 = 1, and so on. This dummy node still has an associated weight, and
that weight represents the bias value b. For example instead of an equation like

h = σ(Wx+b) (7.12)

we’ll use:

h = σ(Wx) (7.13)

But now instead of our vector x having n values: x = x1, . . . ,xn, it will have n+
1 values, with a new 0th dummy value x0 = 1: x = x0, . . . ,xn0 . And instead of
computing each h j as follows:

h j = σ

( n0∑

i=1

Wjixi +b j

)
, (7.14)

we’ll instead use:

σ

( n0∑

i=0

Wjixi

)
, (7.15)
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Figure 7.9 Replacing the bias node (shown in a) with x0 (b).

where the value Wj0 replaces what had been b j. Fig. 7.9 shows a visualization.
We’ll continue showing the bias as b for the learning example in the next section,

but then we’ll switch to this simplified notation without explicit bias terms for the
rest of the book.

7.4 Training Neural Nets

A feedforward neural net is an instance of supervised machine learning in which we
know the correct output y for each observation x. What the system produces, via
Eq. 7.11, is ŷ, the system’s estimate of the true y. The goal of the training procedure
is to learn parameters W [i] and b[i] for each layer i that make ŷ for each training
observation as close as possible to the true y.

In general, we do all this by drawing on the methods we introduced in Chapter 5
for logistic regression, so the reader should be comfortable with that chapter before
proceeding.

First, we’ll need a loss function that models the distance between the system
output and the gold output, and it’s common to use the loss function used for logistic
regression, the cross-entropy loss.

Second, to find the parameters that minimize this loss function, we’ll use the
gradient descent optimization algorithm introduced in Chapter 5.

Third, gradient descent requires knowing the gradient of the loss function, the
vector that contains the partial derivative of the loss function with respect to each of
the parameters. Here is one part where learning for neural networks is more complex
than for logistic regression. In logistic regression, for each observation we could
directly compute the derivative of the loss function with respect to an individual w
or b. But for neural networks, with millions of parameters in many layers, it’s much
harder to see how to compute the partial derivative of some weight in layer 1 when
the loss is attached to some much later layer. How do we partial out the loss over all
those intermediate layers?

The answer is the algorithm called error backpropagation or reverse differen-
tiation.

7.4.1 Loss function
The cross-entropy loss that is used in neural networks is the same one we saw forcross-entropy

loss
logistic regression.

In fact, if the neural network is being used as a binary classifier, with the sig-
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moid at the final layer, the loss function is exactly the same as we saw with logistic
regression in Eq. 5.11:

LCE(ŷ,y) =− log p(y|x) = − [y log ŷ+(1− y) log(1− ŷ)] (7.16)

What about if the neural network is being used as a multinomial classifier? Let y be
a vector over the C classes representing the true output probability distribution. The
cross-entropy loss here is

LCE(ŷ,y) =−
C∑

i=1

yi log ŷi (7.17)

We can simplify this equation further. Assume this is a hard classification task,
meaning that only one class is the correct one, and that there is one output unit in y
for each class. If the true class is i, then y is a vector where yi = 1 and y j = 0 ∀ j 6= i.
A vector like this, with one value=1 and the rest 0, is called a one-hot vector. The
terms in the sum in Eq. 7.17 will be 0 except for the term corresponding to the true
class, i.e.:

LCE(ŷ,y) = −
K∑

k=1

1{y = k} log ŷi

= −
K∑

k=1

1{y = k} log p̂(y = k|x)

= −
K∑

k=1

1{y = k} log
ezk

∑K
j=1 ez j

(7.18)

Hence the cross-entropy loss is simply the log of the output probability correspond-
ing to the correct class, and we therefore also call this the negative log likelihood
loss:negative log

likelihood loss

LCE(ŷ,y) = − log ŷi, (where i is the correct class) (7.19)

Plugging in the softmax formula from Eq. 7.9, and with K the number of classes:

LCE(ŷ,y) = − log
ezi

∑K
j=1 ez j

(where i is the correct class) (7.20)

7.4.2 Computing the Gradient
How do we compute the gradient of this loss function? Computing the gradient
requires the partial derivative of the loss function with respect to each parameter.
For a network with one weight layer and sigmoid output (which is what logistic
regression is), we could simply use the derivative of the loss that we used for logistic
regression in Eq. 7.21 (and derived in Section 5.8):

∂LCE(w,b)
∂w j

= (ŷ− y) x j

= (σ(w · x+b)− y) x j (7.21)
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Or for a network with one hidden layer and softmax output, we could use the deriva-
tive of the softmax loss from Eq. 5.37:

∂LCE

∂wk
= (1{y = k}− p(y = k|x))xk

=

(
1{y = k}− exp(wk · x+bk)∑K

j=1 exp(w j · x+b j)

)
xk (7.22)

But these derivatives only give correct updates for one weight layer: the last one!
For deep networks, computing the gradients for each weight is much more complex,
since we are computing the derivative with respect to weight parameters that appear
all the way back in the very early layers of the network, even though the loss is
computed only at the very end of the network.

The solution to computing this gradient is an algorithm called error backprop-
agation or backprop (Rumelhart et al., 1986). While backprop was invented spe-error back-

propagation
cially for neural networks, it turns out to be the same as a more general procedure
called backward differentiation, which depends on the notion of computation
graphs. Let’s see how that works in the next subsection.

7.4.3 Computation Graphs
A computation graph is a representation of the process of computing a mathematical
expression, in which the computation is broken down into separate operations, each
of which is modeled as a node in a graph.

Consider computing the function L(a,b,c) = c(a+2b). If we make each of the
component addition and multiplication operations explicit, and add names (d and e)
for the intermediate outputs, the resulting series of computations is:

d = 2∗b

e = a+d

L = c∗ e

We can now represent this as a graph, with nodes for each operation, and di-
rected edges showing the outputs from each operation as the inputs to the next, as
in Fig. 7.10. The simplest use of computation graphs is to compute the value of
the function with some given inputs. In the figure, we’ve assumed the inputs a = 3,
b = 1, c = −2, and we’ve shown the result of the forward pass to compute the re-
sult L(3,1,−2) = −10. In the forward pass of a computation graph, we apply each
operation left to right, passing the outputs of each computation as the input to the
next node.

7.4.4 Backward differentiation on computation graphs
The importance of the computation graph comes from the backward pass, which
is used to compute the derivatives that we’ll need for the weight update. In this
example our goal is to compute the derivative of the output function L with respect
to each of the input variables, i.e., ∂L

∂a , ∂L
∂b , and ∂L

∂c . The derivative ∂L
∂a , tells us how

much a small change in a affects L.
Backwards differentiation makes use of the chain rule in calculus. Suppose wechain rule

are computing the derivative of a composite function f (x) = u(v(x)). The derivative
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Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =−2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv
· dv

dx
(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv
· dv

dw
· dw

dx
(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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to compute these derivatives. Fig. 7.11 shows the backward pass. At each node we
need to compute the local partial derivative with respect to the parent, multiply it by
the partial derivative that is being passed down from the parent, and then pass it to
the child.

e=d+a

d = 2b L=ce

a=3

b=1

e=5

d=2 L=-10

 

∂L=1∂L

∂L=-4∂b ∂L=-2∂d

a

b

c

∂L=-2∂a

∂L=5∂c

∂L =-2∂e∂L=-2∂e
∂e =1∂d

∂L =5∂c

∂d =2∂b

∂e =1∂a

backward pass
c=-2

Figure 7.11 Computation graph for the function L(a,b,c) = c(a+2b), showing the back-
ward pass computation of ∂L

∂a , ∂L
∂b , and ∂L

∂c .

Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1]+b[2]

a[2] = σ(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section 5.8 the derivative of the sigmoid σ :

dσ(z)
dz

= σ(z)(1−σ(z)) (7.28)

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1− tanh2(z) (7.29)

The derivative of the ReLU is

d ReLU(z)
dz

=

{
0 f or x< 0
1 f or x≥ 0 (7.30)
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Figure 7.12 Sample computation graph for a simple 2-layer neural net (= 1 hidden layer)
with two input dimensions and 2 hidden dimensions.

7.4.5 More details on learning
Optimization in neural networks is a non-convex optimization problem, more com-
plex than for logistic regression, and for that and other reasons there are many best
practices for successful learning.

For logistic regression we can initialize gradient descent with all the weights and
biases having the value 0. In neural networks, by contrast, we need to initialize the
weights with small random numbers. It’s also helpful to normalize the input values
to have 0 mean and unit variance.

Various forms of regularization are used to prevent overfitting. One of the most
important is dropout: randomly dropping some units and their connections fromdropout

the network during training (Hinton et al. 2012, Srivastava et al. 2014). Tuning
of hyperparameters is also important. The parameters of a neural network are thehyperparameter

weights W and biases b; those are learned by gradient descent. The hyperparameters
are things that are chosen by the algorithm designer; optimal values are tuned on a
devset rather than by gradient descent learning on the training set. Hyperparameters
include the learning rate η , the mini-batch size, the model architecture (the number
of layers, the number of hidden nodes per layer, the choice of activation functions),
how to regularize, and so on. Gradient descent itself also has many architectural
variants such as Adam (Kingma and Ba, 2015).

Finally, most modern neural networks are built using computation graph for-
malisms that make it easy and natural to do gradient computation and parallelization
onto vector-based GPUs (Graphic Processing Units). PyTorch (Paszke et al., 2017)
and TensorFlow (Abadi et al., 2015) are two of the most popular. The interested
reader should consult a neural network textbook for further details; some sugges-
tions are at the end of the chapter.

7.5 Neural Language Models

As our first application of neural networks, let’s consider language modeling: pre-
dicting upcoming words from prior word context.

Neural net-based language models turn out to have many advantages over the n-
gram language models of Chapter 3. Among these are that neural language models
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don’t need smoothing, they can handle much longer histories, and they can general-
ize over contexts of similar words. For a training set of a given size, a neural lan-
guage model has much higher predictive accuracy than an n-gram language model.
Furthermore, neural language models underlie many of the models we’ll introduce
for tasks like machine translation, dialog, and language generation.

On the other hand, there is a cost for this improved performance: neural net
language models are strikingly slower to train than traditional language models, and
so for many tasks an n-gram language model is still the right tool.

In this chapter we’ll describe simple feedforward neural language models, first
introduced by Bengio et al. (2003). Modern neural language models are generally
not feedforward but recurrent, using the technology that we will introduce in Chap-
ter 9.

A feedforward neural LM is a standard feedforward network that takes as in-
put at time t a representation of some number of previous words (wt−1,wt−2, etc.)
and outputs a probability distribution over possible next words. Thus—like the n-
gram LM—the feedforward neural LM approximates the probability of a word given
the entire prior context P(wt |w1 : t−1) by approximating based on the N previous
words:

P(wt |w1, . . . ,wt−1)≈ P(wt |wt−N+1, . . . ,wt−1) (7.31)

In the following examples we’ll use a 4-gram example, so we’ll show a net to esti-
mate the probability P(wt = i|wt−1,wt−2,wt−3).

7.5.1 Embeddings
In neural language models, the prior context is represented by embeddings of the
previous words. Representing the prior context as embeddings, rather than by ex-
act words as used in n-gram language models, allows neural language models to
generalize to unseen data much better than n-gram language models. For example,
suppose we’ve seen this sentence in training:

I have to make sure that the cat gets fed.

but have never seen the words “gets fed” after the word “dog”. Our test set has the
prefix “I forgot to make sure that the dog gets”. What’s the next word? An n-gram
language model will predict “fed” after “that the cat gets”, but not after “that the dog
gets”. But a neural LM, knowing that “cat” and “dog” have similar embeddings, will
be able to generalize from the “cat” context to assign a high enough probability to
“fed” even after seeing “dog”.

Let’s see how this works in practice. For now we’ll assume we already have
an embedding dictionary E that gives us, for each word in our vocabulary V , the
embedding for that word.

Fig. 7.13 shows a sketch of this simplified feedforward neural language model
with N=3; we have a moving window at time t with an embedding vector represent-
ing each of the 3 previous words (words wt−1, wt−2, and wt−3). These 3 vectors are
concatenated together to produce x, the input layer of a neural network whose output
is a softmax with a probability distribution over words. Thus y42, the value of output
node 42 is the probability of the next word wt being V42, the vocabulary word with
index 42.

The model shown in Fig. 7.13 is quite sufficient, assuming we have already
learned the embeddings separately by a method like the word2vec methods of Chap-
ter 6. Relying on another algorithm to have already learned an embedding represen-
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Figure 7.13 A simplified view of a feedforward neural language model moving through
a text. At each timestep t the network takes the 3 context words, converts each to a d-
dimensional embedding, and concatenates the 3 embeddings together to get the 1×Nd unit
input layer x for the network. These units are multiplied by a weight matrix W and then an
activation function is applied element-wise to produce the hidden layer h, which is then mul-
tiplied by another weight matrix U . Finally, a softmax output layer predicts at each node i the
probability that the next word wt will be vocabulary word Vi. (This picture is simplified be-
cause it assumes we just look up in an embedding dictionary E the d-dimensional embedding
vector for each word, precomputed by an algorithm like word2vec.)

tation for input words is called pretraining. If those pretrained embeddings arepretraining

sufficient for your purposes, then this is all you need.
However, often we’d like to learn the embeddings simultaneously with training

the network. This is true when the task the network is designed for (sentiment clas-
sification, or translation, or parsing) places strong constraints on what makes a good
representation.

Let’s therefore show an architecture that allows the embeddings to be learned.
To do this, we’ll add an extra layer to the network, and propagate the error all the
way back to the embedding vectors, starting with embeddings with random values
and slowly moving toward sensible representations.

For this to work at the input layer, instead of pretrained embeddings, we’re going
to represent each of the N previous words as a one-hot vector of length |V |, i.e., with
one dimension for each word in the vocabulary. A one-hot vector is a vector thatone-hot vector

has one element equal to 1—in the dimension corresponding to that word’s index in
the vocabulary— while all the other elements are set to zero.

Thus in a one-hot representation for the word “toothpaste”, supposing it is index
5 in the vocabulary, x5 = 1, and xi = 0 ∀i 6= 5, as shown here:

[0 0 0 0 1 0 0 ... 0 0 0 0]

1 2 3 4 5 6 7 ... ... |V|

Fig. 7.14 shows the additional layers needed to learn the embeddings during LM
training. Here the N=3 context words are represented as 3 one-hot vectors, fully
connected to the embedding layer via 3 instantiations of the embedding matrix E.
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Figure 7.14 Learning all the way back to embeddings. Notice that the embedding matrix
E is shared among the 3 context words.

Note that we don’t want to learn separate weight matrices for mapping each of the
3 previous words to the projection layer, we want one single embedding dictionary
E that’s shared among these three. That’s because over time, many different words
will appear as wt−2 or wt−1, and we’d like to just represent each word with one
vector, whichever context position it appears in. The embedding weight matrix E
thus has a column for each word, each a column vector of d dimensions, and hence
has dimensionality d×|V |.

Let’s walk through the forward pass of Fig. 7.14.

1. Select three embeddings from E: Given the three previous words, we look
up their indices, create 3 one-hot vectors, and then multiply each by the em-
bedding matrix E. Consider wt−3. The one-hot vector for ‘the’ (index 35) is
multiplied by the embedding matrix E, to give the first part of the first hidden
layer, called the projection layer. Since each row of the input matrix E is justprojection layer

an embedding for a word, and the input is a one-hot column vector xi for word
Vi, the projection layer for input w will be Exi = ei, the embedding for word i.
We now concatenate the three embeddings for the context words.

2. Multiply by W: We now multiply by W (and add b) and pass through the
rectified linear (or other) activation function to get the hidden layer h.

3. Multiply by U: h is now multiplied by U
4. Apply softmax: After the softmax, each node i in the output layer estimates

the probability P(wt = i|wt−1,wt−2,wt−3)

In summary, if we use e to represent the projection layer, formed by concate-
nating the 3 embeddings for the three context vectors, the equations for a neural
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language model become:

e = (Ex1,Ex2, ...,Ex) (7.32)

h = σ(We+b) (7.33)

z = Uh (7.34)

ŷ = softmax(z) (7.35)

7.5.2 Training the neural language model
To train the model, i.e. to set all the parameters θ = E,W,U,b, we do gradient
descent (Fig. 5.5), using error backpropagation on the computation graph to compute
the gradient. Training thus not only sets the weights W and U of the network, but
also as we’re predicting upcoming words, we’re learning the embeddings E for each
words that best predict upcoming words.

Generally training proceeds by taking as input a very long text, concatenating all
the sentences, starting with random weights, and then iteratively moving through the
text predicting each word wt . At each word wt , we use the cross-entropy (negative
log likelihood) loss. Recall that the general form for this (repeated from Eq. 7.19 is:

LCE(ŷ,y) = − log ŷi, (where i is the correct class) (7.36)

For language modeling, the classes are are the word in the vocabulary, so ŷi here
means the probability that the model assigns to the correct next word wt :

LCE =− log p(wt |wt−1, ...,wt−n+1) (7.37)

The parameter update for stochastic gradient descent for this loss from step s to s+1
is then:

θ
s+1 = θ

s−η
∂ − log p(wt |wt−1, ...,wt−n+1)

∂θ
(7.38)

This gradient can be computed in any standard neural network framework which
will then backpropagate through θ = E,W,U,b.

Training the parameters to minimize loss will result both in an algorithm for
language modeling (a word predictor) but also a new set of embeddings E that can
be used as word representations for other tasks.

7.6 Summary

• Neural networks are built out of neural units, originally inspired by human
neurons but now simply an abstract computational device.

• Each neural unit multiplies input values by a weight vector, adds a bias, and
then applies a non-linear activation function like sigmoid, tanh, or rectified
linear.

• In a fully-connected, feedforward network, each unit in layer i is connected
to each unit in layer i+1, and there are no cycles.

• The power of neural networks comes from the ability of early layers to learn
representations that can be utilized by later layers in the network.

• Neural networks are trained by optimization algorithms like gradient de-
scent.
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• Error backpropagation, backward differentiation on a computation graph,
is used to compute the gradients of the loss function for a network.

• Neural language models use a neural network as a probabilistic classifier, to
compute the probability of the next word given the previous n words.

• Neural language models can use pretrained embeddings, or can learn embed-
dings from scratch in the process of language modeling.

Bibliographical and Historical Notes
The origins of neural networks lie in the 1940s McCulloch-Pitts neuron (McCul-
loch and Pitts, 1943), a simplified model of the human neuron as a kind of com-
puting element that could be described in terms of propositional logic. By the late
1950s and early 1960s, a number of labs (including Frank Rosenblatt at Cornell and
Bernard Widrow at Stanford) developed research into neural networks; this phase
saw the development of the perceptron (Rosenblatt, 1958), and the transformation
of the threshold into a bias, a notation we still use (Widrow and Hoff, 1960).

The field of neural networks declined after it was shown that a single percep-
tron unit was unable to model functions as simple as XOR (Minsky and Papert,
1969). While some small amount of work continued during the next two decades,
a major revival for the field didn’t come until the 1980s, when practical tools for
building deeper networks like error backpropagation became widespread (Rumel-
hart et al., 1986). During the 1980s a wide variety of neural network and related
architectures were developed, particularly for applications in psychology and cog-
nitive science (Rumelhart and McClelland 1986b, McClelland and Elman 1986,
Rumelhart and McClelland 1986a, Elman 1990), for which the term connection-
ist or parallel distributed processing was often used (Feldman and Ballard 1982,connectionist

Smolensky 1988). Many of the principles and techniques developed in this period
are foundational to modern work, including the ideas of distributed representations
(Hinton, 1986), recurrent networks (Elman, 1990), and the use of tensors for com-
positionality (Smolensky, 1990).

By the 1990s larger neural networks began to be applied to many practical lan-
guage processing tasks as well, like handwriting recognition (LeCun et al. 1989) and
speech recognition (Morgan and Bourlard 1990). By the early 2000s, improvements
in computer hardware and advances in optimization and training techniques made it
possible to train even larger and deeper networks, leading to the modern term deep
learning (Hinton et al. 2006, Bengio et al. 2007). We cover more related history in
Chapter 9 and Chapter 26.

There are a number of excellent books on the subject. Goldberg (2017) has
superb coverage of neural networks for natural language processing. For neural
networks in general see Goodfellow et al. (2016) and Nielsen (2015).
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CHAPTER

8 Sequence Labeling for Parts of
Speech and Named Entities

To each word a warbling note
A Midsummer Night’s Dream, V.I

Dionysius Thrax of Alexandria (c. 100 B.C.), or perhaps someone else (it was a long
time ago), wrote a grammatical sketch of Greek (a “technē”) that summarized the
linguistic knowledge of his day. This work is the source of an astonishing proportion
of modern linguistic vocabulary, including the words syntax, diphthong, clitic, and
analogy. Also included are a description of eight parts of speech: noun, verb,parts of speech

pronoun, preposition, adverb, conjunction, participle, and article. Although earlier
scholars (including Aristotle as well as the Stoics) had their own lists of parts of
speech, it was Thrax’s set of eight that became the basis for descriptions of European
languages for the next 2000 years. (All the way to the Schoolhouse Rock educational
television shows of our childhood, which had songs about 8 parts of speech, like the
late great Bob Dorough’s Conjunction Junction.) The durability of parts of speech
through two millennia speaks to their centrality in models of human language.

Proper names are another important and anciently studied linguistic category.
While parts of speech are generally assigned to individual words or morphemes, a
proper name is often an entire multiword phrase, like the name “Marie Curie”, the
location “New York City”, or the organization “Stanford University”. We’ll use the
term named entity for, roughly speaking, anything that can be referred to with anamed entity

proper name: a person, a location, an organization, although as we’ll see the term is
commonly extended to include things that aren’t entities per se.

Parts of speech (also known as POS) and named entities are useful clues to sen-POS

tence structure and meaning. Knowing whether a word is a noun or a verb tells us
about likely neighboring words (nouns in English are preceded by determiners and
adjectives, verbs by nouns) and syntactic structure (verbs have dependency links to
nouns), making part-of-speech tagging a key aspect of parsing. Knowing if a named
entity like Washington is a name of a person, a place, or a university is important to
many natural language understanding tasks like question answering, stance detec-
tion, or information extraction.

In this chapter we’ll introduce the task of part-of-speech tagging, taking a se-
quence of words and assigning each word a part of speech like NOUN or VERB, and
the task of named entity recognition (NER), assigning words or phrases tags like
PERSON, LOCATION, or ORGANIZATION.

Such tasks in which we assign, to each word xi in an input word sequence, a
label yi, so that the output sequence Y has the same length as the input sequence X
are called sequence labeling tasks. We’ll introduce classic sequence labeling algo-sequence

labeling
rithms, one generative— the Hidden Markov Model (HMM)—and one discriminative—
the Conditional Random Field (CRF). In following chapters we’ll introduce modern
sequence labelers based on RNNs and Transformers.
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8.1 (Mostly) English Word Classes

Until now we have been using part-of-speech terms like noun and verb rather freely.
In this section we give more complete definitions. While word classes do have
semantic tendencies—adjectives, for example, often describe properties and nouns
people— parts of speech are defined instead based on their grammatical relationship
with neighboring words or the morphological properties about their affixes.

Tag Description Example

O
pe

n
C

la
ss

ADJ Adjective: noun modifiers describing properties red, young, awesome
ADV Adverb: verb modifiers of time, place, manner very, slowly, home, yesterday
NOUN words for persons, places, things, etc. algorithm, cat, mango, beauty
VERB words for actions and processes draw, provide, go
PROPN Proper noun: name of a person, organization, place, etc.. Regina, IBM, Colorado
INTJ Interjection: exclamation, greeting, yes/no response, etc. oh, um, yes, hello

C
lo

se
d

C
la

ss
W

or
ds

ADP Adposition (Preposition/Postposition): marks a noun’s
spacial, temporal, or other relation

in, on, by under

AUX Auxiliary: helping verb marking tense, aspect, mood, etc., can, may, should, are
CCONJ Coordinating Conjunction: joins two phrases/clauses and, or, but
DET Determiner: marks noun phrase properties a, an, the, this
NUM Numeral one, two, first, second
PART Particle: a preposition-like form used together with a verb up, down, on, off, in, out, at, by
PRON Pronoun: a shorthand for referring to an entity or event she, who, I, others
SCONJ Subordinating Conjunction: joins a main clause with a

subordinate clause such as a sentential complement
that, which

O
th

er PUNCT Punctuation ,̇ , ()
SYM Symbols like $ or emoji $, %
X Other asdf, qwfg

Figure 8.1 The 17 parts of speech in the Universal Dependencies tagset (Nivre et al., 2016a). Features can
be added to make finer-grained distinctions (with properties like number, case, definiteness, and so on).

Parts of speech fall into two broad categories: closed class and open class.closed class
open class Closed classes are those with relatively fixed membership, such as prepositions—

new prepositions are rarely coined. By contrast, nouns and verbs are open classes—
new nouns and verbs like iPhone or to fax are continually being created or borrowed.
Closed class words are generally function words like of, it, and, or you, which tendfunction word

to be very short, occur frequently, and often have structuring uses in grammar.
Four major open classes occur in the languages of the world: nouns (including

proper nouns), verbs, adjectives, and adverbs, as well as the smaller open class of
interjections. English has all five, although not every language does.

Nouns are words for people, places, or things, but include others as well. Com-noun

mon nouns include concrete terms like cat and mango, abstractions like algorithmcommon noun

and beauty, and verb-like terms like pacing as in His pacing to and fro became quite
annoying. Nouns in English can occur with determiners (a goat, its bandwidth)
take possessives (IBM’s annual revenue), and may occur in the plural (goats, abaci).
Many languages, including English, divide common nouns into count nouns andcount noun

mass nouns. Count nouns can occur in the singular and plural (goat/goats, rela-mass noun

tionship/relationships) and can be counted (one goat, two goats). Mass nouns are
used when something is conceptualized as a homogeneous group. So snow, salt, and
communism are not counted (i.e., *two snows or *two communisms). Proper nouns,proper noun

like Regina, Colorado, and IBM, are names of specific persons or entities.
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Verbs refer to actions and processes, including main verbs like draw, provide,verb

and go. English verbs have inflections (non-third-person-singular (eat), third-person-
singular (eats), progressive (eating), past participle (eaten)). While many scholars
believe that all human languages have the categories of noun and verb, others have
argued that some languages, such as Riau Indonesian and Tongan, don’t even make
this distinction (Broschart 1997; Evans 2000; Gil 2000) .

Adjectives often describe properties or qualities of nouns, like color (white,adjective

black), age (old, young), and value (good, bad), but there are languages without
adjectives. In Korean, for example, the words corresponding to English adjectives
act as a subclass of verbs, so what is in English an adjective “beautiful” acts in
Korean like a verb meaning “to be beautiful”.

Adverbs are a hodge-podge. All the italicized words in this example are adverbs:adverb

Actually, I ran home extremely quickly yesterday

Adverbs generally modify something (often verbs, hence the name “adverb”, but
also other adverbs and entire verb phrases). Directional adverbs or locative ad-locative

verbs (home, here, downhill) specify the direction or location of some action; degreedegree

adverbs (extremely, very, somewhat) specify the extent of some action, process, or
property; manner adverbs (slowly, slinkily, delicately) describe the manner of somemanner

action or process; and temporal adverbs describe the time that some action or eventtemporal

took place (yesterday, Monday).
Interjections (oh, hey, alas, uh, um), are a smaller open class, that also includesinterjection

greetings (hello, goodbye), and question responses (yes, no, uh-huh).
English adpositions occur before nouns, hence are called prepositions. They canpreposition

indicate spatial or temporal relations, whether literal (on it, before then, by the house)
or metaphorical (on time, with gusto, beside herself), and relations like marking the
agent in Hamlet was written by Shakespeare.

A particle resembles a preposition or an adverb and is used in combination withparticle

a verb. Particles often have extended meanings that aren’t quite the same as the
prepositions they resemble, as in the particle over in she turned the paper over. A
verb and a particle acting as a single unit is called a phrasal verb. The meaningphrasal verb

of phrasal verbs is often non-compositional—not predictable from the individual
meanings of the verb and the particle. Thus, turn down means ‘reject’, rule out
‘eliminate’, and go on ‘continue’.

Determiners like this and that (this chapter, that page) can mark the start of andeterminer

English noun phrase. Articles like a, an, and the, are a type of determiner that markarticle

discourse properties of the noun and are quite frequent; the is the most common
word in written English, with a and an right behind.

Conjunctions join two phrases, clauses, or sentences. Coordinating conjunc-conjunction

tions like and, or, and but join two elements of equal status. Subordinating conjunc-
tions are used when one of the elements has some embedded status. For example,
the subordinating conjunction that in “I thought that you might like some milk” links
the main clause I thought with the subordinate clause you might like some milk. This
clause is called subordinate because this entire clause is the “content” of the main
verb thought. Subordinating conjunctions like that which link a verb to its argument
in this way are also called complementizers.complementizer

Pronouns act as a shorthand for referring to an entity or event. Personal pro-pronoun

nouns refer to persons or entities (you, she, I, it, me, etc.). Possessive pronouns
are forms of personal pronouns that indicate either actual possession or more often
just an abstract relation between the person and some object (my, your, his, her, its,
one’s, our, their). Wh-pronouns (what, who, whom, whoever) are used in certainwh
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question forms, or act as complementizers (Frida, who married Diego. . . ).
Auxiliary verbs mark semantic features of a main verb such as its tense, whetherauxiliary

it is completed (aspect), whether it is negated (polarity), and whether an action is
necessary, possible, suggested, or desired (mood). English auxiliaries include the
copula verb be, the two verbs do and have, forms, as well as modal verbs used tocopula

modal mark the mood associated with the event depicted by the main verb: can indicates
ability or possibility, may permission or possibility, must necessity.

An English-specific tagset, the 45-tag Penn Treebank tagset (Marcus et al., 1993),
shown in Fig. 8.2, has been used to label many syntactically annotated corpora like
the Penn Treebank corpora, so is worth knowing about.

Tag Description Example Tag Description Example Tag Description Example
CC coord. conj. and, but, or NNP proper noun, sing. IBM TO “to” to
CD cardinal number one, two NNPS proper noun, plu. Carolinas UH interjection ah, oops
DT determiner a, the NNS noun, plural llamas VB verb base eat
EX existential ‘there’ there PDT predeterminer all, both VBD verb past tense ate
FW foreign word mea culpa POS possessive ending ’s VBG verb gerund eating
IN preposition/

subordin-conj
of, in, by PRP personal pronoun I, you, he VBN verb past partici-

ple
eaten

JJ adjective yellow PRP$ possess. pronoun your, one’s VBP verb non-3sg-pr eat
JJR comparative adj bigger RB adverb quickly VBZ verb 3sg pres eats
JJS superlative adj wildest RBR comparative adv faster WDT wh-determ. which, that
LS list item marker 1, 2, One RBS superlatv. adv fastest WP wh-pronoun what, who
MD modal can, should RP particle up, off WP$ wh-possess. whose
NN sing or mass noun llama SYM symbol +,%, & WRB wh-adverb how, where
Figure 8.2 Penn Treebank part-of-speech tags.

Below we show some examples with each word tagged according to both the
UD and Penn tagsets. Notice that the Penn tagset distinguishes tense and participles
on verbs, and has a special tag for the existential there construction in English. Note
that since New England Journal of Medicine is a proper noun, both tagsets mark its
component nouns as NNP, including journal and medicine, which might otherwise
be labeled as common nouns (NOUN/NN).

(8.1) There/PRO/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS
there/ADV/RB ./PUNC/.

(8.2) Preliminary/ADJ/JJ findings/NOUN/NNS were/AUX/VBD reported/VERB/VBN
in/ADP/IN today/NOUN/NN ’s/PART/POS New/PROPN/NNP
England/PROPN/NNP Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP

8.2 Part-of-Speech Tagging

Part-of-speech tagging is the process of assigning a part-of-speech to each word inpart-of-speech
tagging

a text. The input is a sequence x1,x2, ...,xn of (tokenized) words and a tagset, and
the output is a sequence y1,y2, ...,yn of tags, each output yi corresponding exactly to
one input xi, as shown in the intuition in Fig. 8.3.

Tagging is a disambiguation task; words are ambiguous —have more than oneambiguous

possible part-of-speech—and the goal is to find the correct tag for the situation.
For example, book can be a verb (book that flight) or a noun (hand me that book).
That can be a determiner (Does that flight serve dinner) or a complementizer (I
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will

NOUN AUX VERB DET NOUN

Janet back the bill

Part of Speech Tagger

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 8.3 The task of part-of-speech tagging: mapping from input words x1,x2, ...,xn to
output POS tags y1,y2, ...,yn .

thought that your flight was earlier). The goal of POS-tagging is to resolve theseambiguity
resolution

ambiguities, choosing the proper tag for the context.
The accuracy of part-of-speech tagging algorithms (the percentage of test setaccuracy

tags that match human gold labels) is extremely high. One study found accuracies
over 97% across 15 languages from the Universal Dependency (UD) treebank (Wu
and Dredze, 2019). Accuracies on various English treebanks are also 97% (no matter
the algorithm; HMMs, CRFs, BERT perform similarly). This 97% number is also
about the human performance on this task, at least for English (Manning, 2011).

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:
Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

Figure 8.4 Tag ambiguity in the Brown and WSJ corpora (Treebank-3 45-tag tagset).

We’ll introduce algorithms for the task in the next few sections, but first let’s
explore the task. Exactly how hard is it? Fig. 8.4 shows that most word types
(85-86%) are unambiguous (Janet is always NNP, hesitantly is always RB). But the
ambiguous words, though accounting for only 14-15% of the vocabulary, are very
common, and 55-67% of word tokens in running text are ambiguous. Particularly
ambiguous common words include that, back, down, put and set; here are some
examples of the 6 different parts of speech for the word back:

earnings growth took a back/JJ seat
a small building in the back/NN
a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door
enable the country to buy back/RP debt
I was twenty-one back/RB then

Nonetheless, many words are easy to disambiguate, because their different tags
aren’t equally likely. For example, a can be a determiner or the letter a, but the
determiner sense is much more likely.

This idea suggests a useful baseline: given an ambiguous word, choose the tag
which is most frequent in the training corpus. This is a key concept:

Most Frequent Class Baseline: Always compare a classifier against a baseline at
least as good as the most frequent class baseline (assigning each token to the class
it occurred in most often in the training set).
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The most-frequent-tag baseline has an accuracy of about 92%1. The baseline
thus differs from the state-of-the-art and human ceiling (97%) by only 5%.

8.3 Named Entities and Named Entity Tagging

Part of speech tagging can tell us that words like Janet, Stanford University, and
Colorado are all proper nouns; being a proper noun is a grammatical property of
these words. But viewed from a semantic perspective, these proper nouns refer to
different kinds of entities: Janet is a person, Stanford University is an organization,..
and Colorado is a location.

A named entity is, roughly speaking, anything that can be referred to with anamed entity

proper name: a person, a location, an organization. The task of named entity recog-
nition (NER) is to find spans of text that constitute proper names and tag the type ofnamed entity

recognition
NER the entity. Four entity tags are most common: PER (person), LOC (location), ORG

(organization), or GPE (geo-political entity). However, the term named entity is
commonly extended to include things that aren’t entities per se, including dates,
times, and other kinds of temporal expressions, and even numerical expressions like
prices. Here’s an example of the output of an NER tagger:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text contains 13 mentions of named entities including 5 organizations, 4 loca-
tions, 2 times, 1 person, and 1 mention of money. Figure 8.5 shows typical generic
named entity types. Many applications will also need to use specific entity types like
proteins, genes, commercial products, or works of art.

Type Tag Sample Categories Example sentences
People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams The IPCC warned about the cyclone.
Location LOC regions, mountains, seas Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity GPE countries, states Palo Alto is raising the fees for parking.

Figure 8.5 A list of generic named entity types with the kinds of entities they refer to.

Named entity tagging is a useful first step in lots of natural language understand-
ing tasks. In sentiment analysis we might want to know a consumer’s sentiment
toward a particular entity. Entities are a useful first stage in question answering,
or for linking text to information in structured knowledge sources like Wikipedia.
And named entity tagging is also central to natural language understanding tasks
of building semantic representations, like extracting events and the relationship be-
tween participants.

Unlike part-of-speech tagging, where there is no segmentation problem since
each word gets one tag, the task of named entity recognition is to find and label

1 In English, on the WSJ corpus, tested on sections 22-24.
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spans of text, and is difficult partly because of the ambiguity of segmentation; we
need to decide what’s an entity and what isn’t, and where the boundaries are. Indeed,
most words in a text will not be named entities. Another difficulty is caused by type
ambiguity. The mention JFK can refer to a person, the airport in New York, or any
number of schools, bridges, and streets around the United States. Some examples of
this kind of cross-type confusion are given in Figure 8.6.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.

Figure 8.6 Examples of type ambiguities in the use of the name Washington.

The standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows us
to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[PER Jane Villanueva ] of [ORG United] , a unit of [ORG United Airlines
Holding] , said the fare applies to the [LOC Chicago ] route.

Figure 8.7 shows the same excerpt represented with BIO tagging, as well asBIO

variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an I, and any tokens outside of any span of interest are labeled O. While
there is only one O tag, we’ll have distinct B and I tags for each named entity class.
The number of tags is thus 2n+1 tags, where n is the number of entity types. BIO
tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label yi to each input word xi:

Words IO Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O
. O O O
Figure 8.7 NER as a sequence model, showing IO, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.
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8.4 HMM Part-of-Speech Tagging

In this section we introduce our first sequence labeling algorithm, the Hidden Markov
Model, and show how to apply it to part-of-speech tagging. Recall that a sequence
labeler is a model whose job is to assign a label to each unit in a sequence, thus map-
ping a sequence of observations to a sequence of labels of the same length. HMMs
are a classic model that introduces many of the key concepts of sequence modeling
that we will see again in more modern models.

An HMM is a probabilistic sequence model: given a sequence of units (words,
letters, morphemes, sentences, whatever), it computes a probability distribution over
possible sequences of labels and chooses the best label sequence.

8.4.1 Markov Chains
The HMM is based on augmenting the Markov chain. A Markov chain is a modelMarkov chain

that tells us something about the probabilities of sequences of random variables,
states, each of which can take on values from some set. These sets can be words, or
tags, or symbols representing anything, for example the weather. A Markov chain
makes a very strong assumption that if we want to predict the future in the sequence,
all that matters is the current state. All the states before the current state have no im-
pact on the future except via the current state. It’s as if to predict tomorrow’s weather
you could examine today’s weather but you weren’t allowed to look at yesterday’s
weather.

WARM3HOT1

COLD2
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(a) (b)

Figure 8.8 A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution π is required; setting π = [0.1, 0.7, 0.2] for (a) would mean a
probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

More formally, consider a sequence of state variables q1,q2, ...,qi. A Markov
model embodies the Markov assumption on the probabilities of this sequence: thatMarkov

assumption
when predicting the future, the past doesn’t matter, only the present.

Markov Assumption: P(qi = a|q1...qi−1) = P(qi = a|qi−1) (8.3)

Figure 8.8a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. The
states are represented as nodes in the graph, and the transitions, with their probabil-
ities, as edges. The transitions are probabilities: the values of arcs leaving a given
state must sum to 1. Figure 8.8b shows a Markov chain for assigning a probability to
a sequence of words w1...wt . This Markov chain should be familiar; in fact, it repre-
sents a bigram language model, with each edge expressing the probability p(wi|w j)!
Given the two models in Fig. 8.8, we can assign a probability to any sequence from
our vocabulary.
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Formally, a Markov chain is specified by the following components:
Q = q1q2 . . .qN a set of N states
A = a11a12 . . .aN1 . . .aNN a transition probability matrix A, each ai j represent-

ing the probability of moving from state i to state j, s.t.∑n
j=1 ai j = 1 ∀i

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in state i.
Some states j may have π j = 0, meaning that they cannot
be initial states. Also,

∑n
i=1 πi = 1

Before you go on, use the sample probabilities in Fig. 8.8a (with π = [0.1,0.7,0.2])
to compute the probability of each of the following sequences:

(8.4) hot hot hot hot
(8.5) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. 8.8a?

8.4.2 The Hidden Markov Model
A Markov chain is useful when we need to compute a probability for a sequence
of observable events. In many cases, however, the events we are interested in are
hidden: we don’t observe them directly. For example we don’t normally observehidden

part-of-speech tags in a text. Rather, we see words, and must infer the tags from the
word sequence. We call the tags hidden because they are not observed.

A hidden Markov model (HMM) allows us to talk about both observed eventshidden Markov
model

(like words that we see in the input) and hidden events (like part-of-speech tags) that
we think of as causal factors in our probabilistic model. An HMM is specified by
the following components:

Q = q1q2 . . .qN a set of N states
A = a11 . . .ai j . . .aNN a transition probability matrix A, each ai j representing the probability

of moving from state i to state j, s.t.
∑N

j=1 ai j = 1 ∀i
O = o1o2 . . .oT a sequence of T observations, each one drawn from a vocabulary V =

v1,v2, ...,vV
B = bi(ot) a sequence of observation likelihoods, also called emission probabili-

ties, each expressing the probability of an observation ot being generated
from a state qi

π = π1,π2, ...,πN an initial probability distribution over states. πi is the probability that
the Markov chain will start in state i. Some states j may have π j = 0,
meaning that they cannot be initial states. Also,

∑n
i=1 πi = 1

A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1, ...,qi−1) = P(qi|qi−1) (8.6)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1, . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT ) = P(oi|qi) (8.7)
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8.4.3 The components of an HMM tagger
Let’s start by looking at the pieces of an HMM tagger, and then we’ll see how to use
it to tag. An HMM has two components, the A and B probabilities.

The A matrix contains the tag transition probabilities P(ti|ti−1) which represent
the probability of a tag occurring given the previous tag. For example, modal verbs
like will are very likely to be followed by a verb in the base form, a VB, like race, so
we expect this probability to be high. We compute the maximum likelihood estimate
of this transition probability by counting, out of the times we see the first tag in a
labeled corpus, how often the first tag is followed by the second:

P(ti|ti−1) =
C(ti−1, ti)
C(ti−1)

(8.8)

In the WSJ corpus, for example, MD occurs 13124 times of which it is followed
by VB 10471, for an MLE estimate of

P(V B|MD) =
C(MD,V B)

C(MD)
=

10471
13124

= .80 (8.9)

Let’s walk through an example, seeing how these probabilities are estimated and
used in a sample tagging task, before we return to the algorithm for decoding.

In HMM tagging, the probabilities are estimated by counting on a tagged training
corpus. For this example we’ll use the tagged WSJ corpus.

The B emission probabilities, P(wi|ti), represent the probability, given a tag (say
MD), that it will be associated with a given word (say will). The MLE of the emis-
sion probability is

P(wi|ti) =
C(ti,wi)

C(ti)
(8.10)

Of the 13124 occurrences of MD in the WSJ corpus, it is associated with will 4046
times:

P(will|MD) =
C(MD,will)

C(MD)
=

4046
13124

= .31 (8.11)

We saw this kind of Bayesian modeling in Chapter 4; recall that this likelihood
term is not asking “which is the most likely tag for the word will?” That would be
the posterior P(MD|will). Instead, P(will|MD) answers the slightly counterintuitive
question “If we were going to generate a MD, how likely is it that this modal would
be will?”

The A transition probabilities, and B observation likelihoods of the HMM are
illustrated in Fig. 8.9 for three states in an HMM part-of-speech tagger; the full
tagger would have one state for each tag.

8.4.4 HMM tagging as decoding
For any model, such as an HMM, that contains hidden variables, the task of deter-
mining the hidden variables sequence corresponding to the sequence of observations
is called decoding. More formally,decoding

Decoding: Given as input an HMM λ = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .
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NN3VB1

MD2

a22

a11

a12

a21

a13

a33

a32

a23

a31

P("aardvark" | NN)
...
P(“will” | NN)
...
P("the" | NN)
...
P(“back” | NN)
...
P("zebra" | NN)

B3

P("aardvark" | VB)
...
P(“will” | VB)
...
P("the" | VB)
...
P(“back” | VB)
...
P("zebra" | VB)

B1

P("aardvark" | MD)
...
P(“will” | MD)
...
P("the" | MD)
...
P(“back” | MD)
...
P("zebra" | MD)

B2

Figure 8.9 An illustration of the two parts of an HMM representation: the A transition
probabilities used to compute the prior probability, and the B observation likelihoods that are
associated with each state, one likelihood for each possible observation word.

For part-of-speech tagging, the goal of HMM decoding is to choose the tag
sequence t1 . . . tn that is most probable given the observation sequence of n words
w1 . . .wn:

t̂1:n = argmax
t1... tn

P(t1 . . . tn|w1 . . .wn) (8.12)

The way we’ll do this in the HMM is to use Bayes’ rule to instead compute:

t̂1:n = argmax
t1... tn

P(w1 . . .wn|t1 . . . tn)P(t1 . . . tn)
P(w1 . . .wn)

(8.13)

Furthermore, we simplify Eq. 8.13 by dropping the denominator P(wn
1):

t̂1:n = argmax
t1... tn

P(w1 . . .wn|t1 . . . tn)P(t1 . . . tn) (8.14)

HMM taggers make two further simplifying assumptions. The first is that the
probability of a word appearing depends only on its own tag and is independent of
neighboring words and tags:

P(w1 . . .wn|t1 . . . tn) ≈
n∏

i=1

P(wi|ti) (8.15)

The second assumption, the bigram assumption, is that the probability of a tag is
dependent only on the previous tag, rather than the entire tag sequence;

P(t1 . . . tn) ≈
n∏

i=1

P(ti|ti−1) (8.16)

Plugging the simplifying assumptions from Eq. 8.15 and Eq. 8.16 into Eq. 8.14
results in the following equation for the most probable tag sequence from a bigram
tagger:

t̂1:n = argmax
t1... tn

P(t1 . . . tn|w1 . . .wn)≈ argmax
t1... tn

n∏

i=1

emission︷ ︸︸ ︷
P(wi|ti)

transition︷ ︸︸ ︷
P(ti|ti−1) (8.17)

The two parts of Eq. 8.17 correspond neatly to the B emission probability and A
transition probability that we just defined above!
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8.4.5 The Viterbi Algorithm
The decoding algorithm for HMMs is the Viterbi algorithm shown in Fig. 8.10.Viterbi

algorithm
As an instance of dynamic programming, Viterbi resembles the dynamic program-
ming minimum edit distance algorithm of Chapter 2.

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1]←πs ∗ bs(o1)
backpointer[s,1]←0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t]← N
max

s′=1
viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

backpointer[s,t]← N
argmax

s′=1

viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

bestpathprob← N
max

s=1
viterbi[s,T ] ; termination step

bestpathpointer← N
argmax

s=1
viterbi[s,T ] ; termination step

bestpath← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

Figure 8.10 Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and
an HMM λ = (A,B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

The Viterbi algorithm first sets up a probability matrix or lattice, with one col-
umn for each observation ot and one row for each state in the state graph. Each col-
umn thus has a cell for each state qi in the single combined automaton. Figure 8.11
shows an intuition of this lattice for the sentence Janet will back the bill.

Each cell of the lattice, vt( j), represents the probability that the HMM is in state
j after seeing the first t observations and passing through the most probable state
sequence q1, ...,qt−1, given the HMM λ . The value of each cell vt( j) is computed
by recursively taking the most probable path that could lead us to this cell. Formally,
each cell expresses the probability

vt( j) = max
q1,...,qt−1

P(q1...qt−1,o1,o2 . . .ot ,qt = j|λ ) (8.18)

We represent the most probable path by taking the maximum over all possible
previous state sequences max

q1,...,qt−1
. Like other dynamic programming algorithms,

Viterbi fills each cell recursively. Given that we had already computed the probabil-
ity of being in every state at time t−1, we compute the Viterbi probability by taking
the most probable of the extensions of the paths that lead to the current cell. For a
given state q j at time t, the value vt( j) is computed as

vt( j) =
N

max
i=1

vt−1(i) ai j b j(ot) (8.19)

The three factors that are multiplied in Eq. 8.19 for extending the previous paths to
compute the Viterbi probability at time t are
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JJ

NNP NNP NNP

MD MD MD MD

VB VB

JJ JJ JJ

NN NN

RB RBRBRB

DT DT DT DT

NNP

Janet will back the bill

NN

VB

MD

NN

VB

JJ

RB

NNP

DT

NN

VB

Figure 8.11 A sketch of the lattice for Janet will back the bill, showing the possible tags (qi)
for each word and highlighting the path corresponding to the correct tag sequence through the
hidden states. States (parts of speech) which have a zero probability of generating a particular
word according to the B matrix (such as the probability that a determiner DT will be realized
as Janet) are greyed out.

vt−1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

8.4.6 Working through an example
Let’s tag the sentence Janet will back the bill; the goal is the correct series of tags
(see also Fig. 8.11):

(8.20) Janet/NNP will/MD back/VB the/DT bill/NN

NNP MD VB JJ NN RB DT
<s> 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322 0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017

Figure 8.12 The A transition probabilities P(ti|ti−1) computed from the WSJ corpus with-
out smoothing. Rows are labeled with the conditioning event; thus P(V B|MD) is 0.7968.

Let the HMM be defined by the two tables in Fig. 8.12 and Fig. 8.13. Figure 8.12
lists the ai j probabilities for transitioning between the hidden states (part-of-speech
tags). Figure 8.13 expresses the bi(ot) probabilities, the observation likelihoods of
words given tags. This table is (slightly simplified) from counts in the WSJ corpus.
So the word Janet only appears as an NNP, back has 4 possible parts of speech, and



8.4 • HMM PART-OF-SPEECH TAGGING 161

Janet will back the bill
NNP 0.000032 0 0 0.000048 0
MD 0 0.308431 0 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0 0
NN 0 0.000200 0.000223 0 0.002337
RB 0 0 0.010446 0 0
DT 0 0 0 0.506099 0

Figure 8.13 Observation likelihoods B computed from the WSJ corpus without smoothing,
simplified slightly.

the word the can appear as a determiner or as an NNP (in titles like “Somewhere
Over the Rainbow” all words are tagged as NNP).
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Figure 8.14 The first few entries in the individual state columns for the Viterbi algorithm. Each cell keeps
the probability of the best path so far and a pointer to the previous cell along that path. We have only filled out
columns 1 and 2; to avoid clutter most cells with value 0 are left empty. The rest is left as an exercise for the
reader. After the cells are filled in, backtracing from the end state, we should be able to reconstruct the correct
state sequence NNP MD VB DT NN.

Figure 8.14 shows a fleshed-out version of the sketch we saw in Fig. 8.11, the
Viterbi lattice for computing the best hidden state sequence for the observation se-
quence Janet will back the bill.

There are N = 5 state columns. We begin in column 1 (for the word Janet) by
setting the Viterbi value in each cell to the product of the π transition probability
(the start probability for that state i, which we get from the <s> entry of Fig. 8.12),
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and the observation likelihood of the word Janet given the tag for that cell. Most of
the cells in the column are zero since the word Janet cannot be any of those tags.
The reader should find this in Fig. 8.14.

Next, each cell in the will column gets updated. For each state, we compute the
value viterbi[s, t] by taking the maximum over the extensions of all the paths from
the previous column that lead to the current cell according to Eq. 8.19. We have
shown the values for the MD, VB, and NN cells. Each cell gets the max of the 7
values from the previous column, multiplied by the appropriate transition probabil-
ity; as it happens in this case, most of them are zero from the previous column. The
remaining value is multiplied by the relevant observation probability, and the (triv-
ial) max is taken. In this case the final value, 2.772e-8, comes from the NNP state at
the previous column. The reader should fill in the rest of the lattice in Fig. 8.14 and
backtrace to see whether or not the Viterbi algorithm returns the gold state sequence
NNP MD VB DT NN.

8.5 Conditional Random Fields (CRFs)

While the HMM is a useful and powerful model, it turns out that HMMs need a
number of augmentations to achieve high accuracy. For example, in POS tagging
as in other tasks, we often run into unknown words: proper names and acronymsunknown

words
are created very often, and even new common nouns and verbs enter the language
at a surprising rate. It would be great to have ways to add arbitrary features to
help with this, perhaps based on capitalization or morphology (words starting with
capital letters are likely to be proper nouns, words ending with -ed tend to be past
tense (VBD or VBN), etc.) Or knowing the previous or following words might be a
useful feature (if the previous word is the, the current tag is unlikely to be a verb).

Although we could try to hack the HMM to find ways to incorporate some of
these, in general it’s hard for generative models like HMMs to add arbitrary features
directly into the model in a clean way. We’ve already seen a model for combining
arbitrary features in a principled way: log-linear models like the logistic regression
model of Chapter 5! But logistic regression isn’t a sequence model; it assigns a class
to a single observation.

Luckily, there is a discriminative sequence model based on log-linear models:
the conditional random field (CRF). We’ll describe here the linear chain CRF,CRF

the version of the CRF most commonly used for language processing, and the one
whose conditioning closely matches the HMM.

Assuming we have a sequence of input words X = xn
1 = x1...xn and want to

compute a sequence of output tags Y = yn
1 = y1...yn. In an HMM to compute the

best tag sequence that maximizes P(Y |X) we rely on Bayes’ rule and the likelihood
P(X |Y ):

Ŷ = argmax
Y

p(Y |X)

= argmax
Y

p(X |Y )p(Y )

= argmax
Y

∏

i

p(xi|yi)
∏

i

p(yi|yi−1) (8.21)

In a CRF, by contrast, we compute the posterior p(Y |X) directly, training the
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CRF to discriminate among the possible tag sequences:

Ŷ = argmax
Y∈Y

P(Y |X) (8.22)

However, the CRF does not compute a probability for each tag at each time step. In-
stead, at each time step the CRF computes log-linear functions over a set of relevant
features, and these local features are aggregated and normalized to produce a global
probability for the whole sequence.

Let’s introduce the CRF more formally, again using X and Y as the input and
output sequences. A CRF is a log-linear model that assigns a probability to an entire
output (tag) sequence Y , out of all possible sequences Y, given the entire input (word)
sequence X . We can think of a CRF as like a giant version of what multinomial
logistic regression does for a single token. Recall that the feature function f in
regular multinomial logistic regression maps a tuple of a token x and a label y into
a feature vector. In a CRF, the function F maps an entire input sequence X and an
entire output sequence Y to a feature vector. Let’s assume we have K features, with
a weight wk for each feature Fk:

p(Y |X) =

exp

(
K∑

k=1

wkFk(X ,Y )

)

∑

Y ′∈Y
exp

(
K∑

k=1

wkFk(X ,Y ′)

) (8.23)

It’s common to also describe the same equation by pulling out the denominator into
a function Z(X):

p(Y |X) =
1

Z(X)
exp

(
K∑

k=1

wkFk(X ,Y )

)
(8.24)

Z(X) =
∑

Y ′∈Y
exp

(
K∑

k=1

wkFk(X ,Y ′)

)
(8.25)

We’ll call these K functions Fk(X ,Y ) global features, since each one is a property
of the entire input sequence X and output sequence Y . We compute them by decom-
posing into a sum of local features for each position i in Y :

Fk(X ,Y ) =
n∑

i=1

fk(yi−1,yi,X , i) (8.26)

Each of these local features fk in a linear-chain CRF is allowed to make use of the
current output token yi, the previous output token yi−1, the entire input string X (or
any subpart of it), and the current position i. This constraint to only depend on
the current and previous output tokens yi and yi−1 are what characterizes a linear
chain CRF. As we will see, this limitation makes it possible to use versions of thelinear chain

CRF
efficient Viterbi and Forward-Backwards algorithms from the HMM. A general CRF,
by contrast, allows a feature to make use of any output token, and are thus necessary
for tasks in which the decision depend on distant output tokens, like yi−4. General
CRFs require more complex inference, and are less commonly used for language
processing.
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8.5.1 Features in a CRF POS Tagger
Let’s look at some of these features in detail, since the reason to use a discriminative
sequence model is that it’s easier to incorporate a lot of features.2

Again, in a linear-chain CRF, each local feature fk at position i can depend on
any information from: (yi−1,yi,X , i). So some legal features representing common
situations might be the following:

1{xi = the, yi = DET}
1{yi = PROPN, xi+1 = Street, yi−1 = NUM}
1{yi = VERB, yi−1 = AUX}

For simplicity, we’ll assume all CRF features take on the value 1 or 0. Above, we
explicitly use the notation 1{x} to mean “1 if x is true, and 0 otherwise”. From now
on, we’ll leave off the 1 when we define features, but you can assume each feature
has it there implicitly.

Although the idea of what features to use is done by the system designer by hand,
the specific features are automatically populated by using feature templates as wefeature

templates
briefly mentioned in Chapter 5. Here are some templates that only use information
from yi−1,yi,X , i):

〈yi,xi〉,〈yi,yi−1〉,〈yi,xi−1,xi+2〉

These templates automatically populate the set of features from every instance in
the training and test set. Thus for our example Janet/NNP will/MD back/VB the/DT
bill/NN, when xi is the word back, the following features would be generated and
have the value 1 (we’ve assigned them arbitrary feature numbers):

f3743: yi = VB and xi = back
f156: yi = VB and yi−1 = MD
f99732: yi = VB and xi−1 = will and xi+2 = bill

It’s also important to have features that help with unknown words. One of the
most important is word shape features, which represent the abstract letter patternword shape

of the word by mapping lower-case letters to ‘x’, upper-case to ‘X’, numbers to
’d’, and retaining punctuation. Thus for example I.M.F would map to X.X.X. and
DC10-30 would map to XXdd-dd. A second class of shorter word shape features is
also used. In these features consecutive character types are removed, so words in all
caps map to X, words with initial-caps map to Xx, DC10-30 would be mapped to
Xd-d but I.M.F would still map to X.X.X. Prefix and suffix features are also useful.
In summary, here are some sample feature templates that help with unknown words:

xi contains a particular prefix (perhaps from all prefixes of length ≤ 2)
xi contains a particular suffix (perhaps from all suffixes of length ≤ 2)
xi’s word shape
xi’s short word shape

For example the word well-dressed might generate the following non-zero val-
ued feature values:

2 Because in HMMs all computation is based on the two probabilities P(tag|tag) and P(word|tag), if
we want to include some source of knowledge into the tagging process, we must find a way to encode
the knowledge into one of these two probabilities. Each time we add a feature we have to do a lot of
complicated conditioning which gets harder and harder as we have more and more such features.
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prefix(xi) = w

prefix(xi) = we

suffix(xi) = ed

suffix(xi) = d

word-shape(xi) = xxxx-xxxxxxx

short-word-shape(xi) = x-x

The known-word templates are computed for every word seen in the training
set; the unknown word features can also be computed for all words in training, or
only on training words whose frequency is below some threshold. The result of the
known-word templates and word-signature features is a very large set of features.
Generally a feature cutoff is used in which features are thrown out if they have count
< 5 in the training set.

Remember that in a CRF we don’t learn weights for each of these local features
fk. Instead, we first sum the values of each local feature (for example feature f3743)
over the entire sentence, to create each global feature (for example F3743). It is those
global features that will then be multiplied by weight w3743. Thus for training and
inference there is always a fixed set of K features with K weights, even though the
length of each sentence is different.

8.5.2 Features for CRF Named Entity Recognizers

A CRF for NER makes use of very similar features to a POS tagger, as shown in
Figure 8.15.

identity of wi, identity of neighboring words
embeddings for wi, embeddings for neighboring words
part of speech of wi, part of speech of neighboring words
presence of wi in a gazetteer
wi contains a particular prefix (from all prefixes of length ≤ 4)
wi contains a particular suffix (from all suffixes of length ≤ 4)
word shape of wi, word shape of neighboring words
short word shape of wi, short word shape of neighboring words
gazetteer features

Figure 8.15 Typical features for a feature-based NER system.

One feature that is especially useful for locations is a gazetteer, a list of placegazetteer

names, often providing millions of entries for locations with detailed geographical
and political information.3 This can be implemented as a binary feature indicating a
phrase appears in the list. Other related resources like name-lists, for example from
the United States Census Bureau4, can be used, as can other entity dictionaries like
lists of corporations or products, although they may not be as helpful as a gazetteer
(Mikheev et al., 1999).

The sample named entity token L’Occitane would generate the following non-
zero valued feature values (assuming that L’Occitane is neither in the gazetteer nor
the census).

3 www.geonames.org
4 www.census.gov
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prefix(xi) = L suffix(xi) = tane

prefix(xi) = L’ suffix(xi) = ane

prefix(xi) = L’O suffix(xi) = ne

prefix(xi) = L’Oc suffix(xi) = e

word-shape(xi) = X’Xxxxxxxx short-word-shape(xi) = X’Xx

Figure 8.16 illustrates the result of adding part-of-speech tags and some shape
information to our earlier example.

Words POS Short shape Gazetteer BIO Label
Jane NNP Xx 0 B-PER
Villanueva NNP Xx 1 I-PER
of IN x 0 O
United NNP Xx 0 B-ORG
Airlines NNP Xx 0 I-ORG
Holding NNP Xx 0 I-ORG
discussed VBD x 0 O
the DT x 0 O
Chicago NNP Xx 1 B-LOC
route NN x 0 O
. . . 0 O

Figure 8.16 Some NER features for a sample sentence, assuming that Chicago and Vil-
lanueva are listed as locations in a gazetteer. We assume features only take on the values 0 or
1, so the first POS feature, for example, would be represented as 1{POS = NNP}.

8.5.3 Inference and Training for CRFs
How do we find the best tag sequence Ŷ for a given input X? We start with Eq. 8.22:

Ŷ = argmax
Y∈Y

P(Y |X)

= argmax
Y∈Y

1
Z(X)

exp

(
K∑

k=1

wkFk(X ,Y )

)
(8.27)

= argmax
Y∈Y

exp

(
K∑

k=1

wk

n∑

i=1

fk(yi−1,yi,X , i)

)
(8.28)

= argmax
Y∈Y

K∑

k=1

wk

n∑

i=1

fk(yi−1,yi,X , i) (8.29)

= argmax
Y∈Y

n∑

i=1

K∑

k=1

wk fk(yi−1,yi,X , i) (8.30)

We can ignore the exp function and the denominator Z(X), as we do above, because
exp doesn’t change the argmax, and the denominator Z(X) is constant for a given
observation sequence X .

How should we decode to find this optimal tag sequence ŷ? Just as with HMMs,
we’ll turn to the Viterbi algorithm, which works because, like the HMM, the linear-
chain CRF depends at each timestep on only one previous output token yi−1.

Concretely, this involves filling an N×T array with the appropriate values, main-
taining backpointers as we proceed. As with HMM Viterbi, when the table is filled,
we simply follow pointers back from the maximum value in the final column to
retrieve the desired set of labels.
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The requisite changes from HMM Viterbi have to do only with how we fill each
cell. Recall from Eq. 8.19 that the recursive step of the Viterbi equation computes
the Viterbi value of time t for state j as

vt( j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1< t ≤ T (8.31)

which is the HMM implementation of

vt( j) =
N

max
i=1

vt−1(i) P(s j|si) P(ot |s j) 1≤ j ≤ N,1< t ≤ T (8.32)

The CRF requires only a slight change to this latter formula, replacing the a and b
prior and likelihood probabilities with the CRF features:

vt( j) =
N

max
i=1

vt−1(i)
K∑

k=1

wk fk(yt−1,yt ,X , t) 1≤ j ≤ N,1< t ≤ T (8.33)

Learning in CRFs relies on the same supervised learning algorithms we presented
for logistic regression. Given a sequence of observations, feature functions, and cor-
responding outputs, we use stochastic gradient descent to train the weights to maxi-
mize the log-likelihood of the training corpus. The local nature of linear-chain CRFs
means that a CRF version of the forward-backward algorithm (see Appendix A) can
be used to efficiently compute the necessary derivatives. As with logistic regression,
L1 or L2 regularization is important,

8.6 Evaluation of Named Entity Recognition

Part-of-speech taggers are evaluated by the standard metric of accuracy. Named
entity recognizers are evaluated by recall, precision, and F1 measure. Recall that
recall is the ratio of the number of correctly labeled responses to the total that should
have been labeled; precision is the ratio of the number of correctly labeled responses
to the total labeled; and F-measure is the harmonic mean of the two.

To know if the difference between the F1 scores of two MT systems is a signif-
icant difference, we use the paired bootstrap test, or the similar randomization test
(Section 4.9).

For named entities, the entity rather than the word is the unit of response. Thus
in the example in Fig. 8.16, the two entities Jane Villanueva and United Airlines
Holding and the non-entity discussed would each count as a single response.

The fact that named entity tagging has a segmentation component which is not
present in tasks like text categorization or part-of-speech tagging causes some prob-
lems with evaluation. For example, a system that labeled Jane but not Jane Vil-
lanueva as a person would cause two errors, a false positive for O and a false nega-
tive for I-PER. In addition, using entities as the unit of response but words as the unit
of training means that there is a mismatch between the training and test conditions.

8.7 Further Details

In this section we summarize a few remaining details of the data and models, be-
ginning with data. Since the algorithms we have presented are supervised, hav-
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ing labeled data is essential for training and test. A wide variety of datasets exist
for part-of-speech tagging and/or NER. The Universal Dependencies (UD) dataset
(Nivre et al., 2016b) has POS tagged corpora in 92 languages at the time of this
writing, as do the Penn Treebanks in English, Chinese, and Arabic. OntoNotes has
corpora labeled for named entities in English, Chinese, and Arabic (Hovy et al.,
2006). Named entity tagged corpora also available in particular domains, such as
for biomedical (Bada et al., 2012) and literary text (Bamman et al., 2019).

8.7.1 Bidirectionality

One problem with the CRF and HMM architectures as presented is that the models
are exclusively run left-to-right. While the Viterbi algorithm still allows present
decisions to be influenced indirectly by future decisions, it would help even more if
a decision about word wi could directly use information about future tags ti+1 and
ti+2.

Alternatively, any sequence model can be turned into a bidirectional model by
using multiple passes. For example, the first pass would use only part-of-speech
features from already-disambiguated words on the left. In the second pass, tags for
all words, including those on the right, can be used. Alternately, the tagger can be
run twice, once left-to-right and once right-to-left. In Viterbi decoding, the labeler
would chooses the higher scoring of the two sequences (left-to-right or right-to-left).
Bidirectional models are quite standard for neural models, as we will see with the
biLSTM models to be introduced in Chapter 9.

8.7.2 Rule-based Methods

While machine learned (neural or CRF) sequence models are the norm in academic
research, commercial approaches to NER are often based on pragmatic combina-
tions of lists and rules, with some smaller amount of supervised machine learning
(Chiticariu et al., 2013). For example in the IBM System T architecture, a user
specifies declarative constraints for tagging tasks in a formal query language that
includes regular expressions, dictionaries, semantic constraints, and other operators,
which the system compiles into an efficient extractor (Chiticariu et al., 2018).

One common approach is to make repeated rule-based passes over a text, starting
with rules with very high precision but low recall, and, in subsequent stages, using
machine learning methods that take the output of the first pass into account.

1. First, use high-precision rules to tag unambiguous entity mentions.

2. Then, search for substring matches of the previously detected names.

3. Use application-specific name lists to find likely domain-specific mentions.

4. Finally, apply supervised sequence labeling techniques that use tags from pre-
vious stages as additional features.

Rule-based methods were also the earliest methods for part-of-speech tagging.
Rule-based taggers like the English Constraint Grammar system (Karlsson et al. 1995,
Voutilainen 1999). use the two-stage formalism that was invented in the 1950s and
1960s: a morphological analyzer with tens of thousands of word stem entries re-
turns all parts of speech for a word. Then a large set of thousands of constraints are
applied to the input sentence to rule out parts of speech inconsistent with the context.
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8.7.3 POS Tagging for Morphologically Rich Languages
Augmentations to tagging algorithms become necessary when dealing with lan-
guages with rich morphology like Czech, Hungarian and Turkish.

These productive word-formation processes result in a large vocabulary for these
languages: a 250,000 word token corpus of Hungarian has more than twice as many
word types as a similarly sized corpus of English (Oravecz and Dienes, 2002), while
a 10 million word token corpus of Turkish contains four times as many word types
as a similarly sized English corpus (Hakkani-Tür et al., 2002). Large vocabular-
ies mean many unknown words, and these unknown words cause significant per-
formance degradations in a wide variety of languages (including Czech, Slovene,
Estonian, and Romanian) (Hajič, 2000).

Highly inflectional languages also have much more information than English
coded in word morphology, like case (nominative, accusative, genitive) or gender
(masculine, feminine). Because this information is important for tasks like pars-
ing and coreference resolution, part-of-speech taggers for morphologically rich lan-
guages need to label words with case and gender information. Tagsets for morpho-
logically rich languages are therefore sequences of morphological tags rather than a
single primitive tag. Here’s a Turkish example, in which the word izin has three pos-
sible morphological/part-of-speech tags and meanings (Hakkani-Tür et al., 2002):

1. Yerdeki izin temizlenmesi gerek. iz + Noun+A3sg+Pnon+Gen

The trace on the floor should be cleaned.

2. Üzerinde parmak izin kalmiş iz + Noun+A3sg+P2sg+Nom

Your finger print is left on (it).

3. Içeri girmek için izin alman gerekiyor. izin + Noun+A3sg+Pnon+Nom

You need permission to enter.

Using a morphological parse sequence like Noun+A3sg+Pnon+Gen as the part-
of-speech tag greatly increases the number of parts of speech, and so tagsets can
be 4 to 10 times larger than the 50–100 tags we have seen for English. With such
large tagsets, each word needs to be morphologically analyzed to generate the list
of possible morphological tag sequences (part-of-speech tags) for the word. The
role of the tagger is then to disambiguate among these tags. This method also helps
with unknown words since morphological parsers can accept unknown stems and
still segment the affixes properly.

8.8 Summary

This chapter introduced parts of speech and named entities, and the tasks of part-
of-speech tagging and named entity recognition:

• Languages generally have a small set of closed class words that are highly
frequent, ambiguous, and act as function words, and open-class words like
nouns, verbs, adjectives. Various part-of-speech tagsets exist, of between 40
and 200 tags.

• Part-of-speech tagging is the process of assigning a part-of-speech label to
each of a sequence of words.

• Named entities are words for proper nouns referring mainly to people, places,
and organizations, but extended to many other types that aren’t strictly entities
or even proper nouns.
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• Two common approaches to sequence modeling are a generative approach,
HMM tagging, and a discriminative approach, CRF tagging. We will see a
neural approach in following chapters.

• The probabilities in HMM taggers are estimated by maximum likelihood es-
timation on tag-labeled training corpora. The Viterbi algorithm is used for
decoding, finding the most likely tag sequence

• Conditional Random Fields or CRF taggers train a log-linear model that can
choose the best tag sequence given an observation sequence, based on features
that condition on the output tag, the prior output tag, the entire input sequence,
and the current timestep. They use the Viterbi algorithm for inference, to
choose the best sequence of tags, and a version of the Forward-Backward
algorithm (see Appendix A) for training,

Bibliographical and Historical Notes
What is probably the earliest part-of-speech tagger was part of the parser in Zellig
Harris’s Transformations and Discourse Analysis Project (TDAP), implemented be-
tween June 1958 and July 1959 at the University of Pennsylvania (Harris, 1962),
although earlier systems had used part-of-speech dictionaries. TDAP used 14 hand-
written rules for part-of-speech disambiguation; the use of part-of-speech tag se-
quences and the relative frequency of tags for a word prefigures modern algorithms.
The parser was implemented essentially as a cascade of finite-state transducers; see
Joshi and Hopely (1999) and Karttunen (1999) for a reimplementation.

The Computational Grammar Coder (CGC) of Klein and Simmons (1963) had
three components: a lexicon, a morphological analyzer, and a context disambigua-
tor. The small 1500-word lexicon listed only function words and other irregular
words. The morphological analyzer used inflectional and derivational suffixes to as-
sign part-of-speech classes. These were run over words to produce candidate parts
of speech which were then disambiguated by a set of 500 context rules by relying on
surrounding islands of unambiguous words. For example, one rule said that between
an ARTICLE and a VERB, the only allowable sequences were ADJ-NOUN, NOUN-
ADVERB, or NOUN-NOUN. The TAGGIT tagger (Greene and Rubin, 1971) used
the same architecture as Klein and Simmons (1963), with a bigger dictionary and
more tags (87). TAGGIT was applied to the Brown corpus and, according to Francis
and Kučera (1982, p. 9), accurately tagged 77% of the corpus; the remainder of the
Brown corpus was then tagged by hand. All these early algorithms were based on
a two-stage architecture in which a dictionary was first used to assign each word a
set of potential parts of speech, and then lists of handwritten disambiguation rules
winnowed the set down to a single part of speech per word.

Probabilities were used in tagging by Stolz et al. (1965) and a complete proba-
bilistic tagger with Viterbi decoding was sketched by Bahl and Mercer (1976). The
Lancaster-Oslo/Bergen (LOB) corpus, a British English equivalent of the Brown cor-
pus, was tagged in the early 1980’s with the CLAWS tagger (Marshall 1983; Mar-
shall 1987; Garside 1987), a probabilistic algorithm that approximated a simplified
HMM tagger. The algorithm used tag bigram probabilities, but instead of storing the
word likelihood of each tag, the algorithm marked tags either as rare (P(tag|word)<
.01) infrequent (P(tag|word)< .10) or normally frequent (P(tag|word)> .10).

DeRose (1988) developed a quasi-HMM algorithm, including the use of dy-
namic programming, although computing P(t|w)P(w) instead of P(w|t)P(w). The
same year, the probabilistic PARTS tagger of Church (1988), (1989) was probably
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the first implemented HMM tagger, described correctly in Church (1989), although
Church (1988) also described the computation incorrectly as P(t|w)P(w) instead
of P(w|t)P(w). Church (p.c.) explained that he had simplified for pedagogical pur-
poses because using the probability P(t|w) made the idea seem more understandable
as “storing a lexicon in an almost standard form”.

Later taggers explicitly introduced the use of the hidden Markov model (Ku-
piec 1992; Weischedel et al. 1993; Schütze and Singer 1994). Merialdo (1994)
showed that fully unsupervised EM didn’t work well for the tagging task and that
reliance on hand-labeled data was important. Charniak et al. (1993) showed the
importance of the most frequent tag baseline; the 92.3% number we give above
was from Abney et al. (1999). See Brants (2000) for HMM tagger implementa-
tion details, including the extension to trigram contexts, and the use of sophisticated
unknown word features; its performance is still close to state of the art taggers.

Log-linear models for POS tagging were introduced by Ratnaparkhi (1996),
who introduced a system called MXPOST which implemented a maximum en-
tropy Markov model (MEMM), a slightly simpler version of a CRF. Around the
same time, sequence labelers were applied to the task of named entity tagging, first
with HMMs (Bikel et al., 1997) and MEMMs (McCallum et al., 2000), and then
once CRFs were developed (Lafferty et al. 2001), they were also applied to NER
(McCallum and Li, 2003). A wide exploration of features followed (Zhou et al.,
2005). Neural approaches to NER mainly follow from the pioneering results of Col-
lobert et al. (2011), who applied a CRF on top of a convolutional net. BiLSTMs
with word and character-based embeddings as input followed shortly and became a
standard neural algorithm for NER (Huang et al. 2015, Ma and Hovy 2016, Lample
et al. 2016) followed by the more recent use of Transformers and BERT.

The idea of using letter suffixes for unknown words is quite old; the early Klein
and Simmons (1963) system checked all final letter suffixes of lengths 1-5. The un-
known word features described on page 164 come mainly from Ratnaparkhi (1996),
with augmentations from Toutanova et al. (2003) and Manning (2011).

State of the art POS taggers use neural algorithms, either bidirectional RNNs or
Transformers like BERT; see Chapter 9 and Chapter 10. HMM (Brants 2000; Thede
and Harper 1999) and CRF tagger accuracies are likely just a tad lower.

Manning (2011) investigates the remaining 2.7% of errors in a high-performing
tagger (Toutanova et al., 2003). He suggests that a third or half of these remaining
errors are due to errors or inconsistencies in the training data, a third might be solv-
able with richer linguistic models, and for the remainder the task is underspecified
or unclear.

Supervised tagging relies heavily on in-domain training data hand-labeled by
experts. Ways to relax this assumption include unsupervised algorithms for cluster-
ing words into part-of-speech-like classes, summarized in Christodoulopoulos et al.
(2010), and ways to combine labeled and unlabeled data, for example by co-training
(Clark et al. 2003; Søgaard 2010).

See Householder (1995) for historical notes on parts of speech, and Sampson
(1987) and Garside et al. (1997) on the provenance of the Brown and other tagsets.

Exercises
8.1 Find one tagging error in each of the following sentences that are tagged with

the Penn Treebank tagset:
1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
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2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
4. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

8.2 Use the Penn Treebank tagset to tag each word in the following sentences
from Damon Runyon’s short stories. You may ignore punctuation. Some of
these are quite difficult; do your best.

1. It is a nice night.
2. This crap game is over a garage in Fifty-second Street. . .
3. . . . Nobody ever takes the newspapers she sells . . .
4. He is a tall, skinny guy with a long, sad, mean-looking kisser, and a

mournful voice.
5. . . . I am sitting in Mindy’s restaurant putting on the gefillte fish, which is

a dish I am very fond of, . . .
6. When a guy and a doll get to taking peeks back and forth at each other,

why there you are indeed.

8.3 Now compare your tags from the previous exercise with one or two friend’s
answers. On which words did you disagree the most? Why?

8.4 Implement the “most likely tag” baseline. Find a POS-tagged training set,
and use it to compute for each word the tag that maximizes p(t|w). You will
need to implement a simple tokenizer to deal with sentence boundaries. Start
by assuming that all unknown words are NN and compute your error rate on
known and unknown words. Now write at least five rules to do a better job of
tagging unknown words, and show the difference in error rates.

8.5 Build a bigram HMM tagger. You will need a part-of-speech-tagged corpus.
First split the corpus into a training set and test set. From the labeled training
set, train the transition and observation probabilities of the HMM tagger di-
rectly on the hand-tagged data. Then implement the Viterbi algorithm so you
can decode a test sentence. Now run your algorithm on the test set. Report its
error rate and compare its performance to the most frequent tag baseline.

8.6 Do an error analysis of your tagger. Build a confusion matrix and investigate
the most frequent errors. Propose some features for improving the perfor-
mance of your tagger on these errors.

8.7 Develop a set of regular expressions to recognize the character shape features
described on page 164.

8.8 The BIO and other labeling schemes given in this chapter aren’t the only
possible one. For example, the B tag can be reserved only for those situations
where an ambiguity exists between adjacent entities. Propose a new set of
BIO tags for use with your NER system. Experiment with it and compare its
performance with the schemes presented in this chapter.

8.9 Names of works of art (books, movies, video games, etc.) are quite different
from the kinds of named entities we’ve discussed in this chapter. Collect a
list of names of works of art from a particular category from a Web-based
source (e.g., gutenberg.org, amazon.com, imdb.com, etc.). Analyze your list
and give examples of ways that the names in it are likely to be problematic for
the techniques described in this chapter.

8.10 Develop an NER system specific to the category of names that you collected in
the last exercise. Evaluate your system on a collection of text likely to contain
instances of these named entities.



CHAPTER

9 Deep Learning Architectures
for Sequence Processing

Time will explain.
Jane Austen, Persuasion

Language is an inherently temporal phenomenon. When we comprehend and pro-
duce spoken language, we process continuous input streams of indefinite length.
Even when dealing with written text, we normally process it sequentially. The tem-
poral nature of language is reflected in the metaphors we use; we talk of the flow of
conversations, news feeds, and twitter streams, all of which call out the notion that
language is a sequence that unfolds in time.

This temporal nature is reflected in the algorithms we use to process language.
For example, when applied to the problem of part-of-speech tagging, the Viterbi
algorithm works its way incrementally through the input a word at a time, carrying
forward information gleaned along the way. On the other hand, the machine learning
approaches we’ve studied for sentiment analysis and other text classification tasks
don’t have this temporal nature – they assume simultaneous access to all aspects of
their input. This is especially true of feedforward neural networks, including their
application to neural language models. These fully-connected networks use fixed-
size inputs, along with associated weights, to capture all the relevant aspects of an
example at once. This makes it difficult to deal with sequences of varying length
and fails to capture important temporal aspects of language.

A work-around for these problems is the sliding window approach employed
with neural language models. These models operate by accepting fixed-sized win-
dows of tokens as input; sequences longer than the window size are processed by
walking through the input making predictions along the way, with the end result
being a sequence of predictions spanning the input. Importantly, decisions made in
one window have no impact on subsequent decisions. Fig. 9.1, reproduced here from
Chapter 7, depicts the operation of a neural language model using this approach with
a window of size 3. Here, we’re predicting which word will come next given the in-
put for all the. Subsequent words are predicted by sliding the window forward a
word at a time.

This general approach is problematic for a number of reasons. First, it shares
the primary weakness of our earlier Markov N-gram approaches in that it limits
the context from which information can be extracted; anything outside the context
window has no impact on the decision being made. This is an issue since there are
many tasks that require access to information that can be arbitrarily distant from
the point at which processing is happening. Second, the use of windows makes
it difficult for networks to learn systematic patterns arising from phenomena like
constituency. For example, in Fig. 9.1 the phrase all the appears in two separate
windows: first as the second and third positions in the window, and again in the next
step where it appears as the first and second positions, thus forcing the network to
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Figure 9.1 A simplified view of a feedforward neural language model moving through a text. At each time
step t the network takes the 3 context words, converts each to a d-dimensional embedding, and concatenates
the 3 embeddings together to get the 1×Nd unit input layer x for the network. The output of the network is a
probability distribution over the vocabulary representing the models belief with respect to each word being the
next possible word.

learn two separate patterns for what should be the same item.
This chapter covers two closely related deep learning architectures designed to

address these challenges: recurrent neural networks and transformer networks. Both
approaches have mechanisms to deal directly with the sequential nature of language
that allow them to handle variable length inputs without the use of arbitrary fixed-
sized windows, and to capture and exploit the temporal nature of language.

9.1 Language Models Revisited

In this chapter, we’ll explore these two architectures primarily through the lens of
probabilistic language models. Recall from Chapter 3 that probabilistic language
models predict the next word in a sequence given some preceding context. For
example, if the preceding context is “Thanks for all the” and we want to know how
likely the next word is “fish” we would compute:

P(fish|Thanks for all the)

Language models give us the ability to assign such a conditional probability to every
possible next word, giving us a distribution over the entire vocabulary. We can also
assign probabilities to entire sequences by using these conditional probabilities in
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combination with the chain rule:

P(w1:n) =

n∏

i=1

P(wi|w<i)

This formulation gives rise to a wide range of sequence labeling applications, and
as we’ll see, it provides a clear training objective based on how well a model is
predicting the next word in a sequence.

We’ve already seen two ways to instantiate probabilistic language models with
the N-gram models from Chapter 3 and the feedforward neural networks with sliding
windows from Chapter 7. Unfortunately, both of these methods are constrained by
the Markov assumption embodied in the following equation.

P(wn|w1:n−1) ≈ P(wn|w(n−N+1):(n−1))

That is, the prediction is based on a fixed preceding context of size N; any input that
occurred earlier than that has no bearing on the outcome. The methods we explore
in this chapter will relax this assumption, allowing the models to make use of much
larger contexts.

We evaluate language models by examining how well they predict unseen data
drawn from the same source as the training data. Intuitively, good models are those
that assign higher probabilities to unseen data. To make this intuition concrete, we
use perplexity as a measure of model quality. The perplexity (PP) of a model θ withperplexity

respect to an unseen test set is the probability the model assigns to it, normalized by
its length.

PPθ (w1:n) = P(w1:n)
1
n

An alternative way of viewing perplexity, inspired by information theory, is in terms
of entropy.

PP(w1:n) = 2H(w1:n)

= 2−
1
n
∑n

1 log2m(wn)

In this formulation, the value in the exponent is the cross-entropy of our current
model with respect to the true distribution.

Another way to assess a language model is to use it to generate novel sequences.
The extent to which a generated sequence mirrors the training data is an indication
of the quality of the model. We saw how to do this in Chapter 3 by adapting a
technique suggested contemporaneously by Claude Shannon (Shannon, 1951) and
the psychologists George Miller and Selfridge (Miller and Selfridge, 1950). To get
started, we randomly sample a word to begin a sequence based on its suitability as
the start of a sequence. Having sampled the first word, we sample further words
conditioned on our previous choices until we reach a pre-determined length, or an
end of sequence token is generated. Today, this approach is called autoregressive
generation and we’ll cover its practical application in problems like machine trans-autoregressive

generation
lation and text summarization in this and later chapters.
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9.2 Recurrent Neural Networks

A recurrent neural network (RNN) is any network that contains a cycle within its
network connections. That is, any network where the value of a unit is directly,
or indirectly, dependent on its own earlier outputs as an input. While powerful,
such networks are difficult to reason about and to train. However, within the general
class of recurrent networks there are constrained architectures that have proven to be
extremely effective when applied to spoken and written language. In this section, we
consider a class of recurrent networks referred to as Elman Networks (Elman, 1990)Elman

Networks
or simple recurrent networks. These networks are useful in their own right and
serve as the basis for more complex approaches like the Long Short-Term Memory
(LSTM) networks discussed later in this chapter. Going forward, when we use the
term RNN we’ll be referring to these simpler more constrained networks.

ht

yt

xt

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous time step.

Fig. 9.2 illustrates the structure of an RNN. As with ordinary feedforward net-
works, an input vector representing the current input, xt , is multiplied by a weight
matrix and then passed through a non-linear activation function to compute the val-
ues for a layer of hidden units. This hidden layer is then used to calculate a cor-
responding output, yt . In a departure from our earlier window-based approach, se-
quences are processed by presenting one item at a time to the network. The key
difference from a feedforward network lies in the recurrent link shown in the figure
with the dashed line. This link augments the input to the computation at the hidden
layer with the value of the hidden layer from the preceding point in time.

The hidden layer from the previous time step provides a form of memory, or
context, that encodes earlier processing and informs the decisions to be made at
later points in time. Critically, this approach does not impose a fixed-length limit
on this prior context; the context embodied in the previous hidden layer includes
information extending back to the beginning of the sequence.

Adding this temporal dimension makes RNNs appear to be more complex than
non-recurrent architectures. But in reality, they’re not all that different. Given an
input vector and the values for the hidden layer from the previous time step, we’re
still performing the standard feedforward calculation introduced in Chapter 7. To
see this, consider Fig. 9.3 which clarifies the nature of the recurrence and how it
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factors into the computation at the hidden layer. The most significant change lies in
the new set of weights, U , that connect the hidden layer from the previous time step
to the current hidden layer. These weights determine how the network makes use of
past context in calculating the output for the current input. As with the other weights
in the network, these connections are trained via backpropagation.

U

V

W

yt

xt

ht

ht-1

Figure 9.3 Simple recurrent neural network illustrated as a feedforward network.

9.2.1 Inference in RNNs
Forward inference (mapping a sequence of inputs to a sequence of outputs) in an
RNN is nearly identical to what we’ve already seen with feedforward networks. To
compute an output yt for an input xt , we need the activation value for the hidden
layer ht . To calculate this, we multiply the input xt with the weight matrix W , and
the hidden layer from the previous time step ht−1 with the weight matrix U . We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, ht . Once we have the
values for the hidden layer, we proceed with the usual computation to generate the
output vector.

ht = g(Uht−1 +Wxt)

yt = f (V ht)

It’s worthwhile here to be careful about specifying the dimensions of the input, hid-
den and output layers, as well as the weight matrices to make sure these calculations
are correct. Let’s refer to the input, hidden and output layer dimensions as din, dh,
and dout respectively. Given this, our three parameter matrices are: W ∈ Rdh×din ,
U ∈ Rdh×dh , and V ∈ Rdout×dh .

In the commonly encountered case of soft classification, computing yt consists
of a softmax computation that provides a probability distribution over the possible
output classes.

yt = softmax(V ht)

The fact that the computation at time t requires the value of the hidden layer
from time t−1 mandates an incremental inference algorithm that proceeds from the
start of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of
simple recurrent networks can also be seen by unrolling the network in time as is
shown in Fig. 9.5. In this figure, the various layers of units are copied for each time
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step to illustrate that they will have differing values over time. However, the various
weight matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h0←0
for i←1 to LENGTH(x) do

hi←g(U hi−1 + W xi)
yi← f (V hi)

return y

Figure 9.4 Forward inference in a simple recurrent network. The matrices U , V and W are
shared across time, while new values for h and y are calculated with each time step.

9.2.2 Training
As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W , the
weights from the input layer to the hidden layer, U , the weights from the previous
hidden layer to the current hidden layer, and finally V , the weights from the hidden
layer to the output layer.

Fig. 9.5 highlights two considerations that we didn’t have to worry about with
backpropagation in feedforward networks. First, to compute the loss function for
the output at time t we need the hidden layer from time t− 1. Second, the hidden
layer at time t influences both the output at time t and the hidden layer at time t +1
(and hence the output and loss at t +1). It follows from this that to assess the error
accruing to ht , we’ll need to know its influence on both the current output as well as
the ones that follow.

Tailoring the backpropagation algorithm to this situation leads to a two-pass al-
gorithm for training the weights in RNNs. In the first pass, we perform forward
inference, computing ht , yt , accumulating the loss at each step in time, saving the
value of the hidden layer at each step for use at the next time step. In the second
phase, we process the sequence in reverse, computing the required gradients as we
go, computing and saving the error term for use in the hidden layer for each step
backward in time. This general approach is commonly referred to as Backpropaga-
tion Through Time (Werbos 1974, Rumelhart et al. 1986, Werbos 1990).

Backpropaga-
tion Through

Time Fortunately, with modern computational frameworks and adequate computing
resources, there is no need for a specialized approach to training RNNs. As illus-
trated in Fig. 9.5, explicitly unrolling a recurrent network into a feedforward com-
putational graph eliminates any explicit recurrences, allowing the network weights
to be trained directly. In such an approach, we provide a template that specifies the
basic structure of the network, including all the necessary parameters for the input,
output, and hidden layers, the weight matrices, as well as the activation and output
functions to be used. Then, when presented with a specific input sequence, we can
generate an unrolled feedforward network specific to that input, and use that graph
to perform forward inference or training via ordinary backpropagation.

For applications that involve much longer input sequences, such as speech recog-
nition, character-level processing, or streaming of continuous inputs, unrolling an
entire input sequence may not be feasible. In these cases, we can unroll the input
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Figure 9.5 A simple recurrent neural network shown unrolled in time. Network layers are copied for each
time step, while the weights U , V and W are shared in common across all time steps.

into manageable fixed-length segments and treat each segment as a distinct training
item.

9.2.3 RNNs as Language Models
RNN-based language models process sequences a word at a time, attempting to
predict the next word in a sequence by using the current word and the previous
hidden state as inputs (Mikolov et al., 2010). The limited context constraint inherent
in N-gram models is avoided since the hidden state embodies information about all
of the preceding words all the way back to the beginning of the sequence.

Forward inference in a recurrent language model proceeds exactly as described
in Section 9.2.1. The input sequence x consists of word embeddings represented
as one-hot vectors of size |V |× 1, and the output predictions, y, are represented as
vectors representing a probability distribution over the vocabulary. At each step, the
model uses the word embedding matrix E to retrieve the embedding for the current
word, and then combines it with the hidden layer from the previous step to compute a
new hidden layer. This hidden layer is then used to generate an output layer which is
passed through a softmax layer to generate a probability distribution over the entire
vocabulary. That is, at time t:

et = ET xt

ht = g(Uht−1 +Wet)

yt = softmax(V ht)

The vector resulting from V h can be thought of as a set of scores over the vocabulary
given the evidence provided in h. Passing these scores through the softmax normal-
izes the scores into a probability distribution. Given y, the probability of a particular
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word in the vocabulary, i, as the next word is just its corresponding component of y.

P(wt+1 = i|w1:t) = yi
t

It follows from this that the probability of an entire sequence is just the product of
the probabilities of each item in the sequence.

P(w1:n) =

n∏

i=1

P(wi|w1:i−1)

=

n∏

i=1

yi
wi

To train an RNN as a language a model, we use a corpus of text as training
material in combination with a training regimen called teacher forcing. The taskteacher forcing

is to minimize the error in predicting the next word in the training sequence, using
cross-entropy as the loss function. Recall that the cross-entropy loss measures the
difference between a predicted probability distribution and the correct distribution.

LCE = −
∑

w∈V

yt
w log ŷt

w

In the case of language modeling, the correct distribution y comes from knowing
the next word. This is represented as a one-hot vector corresponding to the vocab-
ulary where the entry for the actual next word is 1, and all the other entries are 0.
Thus, the cross-entropy loss for language modeling is determined by the probability
the model assigns to the correct next word. To be specific, at time t the CE loss is
the negative log probability assigned to the next word in the training sequence.

LCE(ŷt ,yt) = − log ŷt
wt+1

(9.1)

In practice, the weights in the network are adjusted to minimize the average CE
loss over the training sequence via gradient descent. Fig. 9.6 illustrates this training
regimen.

Careful readers may have noticed that the input embedding matrix E and the
final layer matrix V , which feeds the output softmax, are quite similar. The rows of
E represent the word embeddings for each word in the vocabulary learned during the
training process with the goal that words that have similar meaning and function will
have similar embeddings. And, since the length of these embeddings corresponds to
the size of the hidden layer dh, the embedding matrix shape E is |V |×dh.

The final layer matrix V provides a way to score the likelihood of each word
in the vocabulary given the evidence present in the final hidden layer of the net-
work through the calculation of V h. This entails that it also has the dimensionality
|V | × dh. That is, the rows of V provide a second set of learned word embeddings
that capture relevant aspects of word meaning and function. This leads to an obvi-
ous question – is it even necessary to have both? Weight Tying is a method thatWeight Tying

dispenses with this redundancy and uses a single set of embeddings at the input and
softmax layers. That is, E = V . To do this, we set the dimensionality of the fi-
nal hidden layer to be the same dh, (or add an additional projection layer to do the
same thing), and simply use the same matrix for both layers. In addition to provid-
ing improved perplexity results, this approach significantly reduces the number of
parameters required for the model.



9.2 • RECURRENT NEURAL NETWORKS 181

Input
Embeddings

RNN
Layer(s)

Softmax over
Vocabulary

In a hole in the

a hole in theNext word ground

…

Loss
1

T

TX

t=1

LCE

<latexit sha1_base64="6PR2sGBbvq8nzoeN9f9Y6QK385E=">AAACA3icbVBLS8NAGNzUV62vqEcvi1XwVBIpqAehWAQPHir0BU0Nm+2mXbp5sPtFKCFHL/4VLyJeFLz7F/w3Jm0ubR1YGGZm2Z1xQsEVGMavVlhZXVvfKG6WtrZ3dvf0/YO2CiJJWYsGIpBdhygmuM9awEGwbigZ8RzBOs64nvmdJyYVD/wmTELW98jQ5y6nBFLJ1k8sVxIam0ncTLClIs+O4dpMHpv43o7rt0kpg62XjYoxBV4mZk7KKEfD1n+sQUAjj/lABVGqZxoh9GMigVPBkpIVKRYSOiZDFk87JPg0lQbYDWR6fMBTdS5HPKUmnpMmPQIjtehl4n9eLwL3sh9zP4yA+XT2kBsJDAHOBsEDLhkFMUkJoZKnP8R0RNJRIJ0tq24uFl0m7fOKWa1cPVTLtZt8hCI6QsfoDJnoAtXQHWqgFqLoBb2hT/SlPWuv2rv2MYsWtPzOIZqD9v0H1OOVcA==</latexit>

� log ya

<latexit sha1_base64="jKuDSYNLV6wfUx7Ht7h9KtGMaew=">AAAB+XicbVDLSsNAFL2pr1pfUXe6GSyCG0siBXVXdOOygn1AU8JkOmmHTjJhZiKEEPBX3Ii4UfAn/AX/xqTNpq0HBg7nnOHee7yIM6Ut69eorK1vbG5Vt2s7u3v7B+bhUVeJWBLaIYIL2fewopyFtKOZ5rQfSYoDj9OeN70v/N4zlYqJ8EknER0GeBwynxGsc8k1Ty6Rw8UYJW7qBFhPZJDiLKsVcM261bBmQKvELkkdSrRd88cZCRIHNNSEY6UGthXpYYqlZoTTrObEikaYTPGYprPNM3SeSyPkC5m/UKOZupDDgVJJ4OXJYju17BXif94g1v7NMGVhFGsakvkgP+ZIC1TUgEZMUqJ5khNMJMs3RGSCJSY6L6s43V4+dJV0rxp2s3H72Ky37soSqnAKZ3ABNlxDCx6gDR0g8AJv8AlfRmq8Gu/GxzxaMco/x7AA4/sP8suRsQ==</latexit>

� log yin

<latexit sha1_base64="eLxvhtPBIGC5wMXStR/ztO/UA6o=">AAAB+nicbVDLSsNAFL3xWesr6rKbwSK4sSRSUHdFNy4r2Ac0JUymk3bo5MHMRAgxC3/FjYgbBT/CX/BvnLTZtPXAwOGcO9x7jhdzJpVl/Rpr6xubW9uVneru3v7BoXl03JVRIgjtkIhHou9hSTkLaUcxxWk/FhQHHqc9b3pX+L0nKiSLwkeVxnQY4HHIfEaw0pJr1i6Qw6MxSt3MCbCaiCBjYZ5XC7hm3WpYM6BVYpekDiXarvnjjCKSBDRUhGMpB7YVq2GGhWKE07zqJJLGmEzxmGaz03N0pqUR8iOhX6jQTF2Yw4GUaeDpyeI8uewV4n/eIFH+9VBniRNFQzJf5CccqQgVPaARE5QonmqCiWD6QkQmWGCidFtFdHs56CrpXjbsZuPmoVlv3ZYlVKAGp3AONlxBC+6hDR0g8AJv8AlfxrPxarwbH/PRNaP8cwILML7/ANCikjE=</latexit>

� log ythe

<latexit sha1_base64="DtDttUjPu1MsQUZMjlhGCRhsxWY=">AAAB+3icbVDLSsNAFJ3UV62vqEtdDBbBjSWRgrorunFZwT6gKWEynbRDJ5kwcyOEkI2/4kbEjYL/4C/4NyZtNm09MHA45wz33uNFgmuwrF+jsra+sblV3a7t7O7tH5iHR10tY0VZh0ohVd8jmgkesg5wEKwfKUYCT7CeN70v/N4zU5rL8AmSiA0DMg65zymBXHLN00vsCDnGiZs6AYGJClKYsCyrFXDNutWwZsCrxC5JHZVou+aPM5I0DlgIVBCtB7YVwTAlCjgVLKs5sWYRoVMyZuls9wyf59II+1LlLwQ8UxdyJNA6Cbw8Weynl71C/M8bxODfDFMeRjGwkM4H+bHAIHFRBB5xxSiIJCeEKp5viOmEKEIhr6s43V4+dJV0rxp2s3H72Ky37soSqugEnaELZKNr1EIPqI06iKIX9IY+0ZeRGa/Gu/Exj1aM8s8xWoDx/Qec7ZKl</latexit>

� log yground

<latexit sha1_base64="T6zX0MRd/XzR/iM6VIQlPhMCGIA=">AAAB/nicbVDLSsNAFJ34rPUVdenCwSK4sSRSUHdFNy4r2Ac0JUwmk3ToZCbMTIQQAm78FTcibhT8BH/BvzFps2nrgYHDOWe49x4vZlRpy/o1VlbX1jc2a1v17Z3dvX3z4LCnRCIx6WLBhBx4SBFGOelqqhkZxJKgyGOk703uSr//RKSigj/qNCajCIWcBhQjXUiueXIBHSZCmLqZEyE9llEWSpFwP8/rJVyzYTWtKeAysSvSABU6rvnj+AInEeEaM6TU0LZiPcqQ1BQzktedRJEY4QkKSTZdP4dnheTDQMjicQ2n6lwORUqlkVckyxXVoleK/3nDRAfXo4zyONGE49mgIGFQC1h2AX0qCdYsLQjCkhYbQjxGEmFdNFaebi8eukx6l0271bx5aDXat1UJNXAMTsE5sMEVaIN70AFdgMELeAOf4Mt4Nl6Nd+NjFl0xqj9HYA7G9x8cVZQR</latexit>

� log yhole

<latexit sha1_base64="t7aI0+0jqeZm3Rk8NhEBgVMNDJc=">AAAB+HicbVDLSgMxFL3js9bXqCtxEyyCG8uMFNRd0Y3LCvYBnTJk0kwbmpkMSUYYh+KvuBFxo+BX+Av+jZm2m7ZeCBzOOUnOPUHCmdKO82utrK6tb2yWtsrbO7t7+/bBYUuJVBLaJIIL2QmwopzFtKmZ5rSTSIqjgNN2MLor9PYTlYqJ+FFnCe1FeBCzkBGsDeXbxxfI42KAMj/3IqyHMsqHgtPxuOzbFafqTAYtA3cGKjCbhm//eH1B0ojGmnCsVNd1Et3LsdSMmBfLXqpogskID2g+CT5GZ4bqo1BIc2KNJuycD0dKZVFgnEU4tagV5H9aN9XhdS9ncZJqGpPpR2HKkRaoaAH1maRE88wATCQzCREZYomJNl0Vq7uLiy6D1mXVrVVvHmqV+u2shBKcwCmcgwtXUId7aEATCLzAG3zCl/VsvVrv1sfUumLN7hzB3Fjff29PksY=</latexit>

…

…

Figure 9.6 Training RNNs as language models.

Generation with RNN-Based Language Models

As with the probabilistic Shakespeare generator from Chapter 3, a useful way to
gain insight into a language model is to use a trained model to generate random
novel sentences. The procedure is basically the same as that described on 38.

• To begin, sample a word in the output from the softmax distribution that re-
sults from using the beginning of sentence marker, <s>, as the first input.

• Use the word embedding for that first word as the input to the network at the
next time step, and then sample the next word in the same fashion.

• Continue generating until the end of sentence marker, </s>, is sampled or a
fixed length limit is reached.

This technique is called autoregressive generation since the word generated at eachautoregressive
generation

time step is conditioned on the word selected by the network from the previous step.
Fig. 9.7 illustrates this approach. In this figure, the details of the RNN’s hidden
layers and recurrent connections are hidden within the blue block.

While this is an entertaining exercise, this architecture has inspired state-of-the-
art approaches to applications such as machine translation, summarization, and ques-
tion answering. The key to these approaches is to prime the generation component
with an appropriate context. That is, instead of simply using <s> to get things started
we can provide a richer task-appropriate context. We’ll discuss the application of
contextual generation to the problem of summarization in Section ?? in the context
of Transformer-based language models.

9.2.4 Other Applications of RNNs
Recurrent neural networks have proven to be an effective approach to language mod-
eling, sequence labeling tasks such as part-of-speech tagging, as well as sequence
classification tasks such as sentiment analysis and topic classification. And as we’ll
see in Chapter 11 and Chapter 11, they form the basis for sequence-to-sequence
approaches to summarization, machine translation, and question answering.
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Figure 9.7 Autoregressive generation with an RNN-based neural language model.

Sequence Labeling

In sequence labeling, the network’s task is to assign a label chosen from a small
fixed set of labels to each element of a sequence. Canonical examples of sequence
labeling include part-of-speech tagging and named entity recognition discussed in
detail in Chapter 8. In an RNN approach to sequence labeling, inputs are word
embeddings and the outputs are tag probabilities generated by a softmax layer over
the given tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents

Janet will back

RNN

the bill

NNDTVBMDNNP

Softmax

Argmax

Embdeddings

Words

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.
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an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a sequence of tags for a given input, we run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output
tagset at each time step, we will again employ the cross-entropy loss during training.

9.2.5 RNNs for Sequence Classification
Another use of RNNs is to classify entire sequences rather than the tokens within
them. We’ve already encountered this task in Chapter 4 with our discussion of sen-
timent analysis. Other examples include document-level topic classification, spam
detection, message routing for customer service applications, and deception detec-
tion. In all of these applications, sequences of text are classified as belonging to one
of a small number of categories.

To apply RNNs in this setting, the text to be classified is passed through the RNN
a word at a time generating a new hidden layer at each time step. The hidden layer
for the final element of the text, hn, is taken to constitute a compressed representation
of the entire sequence. In the simplest approach to classification, hn, serves as the
input to a subsequent feedforward network that chooses a class via a softmax over
the possible classes. Fig. 9.9 illustrates this approach.

x1 x2 x3 xn

RNN

hn

Softmax

Figure 9.9 Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

Note that in this approach there are no intermediate outputs for the words in
the sequence preceding the last element. Therefore, there are no loss terms associ-
ated with those elements. Instead, the loss function used to train the weights in the
network is based entirely on the final text classification task. Specifically, the out-
put from the softmax output from the feedforward classifier together with a cross-
entropy loss drives the training. The error signal from the classification is backprop-
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agated all the way through the weights in the feedforward classifier through, to its
input, and then through to the three sets of weights in the RNN as described earlier
in Section 9.2.2. This combination of a simple recurrent network with a feedforward
classifier is our first example of a deep neural network. And the training regimen
that uses the loss from a downstream application to adjust the weights all the way
through the network is referred to as end-to-end training.end-to-end

training

9.2.6 Stacked and Bidirectional RNNs
As suggested by the sequence classification architecture shown in Fig. 9.9, recurrent
networks are quite flexible. By combining the feedforward nature of unrolled com-
putational graphs with vectors as common inputs and outputs, complex networks
can be treated as modules that can be combined in creative ways. This section intro-
duces two of the more common network architectures used in language processing
with RNNs.

Stacked RNNs

In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs

the input to a subsequent layer, as shown in Fig. 9.10.

y1 y2 y3
yn

x1 x2 x3 xn

RNN 1

RNN 3

RNN 2

Figure 9.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

It has been demonstrated across numerous tasks that stacked RNNs can outper-
form single-layer networks. One reason for this success has to do with the network’s
ability to induce representations at differing levels of abstraction across layers. Just
as the early stages of the human visual system detect edges that are then used for
finding larger regions and shapes, the initial layers of stacked networks can induce
representations that serve as useful abstractions for further layers — representations
that might prove difficult to induce in a single RNN.
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The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.

Bidirectional RNNs

In a simple recurrent network, the hidden state at a given time t represents everything
the network knows about the sequence up to that point in the sequence. That is, the
hidden state at time t is the result of a function of the inputs from the start up through
time t. We can think of this as the context of the network to the left of the current
time.

h f
t = RNNforward(xt

1)

Where h f
t corresponds to the normal hidden state at time t, and represents everything

the network has gleaned from the sequence to that point.
In many applications we have access to the entire input sequence all at once. We

might ask whether it is helpful to take advantage of the context to the right of the
current input as well. One way to recover such information is to train an RNN on an
input sequence in reverse, using exactly the same kind of networks that we’ve been
discussing. With this approach, the hidden state at time t now represents information
about the sequence to the right of the current input.

hb
t = RNNbackward(xn

t )

Here, the hidden state hb
t represents all the information we have discerned about the

sequence from t to the end of the sequence.
Combining the forward and backward networks results in a bidirectional RNN(Schusterbidirectional

RNN
and Paliwal, 1997). A Bi-RNN consists of two independent RNNs, one where the
input is processed from the start to the end, and the other from the end to the start.
We then combine the outputs of the two networks into a single representation that
captures both the left and right contexts of an input at each point in time.

ht = h f
t ⊕hb

t

Fig. 9.11 illustrates a bidirectional network where the outputs of the forward and
backward pass are concatenated. Other simple ways to combine the forward and
backward contexts include element-wise addition or multiplication. The output at
each step in time thus captures information to the left and to the right of the current
input. In sequence labeling applications, these concatenated outputs can serve as the
basis for a local labeling decision.

Bidirectional RNNs have also proven to be quite effective for sequence classi-
fication. Recall from Fig. 9.10, that for sequence classification we used the final
hidden state of the RNN as the input to a subsequent feedforward classifier. A dif-
ficulty with this approach is that the final state naturally reflects more information
about the end of the sentence than its beginning. Bidirectional RNNs provide a
simple solution to this problem; as shown in Fig. 9.12, we simply combine the final
hidden states from the forward and backward passes and use that as input for follow-
on processing. Again, concatenation is a common approach to combining the two
outputs but element-wise summation, multiplication or averaging are also used.



186 CHAPTER 9 • DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

y1

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

y2

+

y3

+

yn

+

Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

hn_forw

h1_back

Softmax

Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

9.3 Managing Context in RNNs: LSTMs and GRUs

In practice, it is quite difficult to train RNNs for tasks that require a network to make
use of information distant from the current point of processing. Despite having
access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
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to many language applications. To see this, consider the following example in the
context of language modeling.

(9.2) The flights the airline was cancelling were full.

Assigning a high probability to was following airline is straightforward since airline
provides a strong local context for the singular agreement. However, assigning an
appropriate probability to were is quite difficult, not only because the plural flights is
quite distant, but also because the intervening context involves singular constituents.
Ideally, a network should be able to retain the distant information about plural flights
until it is needed, while still processing the intermediate parts of the sequence cor-
rectly.

One reason for the inability of RNNs to carry forward critical information is that
the hidden layers, and, by extension, the weights that determine the values in the hid-
den layer, are being asked to perform two tasks simultaneously: provide information
useful for the current decision, and updating and carrying forward information re-
quired for future decisions.

A second difficulty with training SRNs arises from the need to backpropagate
the error signal back through time. Recall from Section 9.2.2 that the hidden layer
at time t contributes to the loss at the next time step since it takes part in that cal-
culation. As a result, during the backward pass of training, the hidden layers are
subject to repeated multiplications, as determined by the length of the sequence. A
frequent result of this process is that the gradients are eventually driven to zero – the
so-called vanishing gradients problem.vanishing

gradients
To address these issues, more complex network architectures have been designed

to explicitly manage the task of maintaining relevant context over time. More specif-
ically, the network needs to learn to forget information that is no longer needed and
to remember information required for decisions still to come.

9.3.1 Long Short-Term Memory
Long short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997)

Long
short-term

memory
divide the context management problem into two sub-problems: removing informa-
tion no longer needed from the context, and adding information likely to be needed
for later decision making. The key to solving both problems is to learn how to man-
age this context rather than hard-coding a strategy into the architecture. LSTMs
accomplish this by first adding an explicit context layer to the architecture (in addi-
tion to the usual recurrent hidden layer), and through the use of specialized neural
units that make use of gates to control the flow of information into and out of the
units that comprise the network layers. These gates are implemented through the
use of additional weights that operate sequentially on the input, and previous hidden
layer, and previous context layers.

The gates in an LSTM share a common design pattern; each consists of a feed-
forward layer, followed by a sigmoid activation function, followed by a pointwise
multiplication with the layer being gated. The choice of the sigmoid as the activation
function arises from its tendency to push its outputs to either 0 or 1. Combining this
with a pointwise multiplication has an effect similar to that of a binary mask. Values
in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate to deleteforget gate

information from the context that is no longer needed. The forget gate computes a
weighted sum of the previous state’s hidden layer and the current input and passes
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that through a sigmoid. This mask is then multiplied by the context vector to remove
the information from context that is no longer required.

ft = σ(U f ht−1 +Wf xt)

kt = ct−1� ft

The next task is compute the actual information we need to extract from the
previous hidden state and current inputs — the same basic computation we’ve been
using for all our recurrent networks.

gt = tanh(Ught−1 +Wgxt) (9.3)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = σ(Uiht−1 +Wixt) (9.4)

jt = gt � it (9.5)

Next, we add this to the modified context vector to get our new context vector.

ct = jt + kt (9.6)

The final gate we’ll use is the output gate which is used to decide what informa-output gate

tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

ot = σ(Uoht−1 +Woxt) (9.7)

ht = ot � tanh(ct) (9.8)

(9.9)

Fig. 9.13 illustrates the complete computation for a single LSTM unit. Given
the appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output. The hidden
layer, ht , can be used as input to subsequent layers in a stacked RNN, or to generate
an output for the final layer of a network.

9.3.2 Gated Recurrent Units
LSTMs introduce a considerable number of additional parameters to our recurrent
networks. We now have 8 sets of weights to learn (i.e., the U and W for each of the 4
gates within each unit), whereas with simple recurrent units we only had 2. Training
these additional parameters imposes a much significantly higher training cost. Gated
Recurrent Units (GRUs)(Cho et al., 2014) ease this burden by dispensing with the
use of a separate context vector, and by reducing the number of gates to 2 — a reset
gate, r and an update gate, z.

rt = σ(Urht−1 +Wrxt) (9.10)

zt = σ(Uzht−1 +Wzxt) (9.11)
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Figure 9.13 A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the
current input, x, the previous hidden state, ht−1, and the previous context, ct−1. The outputs are a new hidden
state, ht and an updated context, ct .

As with LSTMs, the use of the sigmoid in the design of these gates results in
a binary-like mask that either blocks information with values near zero or allows
information to pass through unchanged with values near one. The purpose of the
reset gate is to decide which aspects of the previous hidden state are relevant to the
current context and what can be ignored. This is accomplished by performing an
element-wise multiplication of r with the value of the previous hidden state. We
then use this masked value in computing an intermediate representation for the new
hidden state at time t.

h̃t = tanh(U(rt �ht−1)+Wxt) (9.12)

The job of the update gate z is to determine which aspects of this new state will
be used directly in the new hidden state and which aspects of the previous state need
to be preserved for future use. This is accomplished by using the values in z to
interpolate between the old hidden state and the new one.

ht = (1− zt)ht−1 + zt h̃t (9.13)

9.3.3 Gated Units, Layers and Networks
The neural units used in LSTMs and GRUs are obviously much more complex than
those used in basic feedforward networks. Fortunately, this complexity is encapsu-
lated within the basic processing units, allowing us to maintain modularity and to
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Figure 9.14 Basic neural units used in feedforward, simple recurrent networks (SRN), long
short-term memory (LSTM) and gate recurrent units.

easily experiment with different architectures. To see this, consider Fig. 9.14 which
illustrates the inputs and outputs associated with each kind of unit.

At the far left, (a) is the basic feedforward unit where a single set of weights and
a single activation function determine its output, and when arranged in a layer there
are no connections among the units in the layer. Next, (b) represents the unit in a
simple recurrent network. Now there are two inputs and an additional set of weights
to go with it. However, there is still a single activation function and output.

The increased complexity of the LSTM (c) and GRU (d) units on the right is
encapsulated within the units themselves. The only additional external complexity
for the LSTM over the basic recurrent unit (b) is the presence of the additional
context vector as an input and output. The GRU units have the same input and
output architecture as the simple recurrent unit.

This modularity is key to the power and widespread applicability of LSTM and
GRU units. LSTM and GRU units can be substituted into any of the network ar-
chitectures described in Section 9.2.6. And, as with simple RNNs, multi-layered
networks making use of gated units can be unrolled into deep feedforward networks
and trained in the usual fashion with backpropagation.

9.4 Self-Attention Networks: Transformers

Despite the ability of LSTMs to mitigate the loss of distant information due to the
recurrence in RNNs, the underlying problem remains. Passing information forward
through an extended series of recurrent connections leads to a loss of relevant in-
formation and to difficulties in training. Moreover, the inherently sequential nature
of recurrent networks inhibits the use of parallel computational resources. These
considerations led to the development of Transformers – an approach to sequenceTransformers

processing that eliminates recurrent connections and returns to architectures remi-
niscent of the fully connected networks described earlier in Chapter 7.

Transformers map sequences of input vectors (x1, ...,xn) to sequences of output
vectors (y1, ...,yn) of the same length. Transformers are made up of stacks of net-
work layers consisting of simple linear layers, feedforward networks, and custom
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connections around them. In addition to these standard components, the key inno-
vation of transformers is the use of self-attention layers. We’ll start by describingself-attention

how self-attention works and then return to how it fits into larger transformer blocks.
Self-attention allows a network to directly extract and use information from arbitrar-
ily large contexts without the need to pass it through intermediate recurrent connec-
tions as in RNNs. In this chapter, we’ll focus on the application of self-attention to
the problems of language modeling and autoregressive generation where the context
to be used lies in the past. We’ll return to wider applications of self-attention and
Transformers in later chapters.

Fig. 9.15 illustrates the flow of information in a single causal, or backward look-
ing, self-attention layer. As with the overall Transformer, a self-attention layer maps
input sequences (x1, ...,xn) to output sequences of the same length (y1, ...,yn). When
processing each item in the input, the model has access to all of the inputs up to an
including the one under consideration, but no access to information about inputs
beyond the current one. In addition, the computation performed for each item is
independent of all the other computations. The first point ensures that we can use
this approach to create language models and use them for autoregressive generation,
and the second point means that we can easily parallelize both forward inference
and training of such models.

Self-Attention
Layer

y3 y5y2y1 y4

x1 x2 x3 x5x4

Figure 9.15 Information flow in a causal (or masked) self-attention model. In processing each element of
the sequence, the model attends to all the inputs up to, and including, the current one. Unlike RNNs, the
computations at each time step are independent of all the other steps and therefore can be performed in parallel.

At the core of an attention-based approach is the ability to compare an item of
interest to a collection of other items in way that reveals their relevance in the current
context. In the case of self-attention, the set of comparisons are to other elements
within a given sequence. The result of these comparisons is then used to compute an
output for the current input. For example, returning to Fig. 9.15, the computation of
y3 is based on a set of comparisons between the input x3 and its preceding elements
x1 and x2, and to x3 itself. The simplest form of comparison between elements in a
self-attention layer is a dot product. To allow for other possible comparisons, let’s
refer to the result of these comparisons as scores.

score(xi,x j) = xi · x j (9.14)

The result of a dot product is a scalar value ranging from −∞ to ∞, the larger
the value the more similar the vectors that are being compared. Continuing with our
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example, the first step in computing y3 would be to compute three scores: x3 · x1,
x3 · x2 and x3 · x3. Then to make effective use of these scores, we’ll normalize them
with a softmax to create a vector of weights, αi j, that indicates the proportional
relevance of each input to the input element i that is the current focus of attention.

αi j = softmax(score(xi,x j)) ∀ j ≤ i (9.15)

=
exp(score(xi,x j))∑i

k=1 exp(score(xi,xk))
∀ j ≤ i (9.16)

Given the proportional scores in α , we then generate an output value yi by taking
the sum of the inputs seen so far, weighted by their respective α value.

yi =
∑

j≤i

αi jx j (9.17)

The steps embodied in Equations 9.14 through 9.17 represent the core of an
attention-based approach: a set of comparisons to relevant items in some context,
a normalization of those scores to provide a probability distribution, followed by a
weighted sum using this distribution. The output y is the result of this straightfor-
ward computation over the inputs.

Unfortunately, this simple mechanism provides no opportunity for learning, ev-
erything is directly based on the original input values x. In particular, there are no
opportunities to learn the diverse ways that words can contribute to the represen-
tation of longer inputs. To allow for this kind of learning, Transformers include
additional parameters in the form of a set of weight matrices that operate over the
input embeddings. To motivate these new parameters, consider the different roles
that each input embedding plays during the course of the attention process.

• As the current focus of attention when being compared to all of the other
preceding inputs. We’ll refer to this role as a query.

• In its role as a preceding input being compared to the current focus of atten-
tion. We’ll refer to this role as a key.

• And finally, as a value used to compute the output for the current focus of
attention.

To capture the different roles that input embeddings play in each of these steps,
Transformers introduce three sets of weights which we’ll call W Q, W K , and WV .
These weights will be used to compute linear transformations of each input x with
the resulting values being used in their respective roles in subsequent calculations.

qi =W Qxi; ki =W Kxi; vi =WV xi

Given input embeddings of size dm, the dimensionality of these matrices are dq×dm,
dk×dm and dv×dm, respectively. In the original Transformer work (Vaswani et al.,
2017), dm was 1024 and 64 for dk, dq and dv.

Given these projections, the score between a current focus of attention, xi and
an element in the preceding context, x j consists of a dot product between its query
vector qi and the preceding elements key vectors k j. Let’s update our previous com-
parison calculation to reflect this.

score(xi,x j) = qi · k j (9.18)

The ensuing softmax calculation resulting in αi, j remains the same, but the output
calculation for yi is now based on a weighted sum over the value vectors v.

yi =
∑

j≤i

αi jv j (9.19)
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Figure 9.16 Calculation of the value of the third element of a sequence using causal self-attention.

Fig. 9.16 illustrates this calculation in the case of computing the third output y3 in a
sequence.

A practical consideration that arises in computing αi j arises from the use of a
dot product as a comparison in combination with the exponential in the softmax.
The result of dot product can be an arbitrarily large (positive or negative) value.
Exponentiating such large values can lead to numerical issues and to an effective
loss of gradients during training. To avoid this, the dot product needs to be scaled
in a suitable fashion. A scaled dot-product approach divides the result of the dot
product by a factor related to the size of the embeddings before passing them through
the softmax. A typical approach is to divide the dot product by the square root of
the dimensionality of the query and key vectors, leading us to update our scoring
function one more time.

score(xi,x j) =
qi · k j√

dk
(9.20)

This description of the self-attention process has been from the perspective of
computing a single output at a particular point in time. However, since each out-
put, yi, is computed independently this entire process can be parallelized by taking
advantage of efficient matrix multiplication routines by packing the input embed-
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dings into a single matrix and multiplying it by the key, query and value matrices to
produce matrices containing all the key, query and value vectors.

Q =W QX ; K =W KX ; V =WV X

Given these matrices we can compute all the requisite query-key comparisons
simultaneously by multiplying K and Q in a single matrix multiplication. Taking
this one step further, we can scale these scores, take the softmax, and then multiply
the result by V , thus reducing the entire self-attention step for an entire sequence to
the following computation.

SelfAttention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (9.21)

Unfortunately, this process goes a bit too far since the calculation of the compar-
isons in QKT results in a score for each query value to every key value, including
those that follow the query. This is inappropriate in the setting of language modeling
since guessing the next word is pretty simple if you already know it. To fix this, the
elements in the upper-triangular portion of the comparisons matrix are zeroed out
(set to −∞), thus eliminating any knowledge of words that follow in the sequence.

Transformer Blocks

The self-attention calculation lies at the core of what’s called a transformer block,
which, in addition to the self-attention layer, includes additional feedforward layers,
residual connections, and normalizing layers. Fig. 9.17 illustrates a typical trans-
former block consisting of a single attention layer followed by a fully-connected
feedforward layer with residual connections and layer normalizations following each.
These blocks can then be stacked just as was the case for stacked RNNs.

Multihead Attention

The different words in a sentence can relate to each other in many different ways si-
multaneously. For example, distinct syntactic, semantic, and discourse relationships
can hold between verbs and their arguments in a sentence. It would be difficult for
a single transformer block to learn to capture all of the different kinds of parallel
relations among its inputs. Transformers address this issue with multihead self-
attention layers. These are sets of self-attention layers, called heads, that reside in

multihead
self-attention

layers
parallel layers at the same depth in a model, each with its own set of parameters.
Given these distinct sets of parameters, each head can learn different aspects of the
relationships that exist among inputs at the same level of abstraction.

To implement this notion, each head, i, in a self-attention layer is provided with
its own set of key, query and value matrices: W K

i , W Q
i and WV

i . These are used
to project the inputs to the layer, xi, separately for each head, with the rest of the
self-attention computation remaining unchanged. The output of a multi-head layer
with h heads consists of h vectors of the same length. To make use of these vec-
tors in further processing, they are combined and then reduced down to the original
input dimension dm. This is accomplished by concatenating the outputs from each
head and then using yet another linear projection to reduce it to the original output
dimension.

MultiHeadAttn(Q,K,V ) = W O(head1⊕head2...⊕headh)

headi = SelfAttention(W Q
i X ,W K

i X ,WV
i X)
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Fig. 9.18 illustrates this approach with 4 self-attention heads. This multihead
layer replaces the single self-attention layer in the transformer block shown earlier
in Fig. 9.17, the rest of the Transformer block with its feedforward layer, residual
connections, and layer norms remains the same.

Positional Embeddings

With RNNs information about the order of the inputs was baked into the nature of
the models. Unfortunately, the same isn’t true for Transformers; there’s nothing that
would allow such models to make use of information about the relative, or absolute,
positions of the elements of an input sequence. This can be seen from the fact that if
you scramble the order of inputs in the attention computation illustrated earlier you
get exactly the same answer. To address this issue, Transformer inputs are combined
with positional embeddings specific to each position in an input sequence.positional

embeddings
Where do we get these positional embeddings? A simple and effective approach

is to start with randomly initialized embeddings corresponding to each possible input
position up to some maximum length. For example, just as we have an embedding
for the word fish, we’ll have an embedding for the position 3. As with word embed-
dings, these positional embeddings are learned along with other parameters during
training. To produce an input embedding that captures positional information, we
just add the word embedding for each input to its corresponding positional embed-
ding. This new embedding serves as the input for further processing.

A potential problem with this approach is that there will be plenty of training
examples for the initial positions in our inputs and correspondingly fewer at the
outer length limits. These latter embeddings may be poorly trained and may not
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Figure 9.18 Multihead self-attention: Each of the multihead self-attention layers is provided with its own
set of key, query and value weight matrices. The outputs from each of the layers are concatenated and then
projected down to dmodel , thus producing an output of the right size.

generalize well during testing. An alternative approach to positional embeddings is
to choose a static function that maps an integer inputs to real-valued vectors in a
way that captures the inherent relationships among the positions. That is, it captures
the fact that position 4 in an input is more closely related to position 5 than it is to
position 17. A combination of sine and cosine functions with differing frequencies
was used in the original Transformer work.

9.4.1 Transformers as Autoregressive Language Models
Now that we’ve seen all the major components of Transformers, let’s examine how
to deploy them as language models via semi-supervised learning. To do this, we’ll
proceed just as we did with the RNN-based approach: given a training corpus of
plain text we’ll train a model to predict the next word in a sequence using teacher
forcing. Fig. 9.19 illustrates the general approach. At each step, given all the pre-
ceding words, the final Transformer layer produces an output distribution over the
entire vocabulary. During training, the probability assigned to the correct word is
used to calculate the cross-entropy loss for each item in the sequence. As with
RNNs, the loss for a training sequence is the average cross-entropy loss over the
entire sequence.

Note the key difference between this figure and the earlier RNN-based version
for shown in Fig. 9.6. There the calculation of the outputs and the losses at each step
was inherently serial given the recurrence in the calculation of the hidden states.
With Transformers, each training item can be processed in parallel since the output
for each element in the sequence is computed separately. Once trained, we can
compute the perplexity of the resulting model, or autoregressively generate novel
text just as with RNN-based models.
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Figure 9.19 Training a Transformer as a language model.

Contextual Generation and Summarization

A simple variation on autoregressive generation that underlies a number of practi-
cal applications uses a prior context to prime the autoregressive generation process.
Fig. 9.20 illustrates this with the task of text completion. Here a standard language
model is given the prefix to some text and is asked to generate a possible completion
to it. Note that as the generation process proceeds, the model has direct access to
the priming context as well as to all of its own subsequently generated outputs. This
ability to incorporate the entirety of the earlier context and generated outputs at each
time step is the key to the power of these models.

Prefix Text

Completion Text

Input
Embeddings

Transformer
Blocks

Sample from Softmax

In a

ground

hole in the ground

there

there

…

Figure 9.20 Autoregressive text completion with Transformers.

Text summarization is a practical application of context-based autoregressiveText
summarization

generation. Here, the task is to take a full-length article and produce an effective
summary of it. To train a Transformer-based autoregressive model to perform this
task, we start with a corpus consisting of full-length articles accompanied by their
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corresponding summaries. Fig. 9.21 shows an example of this kind of data from a
widely used summarization corpus consisting of CNN and Daily Mirror news arti-
cles.

Original Article
The only thing crazier than a guy in snowbound Massachusetts boxing up the powdery white stuff
and offering it for sale online? People are actually buying it. For $89, self-styled entrepreneur
Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box – enough
for 10 to 15 snowballs, he says.
But not if you live in New England or surrounding states. “We will not ship snow to any states
in the northeast!” says Waring’s website, ShipSnowYo.com. “We’re in the business of expunging
snow!”
His website and social media accounts claim to have filled more than 133 orders for snow – more
than 30 on Tuesday alone, his busiest day yet. With more than 45 total inches, Boston has set a
record this winter for the snowiest month in its history. Most residents see the huge piles of snow
choking their yards and sidewalks as a nuisance, but Waring saw an opportunity.
According to Boston.com, it all started a few weeks ago, when Waring and his wife were shov-
eling deep snow from their yard in Manchester-by-the-Sea, a coastal suburb north of Boston.
He joked about shipping the stuff to friends and family in warmer states, and an idea was born.
His business slogan: “Our nightmare is your dream!” At first, ShipSnowYo sold snow packed
into empty 16.9-ounce water bottles for $19.99, but the snow usually melted before it reached its
destination...

Summary
Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box – enough
for 10 to 15 snowballs, he says. But not if you live in New England or surrounding states.

Figure 9.21 Examples of articles and summaries from the CNN/Daily Mail corpus (Hermann et al., 2015b),
(Nallapati et al., 2016).

A surprisingly effective approach to applying Transformers to summarization is
to append a summary to each full-length article in a corpus, with a unique marker
separating the two. More formally, each article-summary pair (x1, ...,xm), (y1, ...,yn)
in a training corpus is converted into a single training instance (x1, ...,xm,δ ,y1, ...yn)
with an overall length of n+m+ 1. These training instances are treated as long
sentences and then used to train an autoregressive language model using teacher
forcing, exactly as we did earlier.

Once trained, full articles ending with the special marker are used as the context
to prime the generation process to produce a summary as illustrated in Fig. 9.22.
Note that, in contrast to RNNs, the model has access to the original article as well
as to the newly generated text throughout the process.

As we’ll see in later chapters, variations on this simple scheme are the basis
for successful text-to-text applications including machine translation, summariza-
tion and question answering.

9.5 Potential Harms from Language Models

Large neural language models exhibit many of the potential harms discussed in
Chapter 4 and Chapter 6. Problems may occur whenever language models are used
for text generation, such as in assistive technologies like web search query comple-
tion or predictive typing for email (Olteanu et al., 2020).
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Figure 9.22 Summarization with Transformers.

For example, language models can generate toxic language. Gehman et al.
(2020) show that many kinds of completely non-toxic prompts can nonetheless lead
large language models to output hate speech and abuse. Brown et al. (2020) and
Sheng et al. (2019) showed that large language models generate sentences display-
ing negative attitudes toward minority identities such as being Black or gay.

Indeed, language models are biased in a number of ways by the distributions
of their training data. Gehman et al. (2020) shows that large language model train-
ing datasets include toxic text scraped from banned sites. In addition to problems
of toxicity, internet data is disproportionally generated by authors from developed
countries, and many large language models train on data from Reddit, whose authors
skew male and young. Such biased population samples likely skew the resulting
generation away from the perspectives or topics of underrepresented populations.
Furthermore, language models can amplify demographic and other biases in train-
ing data, just as we saw for embedding models in Chapter 6.

Language models can also be a tool for generating text for misinformation,
phishing, radicalization, and other socially harmful activities (Brown et al., 2020).
(McGuffie and Newhouse, 2020) show how large language models generate text
that emulates online extremists, with the risk of amplifying extremist movements
and their attempt to radicalize and recruit.

Finally, there are important privacy issues. Language models, like other machine
learning models, can leak information about their training data. It is thus possible
for an adversary to extract individual training-data phrases from a language model
such as an individual person’s name, phone number, and address (Carlini et al. 2020,
using the techniques introduced by Henderson et al. 2017). This is a problem if large
language models are trained on private datasets such has electronic health records
(EHRs).

Mitigating all these harms is an important but unsolved research question in
NLP. Extra pre-training (Gururangan et al., 2020) on non-toxic subcorpora seems to
reduce a language model’s tendency to generate toxic language somewhat (Gehman
et al., 2020). And analyzing the data used to pretrain large language models is
important to understand toxicity and bias in generation, as well as privacy, making
it extremely important that language models include datasheets (page ??) or model
cards (page 73) giving full replicable information on the corpora used to train them.
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9.6 Summary

This chapter has introduced the concept of recurrent neural networks and how they
can be applied to language problems. Here’s a summary of the main points that we
covered:

• In simple Recurrent Neural Networks sequences are processed naturally as an
element at a time.

• The output of a neural unit at a particular point in time is based both on the
current input and value of the hidden layer from the previous time step.

• RNNs can be trained with a straightforward extension of the backpropagation
algorithm, known as backpropagation through time (BPTT).

• Common language-based applications for RNNs include:

– Probabilistic language modeling, where the model assigns a probability
to a sequence, or to the next element of a sequence given the preceding
words.

– Auto-regressive generation using a trained language model.
– Sequence labeling, where each element of a sequence is assigned a label,

as with part-of-speech tagging.
– Sequence classification, where an entire text is assigned to a category, as

in spam detection, sentiment analysis or topic classification.

• Simple recurrent networks often fail since it is extremely difficult to success-
fully train them do to problems maintaining useful gradients over time.

• More complex gated architectures such as LSTMs and GRUs are designed
to overcome these issues by explicitly managing the task of deciding what to
remember and forget in their hidden and context layers.

Bibliographical and Historical Notes
Influential investigations of the kind of simple RNNs discussed here were conducted
in the context of the Parallel Distributed Processing (PDP) group at UC San Diego
in the 1980’s. Much of this work was directed at human cognitive modeling rather
than practical NLP applications Rumelhart and McClelland 1986 McClelland and
Rumelhart 1986. Models using recurrence at the hidden layer in a feedforward net-
work (Elman networks) were introduced by Elman (1990). Similar architectures
were investigated by Jordan (1986) with a recurrence from the output layer, and
Mathis and Mozer (1995) with the addition of a recurrent context layer prior to the
hidden layer. The possibility of unrolling a recurrent network into an equivalent
feedforward network is discussed in (Rumelhart and McClelland, 1986).

In parallel with work in cognitive modeling, RNNs were investigated extensively
in the continuous domain in the signal processing and speech communities (Giles
et al., 1994). Schuster and Paliwal (1997) introduced bidirectional RNNs and de-
scribed results on the TIMIT phoneme transcription task.

While theoretically interesting, the difficulty with training RNNs and manag-
ing context over long sequences impeded progress on practical applications. This
situation changed with the introduction of LSTMs in Hochreiter and Schmidhuber
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(1997). Impressive performance gains were demonstrated on tasks at the bound-
ary of signal processing and language processing including phoneme recognition
(Graves and Schmidhuber, 2005), handwriting recognition (Graves et al., 2007) and
most significantly speech recognition (Graves et al., 2013b).

Interest in applying neural networks to practical NLP problems surged with the
work of Collobert and Weston (2008) and Collobert et al. (2011). These efforts made
use of learned word embeddings, convolutional networks, and end-to-end training.
They demonstrated near state-of-the-art performance on a number of standard shared
tasks including part-of-speech tagging, chunking, named entity recognition and se-
mantic role labeling without the use of hand-engineered features.

Approaches that married LSTMs with pre-trained collections of word-embeddings
based on word2vec (Mikolov et al., 2013) and GLOVE (Pennington et al., 2014),
quickly came to dominate many common tasks: part-of-speech tagging (Ling et al.,
2015), syntactic chunking (Søgaard and Goldberg, 2016), and named entity recog-
nition via IOB tagging Chiu and Nichols 2016, Ma and Hovy 2016, opinion mining
(Irsoy and Cardie, 2014), semantic role labeling (Zhou and Xu, 2015a) and AMR
parsing (Foland and Martin, 2016). As with the earlier surge of progress involving
statistical machine learning, these advances were made possible by the availability
of training data provided by CONLL, SemEval, and other shared tasks, as well as
shared resources such as Ontonotes (Pradhan et al., 2007b), and PropBank (Palmer
et al., 2005).
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CHAPTER

11 Machine Translation and
Encoder-Decoder Models

“I want to talk the dialect of your people. It’s no use of talking unless
people understand what you say.”

Zora Neale Hurston, Moses, Man of the Mountain 1939, p. 121

This chapter introduces machine translation (MT), the use of computers to trans-machine
translation

MT late from one language to another.
Of course translation, in its full generality, such as the translation of literature, or

poetry, is a difficult, fascinating, and intensely human endeavor, as rich as any other
area of human creativity.

Machine translation in its present form therefore focuses on a number of very
practical tasks. Perhaps the most common current use of machine translation is
for information access. We might want to translate some instructions on the web,information

access
perhaps the recipe for a favorite dish, or the steps for putting together some furniture.
Or we might want to read an article in a newspaper, or get information from an
online resource like Wikipedia or a government webpage in a foreign language.
MT for information
access is probably
one of the most com-
mon uses of NLP
technology, and Google
Translate alone (shown above) translates hundreds of billions of words a day be-
tween over 100 languages.

Another common use of machine translation is to aid human translators. MT sys-
tems are routinely used to produce a draft translation that is fixed up in a post-editingpost-editing

phase by a human translator. This task is often called computer-aided translation
or CAT. CAT is commonly used as part of localization: the task of adapting contentCAT

localization or a product to a particular language community.
Finally, a more recent application of MT is to in-the-moment human commu-

nication needs. This includes incremental translation, translating speech on-the-fly
before the entire sentence is complete, as is commonly used in simultaneous inter-
pretation. Image-centric translation can be used for example to use OCR of the text
on a phone camera image as input to an MT system to translate menus or street signs.

The standard algorithm for MT is the encoder-decoder network, also called theencoder-
decoder

sequence to sequence network, an architecture that can be implemented with RNNs
or with Transformers. We’ve seen in prior chapters that RNN or Transformer archi-
tecture can be used to do classification (for example to map a sentence to a positive
or negative sentiment tag for sentiment analysis), or can be used to do sequence la-
beling (for example to assign each word in an input sentence with a part-of-speech,
or with a named entity tag). For part-of-speech tagging, recall that the output tag is
associated directly with each input word, and so we can just model the tag as output
yt for each input word xt .
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Encoder-decoder or sequence-to-sequence models are used for a different kind
of sequence modeling in which the output sequence is a complex function of the
entire input sequencer; we must map from a sequence of input words or tokens to a
sequence of tags that are not merely direct mappings from individual words.

Machine translation is exactly such a task: the words of the target language
don’t necessarily agree with the words of the source language in number or order.
Consider translating the following made-up English sentence into Japanese.

(11.1) English: He wrote a letter to a friend
Japanese: tomodachi

friend
ni
to

tegami-o
letter

kaita
wrote

Note that the elements of the sentences are in very different places in the different
languages. In English, the verb is in the middle of the sentence, while in Japanese,
the verb kaita comes at the end. The Japanese sentence doesn’t require the pronoun
he, while English does.

Such differences between languages can be quite complex. In the following ac-
tual sentence from the United Nations, notice the many changes between the Chinese
sentence (we’ve given in in red a word-by-word gloss of the Chinese characters) and
its English equivalent.

(11.2) 大会/General Assembly在/on 1982年/1982 12月/December 10日/10通过
了/adopted第37号/37th决议/resolution，核准了/approved第二次/second
探索/exploration及/and和平peaceful利用/using外层空间/outer space会
议/conference的/of各项/various建议/suggestions。

On 10 December 1982 , the General Assembly adopted resolution 37 in
which it endorsed the recommendations of the Second United Nations
Conference on the Exploration and Peaceful Uses of Outer Space .

Note the many ways the English and Chinese differ. For example the order-
ing differs in major ways; the Chinese order of the noun phrase is “peaceful using
outer space conference of suggestions” while the English has “suggestions of the ...
conference on peaceful use of outer space”). And the order differs in minor ways
(the date is ordered differently). English requires the in many places that Chinese
doesn’t, and adds some details (like “in which” and “it”) that aren’t necessary in
Chinese. Chinese doesn’t grammatically mark plurality on nouns (unlike English,
which has the “-s” in “recommendations”), and so the Chinese must use the modi-
fier各项/various to make it clear that there is not just one recommendation. English
capitalizes some words but not others.

Encoder-decoder networks are very successful at handling these sorts of com-
plicated cases of sequence mappings. Indeed, the encoder-decoder algorithm is not
just for MT; it’s the state of the art for many other tasks where complex mappings
between two sequences are involved. These include summarization (where we map
from a long text to its summary, like a title or an abstract), dialogue (where we map
from what the user said to what our dialogue system should respond), semantic
parsing (where we map from a string of words to a semantic representation like
logic or SQL), and many others.

We’ll introduce the algorithm in sections Section 11.2, and in following sections
give important components of the model like beam search decoding, and we’ll
discuss how MT is evaluated, introducing the popular BLEU metric.

But first, in the next section, we begin by summarizing the linguistic background
to MT: key differences among languages that are important to consider when con-
sidering the task of translation.
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11.1 Language Divergences and Typology

Some aspects of human language seem to be universal, holding true for every lan-universal

guage, or are statistical universals, holding true for most languages. Many universals
arise from the functional role of language as a communicative system by humans.
Every language, for example, seems to have words for referring to people, for talking
about eating and drinking, for being polite or not. There are also structural linguistic
universals; for example, every language seems to have nouns and verbs (Chapter 8),
has ways to ask questions, or issue commands, linguistic mechanisms for indicating
agreement or disagreement.

Yet languages also differ in many ways, and an understanding of what causes
such translation divergences will help us build better MT models. We often distin-translation

divergence
guish the idiosyncratic and lexical differences that must be dealt with one by one
(the word for ”dog” differs wildly from language to language), from systematic dif-
ferences that we can model in a general way (many languages put the verb before the
direct object; others put the verb after the direct object). The study of these system-
atic cross-linguistic similarities and differences is called linguistic typology. Thistypology

section sketches some typological facts that impact machine translation; the inter-
ested reader should also look into WALS, the World Atlas of Language Structures,
which gives many typological facts about languages (Dryer and Haspelmath, 2013).

11.1.1 Word Order Typology
As we hinted it in our example above comparing English and Japanese, languages
differ in the basic word order of verbs, subjects, and objects in simple declara-
tive clauses. German, French, English, and Mandarin, for example, are all SVOSVO

(Subject-Verb-Object) languages, meaning that the verb tends to come between
the subject and object. Hindi and Japanese, by contrast, are SOV languages, mean-SOV

ing that the verb tends to come at the end of basic clauses, and Irish and Arabic are
VSO languages. Two languages that share their basic word order type often haveVSO

other similarities. For example, VO languages generally have prepositions, whereas
OV languages generally have postpositions.

Let’s look in more detail at the example we saw above. In this SVO English
sentence, the verb wrote is followed by its object a letter and the prepositional phrase
to a friend, in which the preposition to is followed by its argument a friend. Arabic,
with a VSO order, also has the verb before the object and prepositions. By contrast,
in the Japanese example that follows, each of these orderings is reversed; the verb is
preceded by its arguments, and the postposition follows its argument.

(11.3) English: He wrote a letter to a friend
Japanese: tomodachi

friend
ni
to

tegami-o
letter

kaita
wrote

Arabic: katabt
wrote

risāla
letter

li
to

ṡadq
friend

Other kinds of ordering preferences vary idiosyncratically from language to lan-
guage. In some SVO languages (like English and Mandarin) adjectives tend to
appear before verbs, while in others languages like Spanish and Modern Hebrew,
adjectives appear after the noun:

(11.4) Spanish bruja verde English green witch
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(a) (b)

Figure 11.1 Examples of other word order differences: (a) In German, adverbs occur in
initial position that in English are more natural later, and tensed verbs occur in second posi-
tion. (b) In Mandarin, preposition phrases expressing goals often occur pre-verbally, unlike
in English.

Fig. 11.1 shows examples of other word order differences. All of these word
order differences between languages can cause problems for translation, requiring
the system to do huge structural reorderings as it generates the output.

11.1.2 Lexical Divergences
Of course we also need to translate the individual words from one language to an-
other. For any translation, the appropriate word can vary depending on the context.
The English source-language word bass, for example, can appear in Spanish as the
fish lubina or the musical instrument bajo. German uses two distinct words for what
in English would be called a wall: Wand for walls inside a building, and Mauer for
walls outside a building. Where English uses the word brother for any male sib-
ling, Chinese and many other languages have distinct words for older brother and
younger brother (Mandarin gege and didi, respectively). In all these cases, trans-
lating bass, wall, or brother from English would require a kind of specialization,
disambiguating the different uses of a word. For this reason the fields of MT and
Word Sense Disambiguation (Chapter 18) are closely linked.

Sometimes one language places more grammatical constraints on word choice
than another. We saw above that English marks nouns for whether they are singular
or plural. Mandarin doesn’t. Or French and Spanish, for example, mark grammat-
ical gender on adjectives, so an English translation into French requires specifying
adjective gender.

The way that languages differ in lexically dividing up conceptual space may be
more complex than this one-to-many translation problem, leading to many-to-many
mappings. For example, Fig. 11.2 summarizes some of the complexities discussed
by Hutchins and Somers (1992) in translating English leg, foot, and paw, to French.
For example, when leg is used about an animal it’s translated as French jambe; but
about the leg of a journey, as French etape; if the leg is of a chair, we use French
pied.

Further, one language may have a lexical gap, where no word or phrase, shortlexical gap

of an explanatory footnote, can express the exact meaning of a word in the other
language. For example, English does not have a word that corresponds neatly to
Mandarin xiào or Japanese oyakōkōo (in English one has to make do with awkward
phrases like filial piety or loving child, or good son/daughter for both).

Finally, languages differ systematically in how the conceptual properties of an
event are mapped onto specific words. Talmy (1985, 1991) noted that languages
can be characterized by whether direction of motion and manner of motion are
marked on the verb or on the “satellites”: particles, prepositional phrases, or ad-
verbial phrases. For example, a bottle floating out of a cave would be described in
English with the direction marked on the particle out, while in Spanish the direction
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etape patte

jambe pied

   paw

        footleg
JOURNEY

ANIMAL

HUMAN

CHAIR

ANIMAL

BIRD

HUMAN

Figure 11.2 The complex overlap between English leg, foot, etc., and various French trans-
lations as discussed by Hutchins and Somers (1992).

would be marked on the verb:

(11.5) English: The bottle floated out.
Spanish: La

The
botella
bottle

salió
exited

flotando.
floating.

Verb-framed languages mark the direction of motion on the verb (leaving theverb-framed

satellites to mark the manner of motion), like Spanish acercarse ‘approach’, al-
canzar ‘reach’, entrar ‘enter’, salir ‘exit’. Satellite-framed languages mark thesatellite-framed

direction of motion on the satellite (leaving the verb to mark the manner of motion),
like English crawl out, float off, jump down, run after. Languages like Japanese,
Tamil, and the many languages in the Romance, Semitic, and Mayan languages fam-
ilies, are verb-framed; Chinese as well as non-Romance Indo-European languages
like English, Swedish, Russian, Hindi, and Farsi are satellite framed (Talmy 1991,
Slobin 1996).

11.1.3 Morphological Typology
Morphologically, languages are often characterized along two dimensions of vari-
ation. The first is the number of morphemes per word, ranging from isolatingisolating

languages like Vietnamese and Cantonese, in which each word generally has one
morpheme, to polysynthetic languages like Siberian Yupik (“Eskimo”), in which apolysynthetic

single word may have very many morphemes, corresponding to a whole sentence in
English. The second dimension is the degree to which morphemes are segmentable,
ranging from agglutinative languages like Turkish, in which morphemes have rel-agglutinative

atively clean boundaries, to fusion languages like Russian, in which a single affixfusion

may conflate multiple morphemes, like -om in the word stolom (table-SG-INSTR-
DECL1), which fuses the distinct morphological categories instrumental, singular,
and first declension.

Translating between languages with rich morphology requires dealing with struc-
ture below the word level, and for this reason modern systems generally use subword
models like the wordpiece or BPE models of Section 11.7.1.

11.1.4 Referential density
Finally, languages vary along a typological dimension related to the things they tend
to omit. Some languages, like English, require that we use an explicit pronoun when
talking about a referent that is given in the discourse. In other languages, however,
we can sometimes omit pronouns altogether, as the following example from Spanish
shows1:

1 Here we use the /0-notation; we’ll introduce this and discuss this issue further in Chapter 22
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(11.6) [El jefe]i dio con un libro. /0i Mostró a un descifrador ambulante.
[The boss] came upon a book. [He] showed it to a wandering decoder.

Languages that can omit pronouns are called pro-drop languages. Even amongpro-drop

the pro-drop languages, there are marked differences in frequencies of omission.
Japanese and Chinese, for example, tend to omit far more than does Spanish. This
dimension of variation across languages is called the dimension of referential den-
sity. We say that languages that tend to use more pronouns are more referentiallyreferential

density
dense than those that use more zeros. Referentially sparse languages, like Chinese or
Japanese, that require the hearer to do more inferential work to recover antecedents
are also called cold languages. Languages that are more explicit and make it easiercold language

for the hearer are called hot languages. The terms hot and cold are borrowed fromhot language

Marshall McLuhan’s (1964) distinction between hot media like movies, which fill in
many details for the viewer, versus cold media like comics, which require the reader
to do more inferential work to fill out the representation (Bickel, 2003).

Translating from languages with extensive pro-drop, like Chinese or Japanese, to
non-pro-drop languages like English can be difficult since the model must somehow
identify each zero and recover who or what is being talked about in order to insert
the proper pronoun.

11.2 The Encoder-Decoder Model

Encoder-decoder networks, or sequence-to-sequence networks, are models ca-encoder-
decoder

pable of generating contextually appropriate, arbitrary length, output sequences.
Encoder-decoder networks have been applied to a very wide range of applications
including machine translation, summarization, question answering, and dialogue.

The key idea underlying these networks is the use of an encoder network that
takes an input sequence and creates a contextualized representation of it, often called
the context. This representation is then passed to a decoder which generates a task-
specific output sequence. Fig. 11.3 illustrates the architecture

…

Encoder

Decoder

Context

…

x1 x2 xn

y1 y2 ym

Figure 11.3 The encoder-decoder architecture. The context is a function of the hidden
representations of the input, and may be used by the decoder in a variety of ways.

Encoder-decoder networks consist of three components:

1. An encoder that accepts an input sequence, xn
1, and generates a corresponding

sequence of contextualized representations, hn
1. LSTMs, GRUs, convolutional

networks, and Transformers can all be employed as encoders.
2. A context vector, c, which is a function of hn

1, and conveys the essence of the
input to the decoder.
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3. A decoder, which accepts c as input and generates an arbitrary length se-
quence of hidden states hm

1 , from which a corresponding sequence of output
states ym

1 , can be obtained. Just as with encoders, decoders can be realized by
any kind of sequence architecture.

11.3 Encoder-Decoder with RNNs

Let’s begin by describing an encoder-decoder network based on a pair of RNNs.2

Recall the conditional RNN language model from Chapter 9 for computing p(y),
the probability of a sequence y. Like any language model, we can break down the
probability as follows:

p(y) = p(y1)p(y2|y1)p(y3|y1,y2)...P(ym|y1, ...,ym−1) (11.7)

At a particular time t, we pass the prefix of t − 1 tokens through the language
model, using forward inference to produce a sequence of hidden states, ending with
the hidden state corresponding to the last word of the prefix. We then use the final
hidden state of the prefix as our starting point to generate the next token.

More formally, if g is an activation function like tanh or ReLU, a function of
the input at time t and the hidden state at time t − 1, and f is a softmax over the
set of possible vocabulary items, then at time t the output yt and hidden state ht are
computed as:

ht = g(ht−1,xt) (11.8)

yt = f (ht) (11.9)

We only have to make one slight change to turn this language model with au-
toregressive generation into a translation model that can translate from a source textsource

in one language to a target text in a second: add an sentence separation marker attarget

the end of the source text, and then simply concatenate the target text. We briefly
introduced this idea of a sentence separator token in Chapter 9 when we considered
using a Transformer language model to do summarization, by training a conditional
language model.

If we call the source text x and the target text y, we are computing the probability
p(y|x) as follows:

p(y|x) = p(y1|x)p(y2|y1,x)p(y3|y1,y2,x)...P(ym|y1, ...,ym−1,x) (11.10)

Fig. 11.4 shows the setup for a simplified version of the encoder-decoder model
(we’ll see the full model, which requires attention, in the next section).

Fig. 11.4 shows an English source text (“the green witch arrived”), a sentence
separator token (<s>, and a Spanish target text (“llegó la bruja verde”). To trans-
late a source text, we run it through the network performing forward inference to
generate hidden states until we get to the end of the source. Then we begin autore-
gressive generation, asking for a word in the context of the hidden layer from the
end of the source input as well as the end-of-sentence marker. Subsequent words
are conditioned on the previous hidden state and the embedding for the last word
generated.

2 Later we’ll see how to use pairs of Transformers as well; it’s even possible to use separate architectures
for the encoder and decoder.
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Source Text

Target Text

hn

embedding
layer

hidden
layer(s)

softmax

the green

llegó

witch arrived <s> llegó

la

la

bruja

bruja

verde

verde

</s>

(output of source is ignored)

Separator

Figure 11.4 Translating a single sentence (inference time) in the basic RNN version of encoder-decoder ap-
proach to machine translation. Source and target sentences are concatenated with a separator token in between,
and the decoder uses context information from the encoder’s last hidden state.

Let’s formalize and generalize this model a bit in Fig. 11.5. (To help keep things
straight, we’ll use the superscripts e and d where needed to distinguish the hidden
states of the encoder and the decoder.) The elements of the network on the left
process the input sequence x and comprise the encoder. While our simplified fig-
ure shows only a single network layer for the encoder, stacked architectures are the
norm, where the output states from the top layer of the stack are taken as the fi-
nal representation. A widely used encoder design makes use of stacked biLSTMs
where the hidden states from top layers from the forward and backward passes are
concatenated as described in Chapter 9 to provide the contextualized representations
for each time step.

Encoder

Decoder

hn hd
1he

3he
2he

1 hd
2 hd

3 hd
4

embedding
layer

hidden
layer(s)

softmax

x1 x2

y1

hd
n

x3 xn <s> y1

y2

y2

y3

y3

y4

yn

</s>

he
n = c = hd

0

(output is ignored during encoding)

Figure 11.5 A more formal version of translating a sentence at inference time in the basic RNN-based
encoder-decoder architecture. The final hidden state of the encoder RNN, he

n, serves as the context for the
decoder in its role as hd

0 in the decoder RNN.

The entire purpose of the encoder is to generate a contextualized representation
of the input. This representation is embodied in the final hidden state of the encoder,
he

n. This representation, also called c for context, is then passed to the decoder.
The decoder network on the right takes this state and uses it to initialize the first
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hidden state of the decoder. That is, the first decoder RNN cell uses c as its prior
hidden state hd

0 . The decoder autoregressively generates a sequence of outputs, an
element at a time, until an end-of-sequence marker is generated. Each hidden state
is conditioned on the previous hidden state and the output generated in the previous
state.

hd
1 hd

2 hd
i

y1 y2 yi

c

… …

…

Figure 11.6 Allowing every hidden state of the decoder (not just the first decoder state) to
be influenced by the context c produced by the encoder.

One weakness of this approach as described so far is that the influence of the
context vector, c, will wane as the output sequence is generated. A solution is to
make the context vector c available at each step in the decoding process by adding
it as a parameter to the computation of the current hidden state, using the following
equation (illustrated in Fig. 11.6):

hd
t = g(ŷt−1,hd

t−1,c) (11.11)

Now we’re ready to see the full equations for this version of the decoder in the basic
encoder-decoder model, with context available at each decoding timestep. Recall
that g is a stand-in for some flavor of RNN and ŷt−1 is the embedding for the output
sampled from the softmax at the previous step:

c = he
n

hd
0 = c

hd
t = g(ŷt−1,hd

t−1,c)

zt = f (hd
t )

yt = softmax(zt) (11.12)

Finally, as shown earlier, the output y at each time step consists of a softmax com-
putation over the set of possible outputs (the vocabulary, in the case of language
modeling or MT). We compute the most likely output at each time step by taking the
argmax over the softmax output:

ŷt = argmaxw∈VP(w|x,y1...yt−1) (11.13)

There are also various ways to make the model a bit more powerful. For example,
we can help the model keep track of what has already been generated and what
hasn’t by conditioning the output layer y not just solely on the hidden state hd

t and
the context c but also on the output yt−1 generated at the previous timestep:

yt = softmax(ŷt−1,zt ,c) (11.14)

11.3.1 Training the Encoder-Decoder Model
Encoder-decoder architectures are trained end-to-end, just as with the RNN language
models of Chapter 9. Each training example is a tuple of paired strings, a source and
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a target. Concatenated with a separator token, these source-target pairs can now
serve as training data.

For MT, the training data typically consists of sets of sentences and their transla-
tions. These can be drawn from standard datasets of aligned sentence pairs, as we’ll
discuss in Section 11.7.2. Once we have a training set, the training itself proceeds
as with any RNN-based language model. The network is given the source text and
then starting with the separator token is trained autoregressively to predict the next
word, as shown in Fig. 11.7.

Encoder

Decoder

embedding
layer

hidden
layer(s)

softmax

the green

llegó

witch arrived <s> llegó

la

la

bruja

bruja

verde

verde

</s> gold
answers

L1 =
-log P(y1)

x1 x2 x3 x4

ŷ
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y1 y2 y3 y4 y5

Total loss is the average 
cross-entropy loss per 

target word:

Figure 11.7 Training the basic RNN encoder-decoder approach to machine translation. Note that in the
decoder we usually don’t propagate the model’s softmax outputs ŷt , but use teacher forcing to force each input
to the correct gold value for training. We compute the softmax output distribution over ŷ in the decoder in order
to compute the loss at each token, which can then be averaged to compute a loss for the sentence.

Note the differences between training (Fig. 11.7) and inference (Fig. 11.4) with
respect to the outputs at each time step. The decoder during inference uses its own
estimated output ŷt as the input for the next time step xt+1. Thus the decoder will
tend to deviate more and more from the gold target sentence as it keeps generating
more tokens. In training, therefore, it is more common to use teacher forcing in theteacher forcing

decoder. Teacher forcing means that we force the system to use the gold target token
from training as the next input xt+1, rather than allowing it to rely on the (possibly
erroneous) decoder output ŷt . This speeds up training.

11.4 Attention

The simplicity of the encoder-decoder model is its clean separation of the encoder
— which builds a representation of the source text — from the decoder, which uses
this context to generate a target text. In the model as we’ve described it so far, this
context vector is hn, the hidden state of the last (nth) time step of the source text.
This final hidden state is thus acting as a bottleneck: it must represent absolutely
everything about the meaning of the source text, since the only thing the decoder
knows about the source text is what’s in this context vector. Information at the
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beginning of the sentence, especially for long sentences, may not be equally well
represented in the context vector.

Encoder Decoderbottleneckbottleneck

Figure 11.8 Requiring the context c to be only the encoder’s final hidden state forces all the
information from the entire source sentence to pass through this representational bottleneck.

The attention mechanism is a solution to the bottleneck problem, a way ofattention
mechanism

allowing the decoder to get information from all the hidden states of the encoder,
not just the last hidden state.

In the attention mechanism, as in the vanilla encoder-decoder model, the context
vector c is a single vector that is a function of the hidden states of the encoder, that is,
c = f (hn

1). Because the number of hidden states varies with the size of the input, we
can’t use the entire tensor of encoder hidden state vectors directly as the context for
the decoder. The idea of attention is instead to create the single fixed-length vector
c by taking a weighted sum of all the encoder hidden states hn

1.
The weights are used to focus on a particular part of the source text that is rel-

evant for the token currently being produced by the decoder. The context vector
produced by the attention mechanism is thus dynamic, different for each token in
decoding.

Attention thus replaces the static context vector with one that is dynamically
derived from the encoder hidden states at each point during decoding. This context
vector, ci, is generated anew with each decoding step i and takes all of the encoder
hidden states into account in its derivation. We then make this context available
during decoding by conditioning the computation of the current decoder hidden state
on it (along with the prior hidden state and the previous output generated by the
decoder): and the equation (and Fig. 11.9):

hd
i = g(ŷi−1,hd

i−1,ci)

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

Figure 11.9 The attention mechanism allows each hidden state of the decoder to see a
different, dynamic, context, which is a function of all the encoder hidden states.

The first step in computing ci is to compute how much to focus on each encoder
state, how relevant each encoder state is to the decoder state captured in hd

i−1. We
capture relevance by computing— at each state i during decoding—a score(hd

i−1,h
e
j)

for each encoder state j.
The simplest such score, called dot-product attention, implements relevance asdot-product

attention
similarity: measuring how similar the decoder hidden state is to an encoder hidden
state, by computing the dot product between them:

score(hd
i−1,h

e
j) = hd

i−1 · he
j (11.15)
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The score that results from this dot product is a scalar that reflects the degree of
similarity between the two vectors. The vector of these scores across all the encoder
hidden states gives us the relevance of each encoder state to the current step of the
decoder.

To make use of these scores, we’ll normalize them with a softmax to create a
vector of weights, αi j, that tells us the proportional relevance of each encoder hidden
state j to the prior hidden decoder state, hd

i−1.

αi j = softmax(score(hd
i−1,h

e
j) ∀ j ∈ e) (11.16)

=
exp(score(hd

i−1,h
e
j)∑

k exp(score(hd
i−1,h

e
k))

(11.17)

Finally, given the distribution in α , we can compute a fixed-length context vector for
the current decoder state by taking a weighted average over all the encoder hidden
states.

ci =
∑

j

αi j he
j (11.18)

With this, we finally have a fixed-length context vector that takes into account
information from the entire encoder state that is dynamically updated to reflect the
needs of the decoder at each step of decoding. Fig. 11.10 illustrates an encoder-
decoder network with attention, focusing on the computation of one context vector
ci.
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Figure 11.10 A sketch of the encoder-decoder network with attention, focusing on the computation of ci. The
context value ci is one of the inputs to the computation of hd

i . It is computed by taking the weighted sum of all
the encoder hidden states, each weighted by their dot product with the prior decoder hidden state hd

i−1.

It’s also possible to create more sophisticated scoring functions for attention
models. Instead of simple dot product attention, we can get a more powerful function
that computes the relevance of each encoder hidden state to the decoder hidden state
by parameterizing the score with its own set of weights, Ws.

score(hd
i−1,h

e
j) = hd

t−1Wshe
j
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The weights Ws, which are then trained during normal end-to-end training, give the
network the ability to learn which aspects of similarity between the decoder and
encoder states are important to the current application. This bilinear model also
allows the encoder and decoder to use different dimensional vectors, whereas the
simple dot-product attention requires the encoder and decoder hidden states have
the same dimensionality.

11.5 Beam Search

The decoding algorithm we gave above for generating translations has a problem (as
does the autoregressive generation we introduced in Chapter 9 for generating from a
conditional language model). Recall that algorithm: at each time step in decoding,
the output yt is chosen by computing a softmax over the set of possible outputs (the
vocabulary, in the case of language modeling or MT), and then choosing the highest
probability token (the argmax):

ŷt = argmaxw∈VP(w|x,y1...yt−1) (11.19)

Choosing the single most probable token to generate at each step is called greedygreedy

decoding; a greedy algorithm is one that make a choice that is locally optimal,
whether or not it will turn out to have been the best choice with hindsight.

Indeed, greedy search is not optimal, and may not find the highest probability
translation. The problem is that the token that looks good to the decoder now might
turn out later to have been the wrong choice!

Let’s see this by looking at the search tree, a graphical representation of thesearch tree

choices the decoder makes in searching for the best translation, in which we view
the decoding problem as a heuristic state-space search and systematically explore
the space of possible outputs. In such a search tree, the branches are the actions, in
this case the action of generating a token, and the nodes are the states, in this case
the state of having generated a particular prefix. We are searching for the best action
sequence, i.e. the target string with the highest probability. Fig. 11.11 demonstrates
the problem, using a made-up example. Notice that the most probable sequence is
ok ok ¡/s¿ (with a probability of .4*.7*1.0), but a greedy search algorithm will fail
to find it, because it incorrectly chooses yes as the first word since it has the highest
local probability.

Recall from Chapter 8 that for part-of-speech tagging we used dynamic pro-
gramming search (the Viterbi algorithm) to address this problem. Unfortunately,
dynamic programming is not applicable to generation problems with long-distance
dependencies between the output decisions. The only method guaranteed to find the
best solution is exhaustive search: computing the probability of every one of the V T

possible sentences (for some length value T ) which is obviously too slow.
Instead, decoding in MT and other sequence generation problems generally uses

a method called beam search. In beam search, instead of choosing the best tokenbeam search

to generate at each timestep, we keep k possible tokens at each step. This fixed-size
memory footprint k is called the beam width, on the metaphor of a flashlight beambeam width

that can be parameterized to be wider or narrower.
Thus at the first step of decoding, we compute a softmax over the entire vocab-

ulary, assigning a probability to each word. We then select the k-best options from
this softmax output. These initial k outputs are the search frontier and these k initial
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Figure 11.11 A search tree for generating the target string T = t1, t2, ... from the vocabulary
V = {yes,ok,<s>}, given the source string, showing the probability of generating each token
from that state. Greedy search would choose yes at the first time step followed by yes, instead
of the globally most probable sequence ok ok.

words are called hypotheses. A hypothesis is an output sequence, a translation-so-
far, together with its probability.

At subsequent steps, each of the k best hypotheses is extended incrementally
by being passed to distinct decoders, which each generate a softmax over the entire
vocabulary to extend the hypothesis to every possible next token. Each of these k∗V
hypotheses is scored by P(yi|x,y<i): the product of the probability of current word
choice multiplied by the probability of the path that led to it. We then prune the k∗V
hypotheses down to the k best hypotheses, so there are never more than k hypotheses
at the frontier of the search, and never more than k decoders.

Fig. 11.12 illustrates this process with a beam width of 2.
This process continues until a </s> is generated indicating that a complete can-

didate output has been found. At this point, the completed hypothesis is removed
from the frontier and the size of the beam is reduced by one. The search continues
until the beam has been reduced to 0. The result will be k hypotheses.

Let’s see how the scoring works in detail, scoring each node by its log proba-
bility. Recall from Eq. 11.10 that we can use the chain rule of probability to break
down p(y|x) into the product of the probability of each word given its prior context,
which we can turn into a sum of logs (for an output string of length t):

score(y) = logP(y|x)
= log(P(y1|x)P(y2|y1,x)P(y3|y1,y2,x)...P(yt |y1, ...,yt−1,x))

=

t∑

i=1

logP(yi|y1, ...,yi−1,x) (11.20)

Thus at each step, to compute the probability of a partial translation, we simply add
the log probability of the prefix translation so far to the log probability of generating
the next token. Fig. 11.13 shows the scoring for the example sentence shown in
Fig. 11.12, using some simple made-up probabilities. Log probabilities are negative
or 0, and the max of two log probabilities is the one that is greater (closer to 0).

Fig. 11.14 gives the algorithm.
One problem arises from the fact that the completed hypotheses may have differ-

ent lengths. Because models generally assign lower probabilities to longer strings,
a naive algorithm would also choose shorter strings for y. This was not an issue
during the earlier steps of decoding; due to the breadth-first nature of beam search
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Figure 11.12 Beam search decoding with a beam width of k = 2. At each time step, we choose the k best
hypotheses, compute the V possible extensions of each hypothesis, score the resulting k∗V possible hypotheses
and choose the best k to continue. At time 1, the frontier is filled with the best 2 options from the initial state
of the decoder: arrived and the. We then extend each of those, compute the probability of all the hypotheses so
far (arrived the, arrived aardvark, the green, the witch) and compute the best 2 (in this case the green and the
witch) to be the search frontier to extend on the next step. On the arcs we show the decoders that we run to score
the extension words (although for simplicity we haven’t shown the context value ci that is input at each step).

all the hypotheses being compared had the same length. The usual solution to this is
to apply some form of length normalization to each of the hypotheses, for example
simply dividing the negative log probability by the number of words:

score(y) =− logP(y|x) =
1
T

t∑

i=1

− logP(yi|y1, ...,yi−1,x) (11.21)

Beam search is common in large production MT systems, generally with beam
widths k between 5 and 10. What do we do with the resulting k hypotheses? In some
cases, all we need from our MT algorithm is the single best hypothesis, so we can
return that. In other cases our downstream application might want to look at all k
hypotheses, so we can pass them all (or a subset) to the downstream application with
their respective scores.

11.6 Encoder-Decoder with Transformers

TBD
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Figure 11.13 Scoring for beam search decoding with a beam width of k = 2. We maintain the log probability
of each hypothesis in the beam by incrementally adding the logprob of generating each next token. Only the top
k paths are extended to the next step.

11.7 Some practical details on building MT systems

11.7.1 Tokenization
Machine translation systems generally use a fixed vocabulary, A common way to
generate this vocabulary is with the BPE or wordpiece algorithms sketched in Chap-wordpiece

ter 2. Generally a shared vocabulary is used for the source and target languages,
which makes it easy to copy tokens (like names) from source to target, so we build
the wordpiece/BPE lexicon on a corpus that contains both source and target lan-
guage data. Wordpieces use a special symbol at the beginning of each token; here’s
a resulting tokenization from the Google MT system (Wu et al., 2016):

words: Jet makers feud over seat width with big orders at stake
wordpieces: J et makers fe ud over seat width with big orders at stake

We gave the BPE algorithm in detail in Chapter 2; here’s more details on the
wordpiece algorithm, which is given a training corpus and a desired vocabulary size
V, and proceeds as follows:

1. Initialize the wordpiece lexicon with characters (for example a subset of Uni-
code characters, collapsing all the remaining characters to a special unknown
character token).

2. Repeat until there are V wordpieces:
(a) Train an n-gram language model on the training corpus, using the current

set of wordpieces.
(b) Consider the set of possible new wordpieces made by concatenating two

wordpieces from the current lexicon. Choose the one new wordpiece that
most increases the language model probability of the training corpus.

A vocabulary of 8K to 32K word pieces is commonly used.
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function BEAMDECODE(c, beam width) returns best paths

y0, h0←0
path← ()
complete paths← ()
state← (c, y0, h0, path) ;initial state
frontier←〈state〉 ;initial frontier

while frontier contains incomplete paths and beamwidth > 0
extended frontier←〈〉
for each state ∈ frontier do

y←DECODE(state)
for each word i ∈ Vocabulary do

successor←NEWSTATE(state, i, yi)
new agenda←ADDTOBEAM(successor, extended frontier, beam width)

for each state in extended frontier do
if state is complete do

complete paths←APPEND(complete paths, state)
extended frontier←REMOVE(extended frontier, state)
beam width←beam width - 1

frontier←extended frontier

return completed paths

function NEWSTATE(state, word, word prob) returns new state

function ADDTOBEAM(state, frontier, width) returns updated frontier

if LENGTH(frontier) < width then
frontier← INSERT(state, frontier)

else if SCORE(state) > SCORE(WORSTOF(frontier))
frontier←REMOVE(WORSTOF(frontier))
frontier← INSERT(state, frontier)

return frontier

Figure 11.14 Beam search decoding.

11.7.2 MT corpora

Machine translation models are trained on a parallel corpus, sometimes called aparallel corpus

bitext, a text that appears in two (or more) languages. Large numbers of paral-
lel corpora are available. Some are governmental; the Europarl corpus (Koehn,Europarl

2005), extracted from the proceedings of the European Parliament, contains between
400,000 and 2 million sentences each from 21 European languages. The United Na-
tions Parallel Corpus contains on the order of 10 million sentences in the six official
languages of the United Nations (Arabic, Chinese, English, French, Russian, Span-
ish) Ziemski et al. (2016). Other parallel corpora have been made from movie and
TV subtitles, like the OpenSubtitles corpus (Lison and Tiedemann, 2016), or from
general web text, like the ParaCrawl corpus of with 223 million sentence pairs be-
tween 23 EU languages and English extracted from the CommonCrawl Bañón et al.
(2020).
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Sentence alignment

Standard training corpora for MT come as aligned pairs of sentences. When creating
new corpora, for example for underresourced languages or new domains, these sen-
tence alignments must be created. Fig. 11.15 gives a sample hypothetical sentence
alignment.

F1: -Bonjour, dit le petit prince.

F2: -Bonjour, dit le marchand de pilules perfectionnées qui 
apaisent la soif.
F3: On en avale une par semaine et l'on n'éprouve plus le 
besoin de boire.
F4: -C’est une grosse économie de temps, dit le marchand.

F5: Les experts ont fait des calculs.

F6: On épargne cinquante-trois minutes par semaine.

F7: “Moi, se dit le petit prince, si j'avais cinquante-trois minutes 
à dépenser, je marcherais tout doucement vers une fontaine..."

E1: “Good morning," said the little prince.

E2: “Good morning," said the merchant.

E3: This was a merchant who sold pills that had 
been perfected to quench thirst.

E4: You just swallow one pill a week and you 
won’t feel the need for anything to drink.

E5: “They save a huge amount of time," said the merchant.

E6: “Fifty−three minutes a week."

E7: “If I had  fifty−three minutes to spend?" said the 
little prince to himself. 

E8: “I would take a stroll to a spring of fresh water”

Figure 11.15 A sample alignment between sentences in English and French, with sentences extracted from
Antoine de Saint-Exupery’s Le Petit Prince and a hypothetical translation. Sentence alignment takes sentences
e1, ...,en, and f1, ..., fn and finds minimal sets of sentences that are translations of each other, including single
sentence mappings like (e1,f1), (e4-f3), (e5-f4), (e6-f6) as well as 2-1 alignments (e2/e3,f2), (e7/e8-f7), and null
alignments (f5).

Given two documents that are translations of each other, we generally need two
steps to produce sentence alignments:

• a cost function that takes a span of source sentences and a span of target sen-
tences and returns a score measuring how likely these spans are to be transla-
tions.

• an alignment algorithm that takes these scores to find a good alignment be-
tween the documents.

Since it is possible to induce multilingual sentence embeddings (Artetxe and
Schwenk, 2019), cosine similarity of such embeddings provides a natural scoring
function (Schwenk, 2018). Thompson and Koehn (2019) give the following cost
function between two sentences or spans x,y from the source and target documents
respectively:

c(x,y) =
1− cos(x,y))nSents(x) nSents(y)

∑S
s=1 1− cos(x,ys)+

∑S
s=1 1− cos(xs,y)

(11.22)

where nSents() gives the number of sentences (this biases the metric toward many
alignments of single sentences instead of aligning very large spans). The denom-
inator helps to normalize the similarities, and so x1, ...,xS,y1, ...,yS, are randomly
selected sentences sampled from the respective documents.

Usually dynamic programming is used as the alignment algorithm (Gale and
Church, 1993), in a simple extension of the the minimum edit distance algorithm we
introduced in Chapter 2.

Finally, it’s helpful to do some corpus cleanup by removing noisy sentence pairs.
This can involve handwritten rules to remove low-precision pairs (for example re-
moving sentences that are too long, too short, have different URLs, or even pairs
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that are too similar, suggesting that they were copies rather than translations). Or
pairs can be ranked by their multilingual embedding cosine score and low-scoring
pairs discarded.

11.7.3 Backtranslation
We’re often short of data for training MT models, since parallel corpora may be
limited for particular languages or domains. However, often we can find a large
monolingual corpus, to add to the smaller parallel corpora that are available.

Backtranslation is a way of making use of monolingual corpora in the targetbacktranslation

language by creating synthetic bitexts. In backtranslation, we train an intermediate
target-to-source MT system on the small bitext to translate the monolingual target
data to the source language. Now we can add this synthetic bitext (natural target
sentences, aligned with MT-produced source sentences) to our training data, and
retrain our source-to-target MT model. For example suppose we want to translate
from Navajo to English but only have a small Navajo-English bitext, although of
course we can find lots of monolingual English data. We use the small bitext to build
an MT engine going the other way (from English to Navajo). Once we translate the
monolingual English text to Navajo, we can add this synthetic Navajo/English bitext
to our training data.

Backtranslation has various parameters. One is how we generate the backtrans-
lated data; we can run the decoder in greedy inference, or use beam search. Or
we can do sampling, or Monte Carlo search. In Monte Carlo decoding, at eachMonte Carlo

search
timestep, instead of always generating the word with the highest softmax proba-
bility, we roll a weighted die, and use it to choose the next word according to its
softmax probability. This works just like the sampling algorithm we saw in Chap-
ter 3 for generating random sentences from n-gram language models. Imagine there
are only 4 words and the softmax probability distribution at time t is (the: 0.6, green:
0.2, a: 0.1, witch: 0.1). We roll a weighted die, with the 4 sides weighted 0.6, 0.2,
0.1, and 0.1, and chose the word based on which side comes up. Another parameter
is the ratio of backtranslated data to natural bitext data; we can choose to upsample
the bitext data (include multiple copies of each sentence).

In general backtranslation works surprisingly well; one estimate suggests that a
system trained on backtranslated text gets about 2/3 of the gain as would training on
the same amount of natural bitext (Edunov et al., 2018).

11.8 MT Evaluation

Translations can be evaluated along two dimensions, adequacy and fluency.
adequacy: how well the translation captures the exact meaning of the source sen-adequacy

tence. Sometimes called faithfulness or fidelity.
fluency: how fluent the translation is in the target language (is it grammatical, clear,fluency

readable, natural).
Both human and automatic evaluation metrics are used.

11.8.1 Using Human Raters to Evaluate MT
The most accurate evaluations use human raters to evaluate each translation along
the two dimensions (often these raters are online crowdworkers hired specifically to
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evaluate).
For example, along the dimension of fluency, we can ask how intelligible, how

clear, how readable, or how natural the MT output (the target text) is. We can give
the raters a scale, for example, from 1 (totally unintelligible) to 5 (totally intelligible,
or 1 to 100, and ask them to rate each sentence or paragraph of the MT output.

We can do the same thing to judge the second dimension, adequacy, using raters
to assign scores on a scale. If we have bilingual raters, we can give them the source
sentence and a proposed target sentence, and rate, on a 5-point or 100-point scale,
how much of the information in the source was preserved in the target. If we only
have monolingual raters but we have a good human translation of the source text,
we can give the monolingual raters the human reference translation and a target
machine translation and again rate how much information is preserved. If we use
a fine-grained enough scale, we can normalize raters by subtracting the mean from
their scores and dividing by the variance.

An alternative is to do ranking: give the raters a pair of candidate translations,ranking

and ask them which one they prefer.
While humans produce the best evaluations of machine translation output, run-

ning a human evaluation can be time consuming and expensive. In the next section
we introduce an automatic metric that, while less accurate than human evaluation, is
widely used because it can quickly evaluate potential system improvements, or even
be used as an automatic loss function for training.

11.8.2 Automatic Evaluation: BLEU
The most popular automatic metric for machine translation is called BLEU (for
BiLingual Evaluation Understudy). BLEU (along with the many alternative metrics
(e.g., NIST, TER, Precision and Recall, and METEOR) is based on a simple
intuition derived from the pioneering work of Miller and Beebe-Center (1958): a
good machine translation will tend to contain words and phrases that occur in a
human translation of the same sentence.

Consider a test set from a parallel corpus, in which each source sentence has both
a gold human target translation and a candidate MT translation we’d like to evaluate.
The BLEU metric ranks each MT target sentence by function of the number of n-
gram overlaps with the human translation.

Figure 11.16 shows an intuition from two candidate translations of a Spanish
source sentence, shown with a human reference translation. Note that Candidate
1 shares many more n-grams (in boxes) and especially longer n-grams (in darker
boxes) with the reference translations than does Candidate 2.

The intuition in Fig. 11.16 shows a single sentence, but BLEU is actually not a
score for a single sentence; it’s a score for an entire corpus of candidate translation
sentences. More formally, the BLEU score for a corpus of candidate translation
sentences is a function of the n-gram precision over all the sentences combined
with a brevity penalty computed over the corpus as a whole.

What do we mean by n-gram precision? Consider a corpus composed of a single
sentence. The unigram precision for this corpus is the percentage of unigram tokens
in the candidate translation that also occur in the reference translation, and ditto for
bigrams and so on, up to 4-grams. Candidate 1 in Fig. 11.16 has 19 unique unigrams,
some of which occur multiple times, for a total of 26 tokens. Of these, 16 unique
unigrams, totaling 23 tokens, also occur in the reference translation (3 don’t: voice,
deposit, and actions). Thus the unigram precision for the Candidate 1 corpus is
23/26 = .88.
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la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, 
testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

truth, whose mother is history, rival of time, storehouse of deeds, 
witness for the past, example and counsel for the present, and warning for the future.

the truth, which mother is the history, émula of the time, deposition of the shares, 
witness of the past, example and notice of the present, warning of it for coming

truth, whose mother is history, voice of time, deposit of actions, 
witness for the past, example and warning for the present, and warning for the future

Source

Reference

Candidate 1

Candidate 2

Figure 11.16 Intuition for BLEU: One of two candidate translations of a Spanish sentence
shares more n-grams, and especially longer n-grams, with the reference human translation.

We extend this unigram metric to a whole corpus of many sentences as follows.
For the numerator, we sum for each sentence the counts of all the unigram types that
also occur in the reference translation, and then sum those counts over all sentences.
The denominator is the total of the counts of all unigrams in all candidate sentences.
We compute this n-gram precision for unigrams, bigrams, trigrams, and 4-grams.
The n-gram precisions precn of a whole corpus of candidate sentences are thus:

precn =

∑

C∈{Candidates}

∑

n-gram∈C

Countmatch(n-gram)

∑

C′∈{Candidates}

∑

n-gram′∈C′
Count(n-gram′)

(11.23)

BLEU combines these four n-gram precisions by taking their geometric mean.
In addition, BLEU penalizes candidate translations that are too short. Imagine

our machine translation engine returned the following terrible candidate translation
3 for the example in Fig. 11.16:

(11.24) for the

Because the words for and the and the bigram for the all appear in the human ref-
erence, n-gram precision alone will assign candidate 3 a great score, since it has
perfect unigram and bigram precisions of 1.0!

One option for dealing with this problem is to combine recall with precision,
but BLEU chooses another option: adding a brevity penalty over the whole corpus,
penalizing a system that produces translations that are on average shorter than the
reference translations. Let sys len be the sum of the length of all the candidate trans-
lation sentences, and ref len be the sum of the length of all the reference translation
sentences. If the candidate translations are shorter than the reference, we assign a
brevity penalty BP that is a function of their ratio:

BP = min
(

1, exp
(

1− ref len
sys len

))

BLEU = BP×
(

4∏

n=1

precn

) 1
4

(11.25)
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Advanced details of BLEU

The above description was simplified in a number of ways. BLEU actually uses a
slightly different version of n-gram precision than the one in Eq. 11.23. Eq. 11.23
has a flaw that rewards candidates that have extra repeated words. Figure 11.17
shows an example of a pathological candidate sentence composed of 7 instances of
the single word the, leading to a unigram precision of 7/7!

Candidate:

Reference 1:

Reference 2:

the the the the the

there

cat is on mat

is cat on the mata

the the

the the

Figure 11.17 A pathological example showing why BLEU uses a modified precision met-
ric. Unigram precision would be unreasonably high (7/7). Modified unigram precision is
appropriately low (2/7).

To avoid this problem, BLEU uses a modified n-gram precision metric. We
modified

n-gram
precision

first count the maximum number of times a word is used in any single reference
translation. The count of each candidate word is then clipped by this maximum
reference count. Thus, the modified unigram precision in the example in Fig. 11.17
would be 2/7, since Reference 1 has a maximum of 2 thes.

To compute a score over the whole test set, BLEU first computes the N-gram
matches for each sentence and sums the clipped counts over all the candidate sen-
tences, then divides by the total number of candidate N-grams in the test set. If we
define the function Countmatch clipped to mean “the clipped count of all n-grams
that match the reference,” the real precn of a whole corpus of candidate sentences
that BLEU uses are:

precn =

∑

C∈{Candidates}

∑

n-gram∈C

Countmatch clipped(n-gram)

∑

C′∈{Candidates}

∑

n-gram′∈C′
Count(n-gram′)

(11.26)

BLEU also work fine if we have multiple human reference translations for a
source sentence. In fact BLEU works better in this situation, since a source sentence
can be legitimately translated in many ways and n-gram precision will hence be
more robust. We just match an n-gram if it occurs in any of the references. And for
the brevity penalty, we choose for each candidate sentence the reference sentence
that is the closest in length to compute the ref len. But in practice most translation
corpora only have a single human translation to compare against.

Finally, implementing BLEU requires standardizing on many details of smooth-
ing and tokenization; for this reason it is recommended to use standard implemen-
tations like SACREBLEU (Post, 2018) rather than trying to implement BLEU from
scratch.

Statistical Significance Testing for BLEU

BLEU scores are mainly used to compare two systems, with the goal of answering
questions like: did the special new algorithm we invented improve our MT system?
To know if the difference between the BLEU scores of two MT systems is a sig-
nificant difference, we use the paired bootstrap test, or the similar randomization
test.
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To get a confidence interval on a single BLEU score using the bootstrap test,
recall from Section 4.9 that we take our test set (or devset) and create thousands of
pseudo-testsets by repeatedly sampling with replacement from the original test set.
We now compute the BLEU score of each of the pseudo-testsets. If we drop the
top 2.5% and bottom 2.5% of the scores, the remaining scores will give us the 95%
confidence interval for the BLEU score of our system.

To compare two MT systems A and B, we draw the same set of pseudo-testsets,
and compute the BLEU scores for each of them. We then compute the percentage
of pseudo-test-sets in which A has a higher BLEU score than B.

BLEU: Limitations

While automatic metrics like BLEU are useful, they have important limitations.
BLEU is very local: a large phrase that is moved around might not change the
BLEU score at all, and BLEU can’t evaluate cross-sentence properties of a docu-
ment like its discourse coherence (Chapter 22). BLEU and similar automatic met-
rics also do poorly at comparing very different kinds of systems, such as comparing
human-aided translation against machine translation, or different machine transla-
tion architectures against each other (Callison-Burch et al., 2006). Such automatic
metrics are probably most appropriate when evaluating changes to a single system.

11.8.3 Automatic Evaluation: Embedding-Based Methods
The BLEU metric is based on measuring the exact word or n-grams a human ref-
erence and candidate machine translation have in common. However, this criterion
is overly strict, since a good translation may use alternate words or paraphrases. A
solution pioneered in early metrics like METEOR (Banerjee and Lavie, 2005) was
to allow synonyms to match between the reference x and candidate x̃. More recent
metrics use BERT or other embeddings to implement this intuition.

For example, in some situations we might have datasets that have human as-
sessments of translation quality. Such datasets consists of tuples (x, x̃,r), where
x = (x1, . . . ,xn) is a reference translation, x̃ = (x̃1, . . . , x̃m) is a candidate machine
translation, and r ∈ R is a human rating that expresses the quality of x̃ with respect
to x. Given such data, algorithms like BLEURT (Sellam et al., 2020) train a pre-
dictor on the human-labeled datasets, by passing x and x̃ through a version of BERT
(trained with extra pretraining, and then fine-tuned on the human-labeled sentences),
followed by a linear layer that is trained to predict r. The output of such models cor-
relates highly with human labels.

In other cases, however, we don’t have such human-labeled datasets. In that
case we can measure the similarity of x and x̃ by the similarity of their embeddings.
The BERTSCORE algorithm (Zhang et al., 2020) shown in Fig. 11.18, for example,
passes the reference x and the candidate x̃ through BERT, computing a BERT em-
bedding for each token xi and x̃ j. Each pair of tokens (xi, x̃ j) is scored by its cosine

xi·x̃ j
|xi||x̃ j | . Each token in x is matched to a token in x̃ to compute recall, and each token in
x̃ is matched to a token in x to compute precision (with each token greedily matched
to the most similar token in the corresponding sentence). BERTSCORE provides
precision and recall (and hence F1):

RBERT =
1
|x|
∑

xi∈x

max
x̃ j∈x̃

xi · x̃ j PBERT =
1
|x̃|
∑

x̃ j∈x̃

max
xi∈x

xi · x̃ j (11.27)



226 CHAPTER 11 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

Published as a conference paper at ICLR 2020

Reference
the weather is 
cold today

Candidate
it is freezing today

Candidate

Contextual
Embedding

Pairwise Cosine
Similarity

RBERT = (0.713�1.27)+(0.515�7.94)+...
1.27+7.94+1.82+7.90+8.88

<latexit sha1_base64="OJyoKlmBAgUA0KDtUcsH/di5BlI="></latexit><latexit sha1_base64="RInTcZkWiVBnf/ncBstCvatCtG4="></latexit><latexit sha1_base64="RInTcZkWiVBnf/ncBstCvatCtG4="></latexit><latexit sha1_base64="fGWl4NCvlvtMu17rjLtk25oWpdc="></latexit>

1.27

7.94

1.82

7.90

8.88

idf

weights

Importance Weighting
(Optional)

Maximum Similarity

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

x̂
<latexit sha1_base64="5QTnVRVSrnyzznVU7d5bF5u03Iw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp0x9TzJ5mg2rNrbtzkFXiFaQGBZqD6ld/GLM04gqZpMb0PDdBP6MaBZN8VumnhieUTeiI9yxVNOLGz+bnzsiZVYYkjLUthWSu/p7IaGTMNApsZ0RxbJa9XPzP66UYXvuZUEmKXLHFojCVBGOS/06GQnOGcmoJZVrYWwkbU00Z2oQqNgRv+eVV0r6oe27du7+sNW6KOMpwAqdwDh5cQQPuoAktYDCBZ3iFNydxXpx352PRWnKKmWP4A+fzB7A8j8k=</latexit><latexit sha1_base64="5QTnVRVSrnyzznVU7d5bF5u03Iw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp0x9TzJ5mg2rNrbtzkFXiFaQGBZqD6ld/GLM04gqZpMb0PDdBP6MaBZN8VumnhieUTeiI9yxVNOLGz+bnzsiZVYYkjLUthWSu/p7IaGTMNApsZ0RxbJa9XPzP66UYXvuZUEmKXLHFojCVBGOS/06GQnOGcmoJZVrYWwkbU00Z2oQqNgRv+eVV0r6oe27du7+sNW6KOMpwAqdwDh5cQQPuoAktYDCBZ3iFNydxXpx352PRWnKKmWP4A+fzB7A8j8k=</latexit><latexit sha1_base64="5QTnVRVSrnyzznVU7d5bF5u03Iw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp0x9TzJ5mg2rNrbtzkFXiFaQGBZqD6ld/GLM04gqZpMb0PDdBP6MaBZN8VumnhieUTeiI9yxVNOLGz+bnzsiZVYYkjLUthWSu/p7IaGTMNApsZ0RxbJa9XPzP66UYXvuZUEmKXLHFojCVBGOS/06GQnOGcmoJZVrYWwkbU00Z2oQqNgRv+eVV0r6oe27du7+sNW6KOMpwAqdwDh5cQQPuoAktYDCBZ3iFNydxXpx352PRWnKKmWP4A+fzB7A8j8k=</latexit><latexit sha1_base64="5QTnVRVSrnyzznVU7d5bF5u03Iw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp0x9TzJ5mg2rNrbtzkFXiFaQGBZqD6ld/GLM04gqZpMb0PDdBP6MaBZN8VumnhieUTeiI9yxVNOLGz+bnzsiZVYYkjLUthWSu/p7IaGTMNApsZ0RxbJa9XPzP66UYXvuZUEmKXLHFojCVBGOS/06GQnOGcmoJZVrYWwkbU00Z2oQqNgRv+eVV0r6oe27du7+sNW6KOMpwAqdwDh5cQQPuoAktYDCBZ3iFNydxXpx352PRWnKKmWP4A+fzB7A8j8k=</latexit>

R
ef

er
en

ce

Figure 1: Illustration of the computation of the recall metric RBERT. Given the reference x and
candidate x̂, we compute BERT embeddings and pairwise cosine similarity. We highlight the greedy
matching in red, and include the optional idf importance weighting.

We experiment with different models (Section 4), using the tokenizer provided with each model.
Given a tokenized reference sentence x = hx1, . . . , xki, the embedding model generates a se-
quence of vectors hx1, . . . ,xki. Similarly, the tokenized candidate x̂ = hx̂1, . . . , x̂mi is mapped
to hx̂1, . . . , x̂li. The main model we use is BERT, which tokenizes the input text into a sequence
of word pieces (Wu et al., 2016), where unknown words are split into several commonly observed
sequences of characters. The representation for each word piece is computed with a Transformer
encoder (Vaswani et al., 2017) by repeatedly applying self-attention and nonlinear transformations
in an alternating fashion. BERT embeddings have been shown to benefit various NLP tasks (Devlin
et al., 2019; Liu, 2019; Huang et al., 2019; Yang et al., 2019a).

Similarity Measure The vector representation allows for a soft measure of similarity instead of
exact-string (Papineni et al., 2002) or heuristic (Banerjee & Lavie, 2005) matching. The cosine
similarity of a reference token xi and a candidate token x̂j is x>

i x̂j

kxikkx̂jk . We use pre-normalized
vectors, which reduces this calculation to the inner product x>

i x̂j . While this measure considers
tokens in isolation, the contextual embeddings contain information from the rest of the sentence.

BERTSCORE The complete score matches each token in x to a token in x̂ to compute recall,
and each token in x̂ to a token in x to compute precision. We use greedy matching to maximize
the matching similarity score,2 where each token is matched to the most similar token in the other
sentence. We combine precision and recall to compute an F1 measure. For a reference x and
candidate x̂, the recall, precision, and F1 scores are:

RBERT =
1

|x|
X

xi2x

max
x̂j2x̂

x>
i x̂j , PBERT =

1

|x̂|
X

x̂j2x̂

max
xi2x

x>
i x̂j , FBERT = 2

PBERT · RBERT

PBERT + RBERT
.

Importance Weighting Previous work on similarity measures demonstrated that rare words can
be more indicative for sentence similarity than common words (Banerjee & Lavie, 2005; Vedantam
et al., 2015). BERTSCORE enables us to easily incorporate importance weighting. We experiment
with inverse document frequency (idf) scores computed from the test corpus. Given M reference
sentences {x(i)}M

i=1, the idf score of a word-piece token w is

idf(w) = � log
1

M

MX

i=1

I[w 2 x(i)] ,

where I[·] is an indicator function. We do not use the full tf-idf measure because we process single
sentences, where the term frequency (tf) is likely 1. For example, recall with idf weighting is

RBERT =

P
xi2x idf(xi) maxx̂j2x̂ x>

i x̂jP
xi2x idf(xi)

.

Because we use reference sentences to compute idf , the idf scores remain the same for all systems
evaluated on a specific test set. We apply plus-one smoothing to handle unknown word pieces.

2We compare greedy matching with optimal assignment in Appendix C.

4

Figure 11.18 The computation of BERTSCORE recall from reference x and candidate x̂,
from Figure 1 in Zhang et al. (2020). This version shows an extended version of the metric in
which tokens are also weighted by their idf values.

11.9 Bias and Ethical Issues

Machine translation raises many of the same ethical issues that we’ve discussed in
earlier chapters. For example, consider MT systems translating from Hungarian
(which has the gender neutral pronoun ő) or Spanish (which often drops pronouns)
into English (in which pronouns are obligatory, and they have grammatical gender).
When translating a reference to a person described without specified gender, MT
systems often default to male gender (Schiebinger 2014, Prates et al. 2019). And
MT systems often assign gender according to culture stereotypes of the sort we saw
in Section 6.11. Fig. 11.19 shows examples from (Prates et al., 2019), in which
Hungarian gender-neutral ő is a nurse is translated with she, but gender-neutral ő
is a CEO is translated with he. Prates et al. (2019) find that these stereotypes can’t
completely be accounted for by gender bias in US labor statistics, because the bi-
ases are amplified by MT systems, with pronouns being mapped to male or female
gender with a probability higher than if the mapping was based on actual labor em-
ployment statistics.

Hungarian (gender neutral) source English MT output
ő egy ápoló she is a nurse
ő egy tudós he is a scientist
ő egy mérnök he is an engineer
ő egy pék he is a baker
ő egy tanár she is a teacher
ő egy vesküvőszervező she is a wedding organizer
ő egy vezérigazgató he is a CEO

Figure 11.19 When translating from gender-neutral languages like Hungarian into English,
current MT systems interpret people from traditionally male-dominated occupations as male,
and traditionally female-dominated occupations as female (Prates et al., 2019).

Similarly, a recent challenge set, the WinoMT dataset (Stanovsky et al., 2019)
shows that MT systems perform worse when they are asked to translate sentences
that describe people with non-stereotypical gender roles, like “The doctor asked the
nurse to help her in the operation”.

Many open ethical issues in MT require further research. One is the need for bet-
ter metrics for knowing what our systems don’t know. MT systems can be used in
urgent situations where human translators may be unavailable or delayed: in medical
domains, to help translate when patients and doctors don’t speak the same language,
or in legal domains, to help judges or lawyers communicate with witnesses or de-
fendants. In order to ‘do no harm’, systems need ways to assign confidence valuesconfidence
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to candidate translations, so they can abstain from giving incorrect translations that
may cause harm.

Another is the need for low-resource algorithms that can do translation to and
from the vast majority of the world’s languages, which do not have large parallel
texts available for training. This problem is exacerbated by the fact that cross-lingual
transfer and multilingual approaches to MT tend to focus on the case where one
of the languages is English (Anastasopoulos and Neubig, 2020). ∀ et al. (2020)
propose a participatory design process to encourage content creators, curators, and
language technologists who speak these low-resourced languages to participate inlow-resourced

languages
development of MT algorithms. Their method uses online groups, mentoring, and
online infrastructure, and they report on a case study on developing MT algorithms
for low-resource African languages.

11.10 Summary

Machine translation is one of the most widely used applications of NLP, and the
encoder-decoder model, first developed for MT is a key tool that has applications
throughout NLP.

• Languages have divergences, both structural and lexical, that make translation
difficult.

• The linguistic field of typology investigates some of these differences; lan-
guages can be classified by their position along typological dimensions like
whether verbs precede their objects.

• Encoder-decoder networks are composed of an encoder network that takes
an input sequence and creates a contextualized representation of it, the con-
text. This context representation is then passed to a decoder which generates
a task-specific output sequence.

• The attention mechanism enriches the context vector to allowing the decoder
to view information from all the hidden states of the encoder, not just the last
hidden state.

• The encoder-decoder architecture can be implemented by RNNs or by Trans-
formers.

• For the decoder, choosing the single most probable token to generate at each
step is called greedy decoding.

• In beam search, instead of choosing the best token to generate at each timestep,
we keep k possible tokens at each step. This fixed-size memory footprint k is
called the beam width.

• Machine translation models are trained on a parallel corpus, sometimes called
a bitext, a text that appears in two (or more) languages.

• Backtranslation is a way of making use of monolingual corpora in the target
language by running a pilot MT engine backwards to create synthetic bitexts.

• MT is evaluated by measuring a translation’s adequacy (how well it captures
the meaning of the source sentence) and fluency (how fluent or natural it is
in the target language). Human evaluation is the gold standard, but automatic
evaluation metrics like BLEU, which measure word or n-gram overlap with
human translations, or more recent metrics based on embedding similarity, are
also commonly used.
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Bibliographical and Historical Notes
MT was proposed seriously by the late 1940s, soon after the birth of the computer
(Weaver, 1955). In 1954, the first public demonstration of an MT system proto-
type (Dostert, 1955) led to great excitement in the press (Hutchins, 1997). The next
decade saw a great flowering of ideas, prefiguring most subsequent developments.
But this work was ahead of its time—implementations were limited by, for exam-
ple, the fact that pending the development of disks there was no good way to store
dictionary information.

As high-quality MT proved elusive (Bar-Hillel, 1960), there grew a consensus
on the need for better evaluation and more basic research in the new fields of formal
and computational linguistics. This consensus culminated in the famous ALPAC
(Automatic Language Processing Advisory Committee) report of 1966 (Pierce et al.,
1966) that led in the mid 1960s to a dramatic cut in funding for MT in the US. As
MT research lost academic respectability, the Association for Machine Translation
and Computational Linguistics dropped MT from its name. Some MT developers,
however, persevered, and there were early industrial engines like Systran, as well as
early MT systems like Météo, which translated weather forecasts from English to
French (Chandioux, 1976).

In early years, the space of MT architectures spanned three general models.
In perhaps the earliest developed method, direct translation, the system proceeds
word-by-word through the source-language text, translating each word incremen-
tally. Direct translation uses a large bilingual dictionary, each of whose entries is
a small program with the job of translating one word. In transfer approaches, we
first parse the input text and then apply rules to transform the source-language parse
into a target language parse. We then generate the target language sentence from the
parse tree. In interlingua approaches, we analyze the source language text into some
abstract meaning representation, called an interlingua. We then generate into the
target language from this interlingual representation. A common way to visualize
these three early approaches was the Vauquois triangle shown in Fig. 11.20. TheVauquois

triangle
triangle shows the increasing depth of analysis required (on both the analysis and
generation end) as we move from the direct approach through transfer approaches
to interlingual approaches. In addition, it shows the decreasing amount of transfer
knowledge needed as we move up the triangle, from huge amounts of transfer at
the direct level (almost all knowledge is transfer knowledge for each word) through
transfer (transfer rules only for parse trees or thematic roles) through interlingua
(no specific transfer knowledge). We can view the encoder-decoder network as an
interlingual approach, with attention acting as an integration of direct and transfer,
allowing words or their representations to be directly accessed by the decoder.

Statistical methods began to be applied around 1990, enabled first by the devel-
opment of large bilingual corpora like the Hansard corpus of the proceedings of the
Canadian Parliament, which are kept in both French and English, and then by the
growth of the Web. Early on, a number of researchers showed that it was possible
to extract pairs of aligned sentences from bilingual corpora, using words or simple
cues like sentence length (Kay and Röscheisen 1988, Gale and Church 1991, Gale
and Church 1993, Kay and Röscheisen 1993).

At the same time, the IBM group, drawing directly on the noisy channel model
for speech recognition, proposed algorithms for statistical MT, algorithms that be-
came known as IBM Models 1 through 5, implemented in the Candide system.IBM Models

Candide
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Figure 11.20 The Vauquois (1968) triangle.

The algorithms (except for the decoder) were published in full detail— encouraged
by the US government which had partially funded the work— which gave them a
huge impact on the research community (Brown et al. 1990, Brown et al. 1993).
By the turn of the century, most academic research on machine translation used the
statistical noisy channel model. Progress was made hugely easier by the develop-
ment of publicly available toolkits, like the GIZA toolkit (Och and Ney, 2003) which
implements IBM models 1–5 as well as the HMM alignment model.

Around the turn of the century, an extended approach, called phrase-based
translation was developed, which was based on inducing translations for phrase-phrase-based

translation
pairs (Och 1998, Marcu and Wong 2002, Koehn et al. (2003), Och and Ney 2004,
Deng and Byrne 2005, inter alia). A log linear formulation (Och and Ney, 2004)
was trained to directly optimize evaluation metrics like BLEU in a method known
as Minimum Error Rate Training, or MERT (Och, 2003), also drawing fromMERT

speech recognition models (Chou et al., 1993). Popular toolkits were developed like
Moses (Koehn et al. 2006, Zens and Ney 2007).Moses

There were also approaches around the turn of the century that were based on
syntactic structure (Chapter 12). Models based on transduction grammars (alsotransduction

grammar
called synchronous grammars assign a parallel syntactic tree structure to a pair of
sentences in different languages, with the goal of translating the sentences by ap-
plying reordering operations on the trees. From a generative perspective, we can
view a transduction grammar as generating pairs of aligned sentences in two lan-
guages. Some of the most widely used models included the inversion transduction
grammar (Wu, 1996) and synchronous context-free grammars (Chiang, 2005),

inversion
transduction

grammar
MODERN HISTORY OF encoder-decoder approach HERE; (Kalchbren-

ner and Blunsom, 2013), (Cho et al., 2014), (Sutskever et al., 2014), etc
Beam-search has an interesting relationship with human language processing;

(Meister et al., 2020) show that beam search enforces the cognitive property of uni-
form information density in text. Uniform information density is the hypothe-
sis that human language processors tend to prefer to distribute information equally
across the sentence (Jaeger and Levy, 2007).

Research on evaluation of machine translation began quite early. Miller and
Beebe-Center (1958) proposed a number of methods drawing on work in psycholin-
guistics. These included the use of cloze and Shannon tasks to measure intelligibil-
ity as well as a metric of edit distance from a human translation, the intuition that
underlies all modern automatic evaluation metrics like BLEU. The ALPAC report
included an early evaluation study conducted by John Carroll that was extremely in-
fluential (Pierce et al., 1966, Appendix 10). Carroll proposed distinct measures for
fidelity and intelligibility, and had raters score them subjectively on 9-point scales.
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More recent work on evaluation has focused on coming up with automatic metrics,
include the work on BLEU discussed in Section 11.8.2 (Papineni et al., 2002), as
well as related measures like NIST (Doddington, 2002), TER (Translation Error
Rate) (Snover et al., 2006), Precision and Recall (Turian et al., 2003), and ME-
TEOR (Banerjee and Lavie, 2005).

Good surveys of the early history of MT are Hutchins (1986) and (1997). Niren-
burg et al. (2002) is a collection of early readings in MT.

See Croft (1990) or Comrie (1989) for introductions to typology.

Exercises



CHAPTER

12 Constituency Grammars

If on a winter’s night a traveler by Italo Calvino
Nuclear and Radiochemistry by Gerhart Friedlander et al.
The Fire Next Time by James Baldwin
A Tad Overweight, but Violet Eyes to Die For by G. B. Trudeau
Sometimes a Great Notion by Ken Kesey
Dancer from the Dance by Andrew Holleran

Six books in English whose titles are not
constituents, from Pullum (1991, p. 195)

The study of grammar has an ancient pedigree; Panini’s grammar of Sanskrit
was written over two thousand years ago and is still referenced today in teaching
Sanskrit. And our word syntax comes from the Greek sýntaxis, meaning “settingsyntax

out together or arrangement”, and refers to the way words are arranged together. We
have seen various syntactic notions in previous chapters: ordering of sequences of
words (Chapter 2), probabilities for these word sequences (Chapter 3), and the use of
part-of-speech categories as a grammatical equivalence class for words (Chapter 8).
In this chapter and the next three we introduce a variety of syntactic phenomena that
go well beyond these simpler approaches, together with formal models for capturing
them in a computationally useful manner.

The bulk of this chapter is devoted to context-free grammars. Context-free gram-
mars are the backbone of many formal models of the syntax of natural language (and,
for that matter, of computer languages). As such, they play a role in many computa-
tional applications, including grammar checking, semantic interpretation, dialogue
understanding, and machine translation. They are powerful enough to express so-
phisticated relations among the words in a sentence, yet computationally tractable
enough that efficient algorithms exist for parsing sentences with them (as we show
in Chapter 13). And in Chapter 16 we show how they provide a systematic frame-
work for semantic interpretation. Here we also introduce the concept of lexicalized
grammars, focusing on one example, combinatory categorial grammar, or CCG.

In Chapter 14 we introduce a formal model of grammar called syntactic depen-
dencies that is an alternative to these constituency grammars, and we’ll give algo-
rithms for dependency parsing. Both constituency and dependency formalisms are
important for language processing.

Finally, we provide a brief overview of the grammar of English, illustrated from
a domain with relatively simple sentences called ATIS (Air Traffic Information Sys-
tem) (Hemphill et al., 1990). ATIS systems were an early spoken language system
for users to book flights, by expressing sentences like I’d like to fly to Atlanta.
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12.1 Constituency

Syntactic constituency is the idea that groups of words can behave as single units,
or constituents. Part of developing a grammar involves building an inventory of the
constituents in the language. How do words group together in English? Consider
the noun phrase, a sequence of words surrounding at least one noun. Here are somenoun phrase

examples of noun phrases (thanks to Damon Runyon):

Harry the Horse a high-class spot such as Mindy’s
the Broadway coppers the reason he comes into the Hot Box
they three parties from Brooklyn

What evidence do we have that these words group together (or “form constituents”)?
One piece of evidence is that they can all appear in similar syntactic environments,
for example, before a verb.

three parties from Brooklyn arrive. . .
a high-class spot such as Mindy’s attracts. . .
the Broadway coppers love. . .
they sit

But while the whole noun phrase can occur before a verb, this is not true of each
of the individual words that make up a noun phrase. The following are not grammat-
ical sentences of English (recall that we use an asterisk (*) to mark fragments that
are not grammatical English sentences):

*from arrive. . . *as attracts. . .
*the is. . . *spot sat. . .

Thus, to correctly describe facts about the ordering of these words in English, we
must be able to say things like “Noun Phrases can occur before verbs”.

Other kinds of evidence for constituency come from what are called preposed orpreposed

postposed constructions. For example, the prepositional phrase on September sev-postposed

enteenth can be placed in a number of different locations in the following examples,
including at the beginning (preposed) or at the end (postposed):

On September seventeenth, I’d like to fly from Atlanta to Denver
I’d like to fly on September seventeenth from Atlanta to Denver
I’d like to fly from Atlanta to Denver on September seventeenth

But again, while the entire phrase can be placed differently, the individual words
making up the phrase cannot be:

*On September, I’d like to fly seventeenth from Atlanta to Denver
*On I’d like to fly September seventeenth from Atlanta to Denver
*I’d like to fly on September from Atlanta to Denver seventeenth

12.2 Context-Free Grammars

The most widely used formal system for modeling constituent structure in English
and other natural languages is the Context-Free Grammar, or CFG. Context-CFG
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free grammars are also called Phrase-Structure Grammars, and the formalism
is equivalent to Backus-Naur Form, or BNF. The idea of basing a grammar on
constituent structure dates back to the psychologist Wilhelm Wundt (1900) but was
not formalized until Chomsky (1956) and, independently, Backus (1959).

A context-free grammar consists of a set of rules or productions, each of whichrules

expresses the ways that symbols of the language can be grouped and ordered to-
gether, and a lexicon of words and symbols. For example, the following productionslexicon

express that an NP (or noun phrase) can be composed of either a ProperNoun orNP

a determiner (Det) followed by a Nominal; a Nominal in turn can consist of one or
more Nouns.

NP → Det Nominal
NP → ProperNoun

Nominal → Noun | Nominal Noun

Context-free rules can be hierarchically embedded, so we can combine the pre-
vious rules with others, like the following, that express facts about the lexicon:

Det → a
Det → the

Noun → flight

The symbols that are used in a CFG are divided into two classes. The symbols
that correspond to words in the language (“the”, “nightclub”) are called terminalterminal

symbols; the lexicon is the set of rules that introduce these terminal symbols. The
symbols that express abstractions over these terminals are called non-terminals. Innon-terminal

each context-free rule, the item to the right of the arrow (→) is an ordered list of one
or more terminals and non-terminals; to the left of the arrow is a single non-terminal
symbol expressing some cluster or generalization. The non-terminal associated with
each word in the lexicon is its lexical category, or part of speech.

A CFG can be thought of in two ways: as a device for generating sentences
and as a device for assigning a structure to a given sentence. Viewing a CFG as a
generator, we can read the→ arrow as “rewrite the symbol on the left with the string
of symbols on the right”.

So starting from the symbol: NP
we can use our first rule to rewrite NP as: Det Nominal
and then rewrite Nominal as: Det Noun
and finally rewrite these parts-of-speech as: a flight

We say the string a flight can be derived from the non-terminal NP. Thus, a CFG
can be used to generate a set of strings. This sequence of rule expansions is called a
derivation of the string of words. It is common to represent a derivation by a parsederivation

tree (commonly shown inverted with the root at the top). Figure 12.1 shows the treeparse tree

representation of this derivation.
In the parse tree shown in Fig. 12.1, we can say that the node NP dominatesdominates

all the nodes in the tree (Det, Nom, Noun, a, flight). We can say further that it
immediately dominates the nodes Det and Nom.

The formal language defined by a CFG is the set of strings that are derivable
from the designated start symbol. Each grammar must have one designated startstart symbol

symbol, which is often called S. Since context-free grammars are often used to define
sentences, S is usually interpreted as the “sentence” node, and the set of strings that
are derivable from S is the set of sentences in some simplified version of English.
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NP

Nom

Noun

flight

Det

a

Figure 12.1 A parse tree for “a flight”.

Let’s add a few additional rules to our inventory. The following rule expresses
the fact that a sentence can consist of a noun phrase followed by a verb phrase:verb phrase

S → NP VP I prefer a morning flight

A verb phrase in English consists of a verb followed by assorted other things;
for example, one kind of verb phrase consists of a verb followed by a noun phrase:

VP → Verb NP prefer a morning flight

Or the verb may be followed by a noun phrase and a prepositional phrase:

VP → Verb NP PP leave Boston in the morning

Or the verb phrase may have a verb followed by a prepositional phrase alone:

VP → Verb PP leaving on Thursday

A prepositional phrase generally has a preposition followed by a noun phrase.
For example, a common type of prepositional phrase in the ATIS corpus is used to
indicate location or direction:

PP → Preposition NP from Los Angeles

The NP inside a PP need not be a location; PPs are often used with times and
dates, and with other nouns as well; they can be arbitrarily complex. Here are ten
examples from the ATIS corpus:

to Seattle on these flights
in Minneapolis about the ground transportation in Chicago
on Wednesday of the round trip flight on United Airlines
in the evening of the AP fifty seven flight
on the ninth of July with a stopover in Nashville

Figure 12.2 gives a sample lexicon, and Fig. 12.3 summarizes the grammar rules
we’ve seen so far, which we’ll call L0. Note that we can use the or-symbol | to
indicate that a non-terminal has alternate possible expansions.

We can use this grammar to generate sentences of this “ATIS-language”. We
start with S, expand it to NP VP, then choose a random expansion of NP (let’s say, to
I), and a random expansion of VP (let’s say, to Verb NP), and so on until we generate
the string I prefer a morning flight. Figure 12.4 shows a parse tree that represents a
complete derivation of I prefer a morning flight.

We can also represent a parse tree in a more compact format called bracketed
notation; here is the bracketed representation of the parse tree of Fig. 12.4:bracketed

notation
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Noun→ flights | breeze | trip | morning
Verb→ is | prefer | like | need | want | fly

Adjective→ cheapest | non-stop | first | latest
| other | direct

Pronoun→ me | I | you | it
Proper-Noun→ Alaska | Baltimore | Los Angeles

| Chicago | United | American
Determiner→ the | a | an | this | these | that
Preposition→ from | to | on | near

Conjunction→ and | or | but
Figure 12.2 The lexicon for L0.

Grammar Rules Examples
S → NP VP I + want a morning flight

NP → Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal → Nominal Noun morning + flight
| Noun flights

VP → Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP → Preposition NP from + Los Angeles
Figure 12.3 The grammar for L0, with example phrases for each rule.

S

VP

NP

Nom

Noun

flight

Nom

Noun

morning

Det

a

Verb

prefer

NP

Pro

I

Figure 12.4 The parse tree for “I prefer a morning flight” according to grammar L0.

(12.1) [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

A CFG like that of L0 defines a formal language. We saw in Chapter 2 that a for-
mal language is a set of strings. Sentences (strings of words) that can be derived by a
grammar are in the formal language defined by that grammar, and are called gram-
matical sentences. Sentences that cannot be derived by a given formal grammar aregrammatical

not in the language defined by that grammar and are referred to as ungrammatical.ungrammatical
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This hard line between “in” and “out” characterizes all formal languages but is only
a very simplified model of how natural languages really work. This is because de-
termining whether a given sentence is part of a given natural language (say, English)
often depends on the context. In linguistics, the use of formal languages to model
natural languages is called generative grammar since the language is defined bygenerative

grammar
the set of possible sentences “generated” by the grammar.

12.2.1 Formal Definition of Context-Free Grammar
We conclude this section with a quick, formal description of a context-free gram-
mar and the language it generates. A context-free grammar G is defined by four
parameters: N, Σ, R, S (technically this is a “4-tuple”).

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A→ β ,

where A is a non-terminal,
β is a string of symbols from the infinite set of strings (Σ∪N)∗

S a designated start symbol and a member of N

For the remainder of the book we adhere to the following conventions when dis-
cussing the formal properties of context-free grammars (as opposed to explaining
particular facts about English or other languages).

Capital letters like A, B, and S Non-terminals
S The start symbol
Lower-case Greek letters like α , β , and γ Strings drawn from (Σ∪N)∗

Lower-case Roman letters like u, v, and w Strings of terminals

A language is defined through the concept of derivation. One string derives an-
other one if it can be rewritten as the second one by some series of rule applications.
More formally, following Hopcroft and Ullman (1979),

if A→ β is a production of R and α and γ are any strings in the set
(Σ∪N)∗, then we say that αAγ directly derives αβγ , or αAγ ⇒ αβγ .directly derives

Derivation is then a generalization of direct derivation:

Let α1, α2, . . . , αm be strings in (Σ∪N)∗,m≥ 1, such that

α1⇒ α2,α2⇒ α3, . . . ,αm−1⇒ αm

We say that α1 derives αm, or α1
∗⇒ αm.derives

We can then formally define the language LG generated by a grammar G as the
set of strings composed of terminal symbols that can be derived from the designated
start symbol S.

LG = {w|w is in Σ∗ and S ∗⇒ w}

The problem of mapping from a string of words to its parse tree is called syn-
tactic parsing; we define algorithms for constituency parsing in Chapter 13.syntactic

parsing
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12.3 Some Grammar Rules for English

In this section, we introduce a few more aspects of the phrase structure of English;
for consistency we will continue to focus on sentences from the ATIS domain. Be-
cause of space limitations, our discussion is necessarily limited to highlights. Read-
ers are strongly advised to consult a good reference grammar of English, such as
Huddleston and Pullum (2002).

12.3.1 Sentence-Level Constructions
In the small grammar L0, we provided only one sentence-level construction for
declarative sentences like I prefer a morning flight. Among the large number of
constructions for English sentences, four are particularly common and important:
declaratives, imperatives, yes-no questions, and wh-questions.

Sentences with declarative structure have a subject noun phrase followed bydeclarative

a verb phrase, like “I prefer a morning flight”. Sentences with this structure have
a great number of different uses that we follow up on in Chapter 24. Here are a
number of examples from the ATIS domain:

I want a flight from Ontario to Chicago
The flight should be eleven a.m. tomorrow
The return flight should leave at around seven p.m.

Sentences with imperative structure often begin with a verb phrase and haveimperative

no subject. They are called imperative because they are almost always used for
commands and suggestions; in the ATIS domain they are commands to the system.

Show the lowest fare
Give me Sunday’s flights arriving in Las Vegas from New York City
List all flights between five and seven p.m.

We can model this sentence structure with another rule for the expansion of S:

S → VP

Sentences with yes-no question structure are often (though not always) used toyes-no question

ask questions; they begin with an auxiliary verb, followed by a subject NP, followed
by a VP. Here are some examples. Note that the third example is not a question at
all but a request; Chapter 24 discusses the uses of these question forms to perform
different pragmatic functions such as asking, requesting, or suggesting.

Do any of these flights have stops?
Does American’s flight eighteen twenty five serve dinner?
Can you give me the same information for United?

Here’s the rule:

S → Aux NP VP

The most complex sentence-level structures we examine here are the various wh-
structures. These are so named because one of their constituents is a wh-phrase, thatwh-phrase

is, one that includes a wh-word (who, whose, when, where, what, which, how, why).wh-word

These may be broadly grouped into two classes of sentence-level structures. The
wh-subject-question structure is identical to the declarative structure, except that
the first noun phrase contains some wh-word.
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What airlines fly from Burbank to Denver?
Which flights depart Burbank after noon and arrive in Denver by six p.m?
Whose flights serve breakfast?

Here is a rule. Exercise 12.7 discusses rules for the constituents that make up the
Wh-NP.

S → Wh-NP VP

In the wh-non-subject-question structure, the wh-phrase is not the subject of thewh-non-subject-
question

sentence, and so the sentence includes another subject. In these types of sentences
the auxiliary appears before the subject NP, just as in the yes-no question structures.
Here is an example followed by a sample rule:

What flights do you have from Burbank to Tacoma Washington?

S → Wh-NP Aux NP VP

Constructions like the wh-non-subject-question contain what are called long-
distance dependencies because the Wh-NP what flights is far away from the predi-long-distance

dependencies
cate that it is semantically related to, the main verb have in the VP. In some models
of parsing and understanding compatible with the grammar rule above, long-distance
dependencies like the relation between flights and have are thought of as a semantic
relation. In such models, the job of figuring out that flights is the argument of have is
done during semantic interpretation. Other models of parsing represent the relation-
ship between flights and have as a syntactic relation, and the grammar is modified to
insert a small marker called a trace or empty category after the verb. We discuss
empty-category models when we introduce the Penn Treebank on page 245.

12.3.2 Clauses and Sentences
Before we move on, we should clarify the status of the S rules in the grammars we
just described. S rules are intended to account for entire sentences that stand alone
as fundamental units of discourse. However, S can also occur on the right-hand side
of grammar rules and hence can be embedded within larger sentences. Clearly then,
there’s more to being an S than just standing alone as a unit of discourse.

What differentiates sentence constructions (i.e., the S rules) from the rest of the
grammar is the notion that they are in some sense complete. In this way they corre-
spond to the notion of a clause, which traditional grammars often describe as form-clause

ing a complete thought. One way of making this notion of “complete thought” more
precise is to say an S is a node of the parse tree below which the main verb of the S
has all of its arguments. We define verbal arguments later, but for now let’s just see
an illustration from the tree for I prefer a morning flight in Fig. 12.4 on page 235.
The verb prefer has two arguments: the subject I and the object a morning flight.
One of the arguments appears below the VP node, but the other one, the subject NP,
appears only below the S node.

12.3.3 The Noun Phrase
Our L0 grammar introduced three of the most frequent types of noun phrases that
occur in English: pronouns, proper nouns and the NP→Det Nominal construction.
The central focus of this section is on the last type since that is where the bulk of
the syntactic complexity resides. These noun phrases consist of a head, the central
noun in the noun phrase, along with various modifiers that can occur before or after
the head noun. Let’s take a close look at the various parts.
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The Determiner

Noun phrases can begin with simple lexical determiners:
a stop the flights this flight
those flights any flights some flights

The role of the determiner can also be filled by more complex expressions:

United’s flight
United’s pilot’s union
Denver’s mayor’s mother’s canceled flight

In these examples, the role of the determiner is filled by a possessive expression
consisting of a noun phrase followed by an ’s as a possessive marker, as in the
following rule.

Det → NP ′s

The fact that this rule is recursive (since an NP can start with a Det) helps us model
the last two examples above, in which a sequence of possessive expressions serves
as a determiner.

Under some circumstances determiners are optional in English. For example,
determiners may be omitted if the noun they modify is plural:

(12.2) Show me flights from San Francisco to Denver on weekdays

As we saw in Chapter 8, mass nouns also don’t require determination. Recall that
mass nouns often (not always) involve something that is treated like a substance
(including e.g., water and snow), don’t take the indefinite article “a”, and don’t tend
to pluralize. Many abstract nouns are mass nouns (music, homework). Mass nouns
in the ATIS domain include breakfast, lunch, and dinner:

(12.3) Does this flight serve dinner?

The Nominal

The nominal construction follows the determiner and contains any pre- and post-
head noun modifiers. As indicated in grammar L0, in its simplest form a nominal
can consist of a single noun.

Nominal → Noun

As we’ll see, this rule also provides the basis for the bottom of various recursive
rules used to capture more complex nominal constructions.

Before the Head Noun

A number of different kinds of word classes can appear before the head noun but
after the determiner (the “postdeterminers”) in a nominal. These include cardi-cardinal

numbers
nal numbers, ordinal numbers, quantifiers, and adjectives. Examples of cardinalordinal

numbers
quantifiers numbers:

two friends one stop

Ordinal numbers include first, second, third, and so on, but also words like next,
last, past, other, and another:

the first one the next day the second leg
the last flight the other American flight

Some quantifiers (many, (a) few, several) occur only with plural count nouns:
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many fares

Adjectives occur after quantifiers but before nouns.

a first-class fare a non-stop flight
the longest layover the earliest lunch flight

Adjectives can also be grouped into a phrase called an adjective phrase or AP.adjective
phrase

APs can have an adverb before the adjective (see Chapter 8 for definitions of adjec-
tives and adverbs):

the least expensive fare

After the Head Noun

A head noun can be followed by postmodifiers. Three kinds of nominal postmodi-
fiers are common in English:

prepositional phrases all flights from Cleveland
non-finite clauses any flights arriving after eleven a.m.
relative clauses a flight that serves breakfast

They are especially common in the ATIS corpus since they are used to mark the
origin and destination of flights.

Here are some examples of prepositional phrase postmodifiers, with brackets
inserted to show the boundaries of each PP; note that two or more PPs can be strung
together within a single NP:

all flights [from Cleveland] [to Newark]
arrival [in San Jose] [before seven p.m.]
a reservation [on flight six oh six] [from Tampa] [to Montreal]

Here’s a new nominal rule to account for postnominal PPs:

Nominal → Nominal PP

The three most common kinds of non-finite postmodifiers are the gerundive (-non-finite

ing), -ed, and infinitive forms.
Gerundive postmodifiers are so called because they consist of a verb phrase thatgerundive

begins with the gerundive (-ing) form of the verb. Here are some examples:

any of those [leaving on Thursday]
any flights [arriving after eleven a.m.]
flights [arriving within thirty minutes of each other]

We can define the Nominals with gerundive modifiers as follows, making use of
a new non-terminal GerundVP:

Nominal → Nominal GerundVP

We can make rules for GerundVP constituents by duplicating all of our VP pro-
ductions, substituting GerundV for V.

GerundVP → GerundV NP

| GerundV PP | GerundV | GerundV NP PP

GerundV can then be defined as

GerundV → being | arriving | leaving | . . .
The phrases in italics below are examples of the two other common kinds of

non-finite clauses, infinitives and -ed forms:
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the last flight to arrive in Boston
I need to have dinner served
Which is the aircraft used by this flight?

A postnominal relative clause (more correctly a restrictive relative clause), is
a clause that often begins with a relative pronoun (that and who are the most com-relative

pronoun
mon). The relative pronoun functions as the subject of the embedded verb in the
following examples:

a flight that serves breakfast
flights that leave in the morning
the one that leaves at ten thirty five

We might add rules like the following to deal with these:

Nominal → Nominal RelClause

RelClause → (who | that) VP

The relative pronoun may also function as the object of the embedded verb, as
in the following example; we leave for the reader the exercise of writing grammar
rules for more complex relative clauses of this kind.

the earliest American Airlines flight that I can get

Various postnominal modifiers can be combined:

a flight [from Phoenix to Detroit] [leaving Monday evening]
evening flights [from Nashville to Houston] [that serve dinner]
a friend [living in Denver] [that would like to visit me in DC]

Before the Noun Phrase

Word classes that modify and appear before NPs are called predeterminers. Manypredeterminers

of these have to do with number or amount; a common predeterminer is all:

all the flights all flights all non-stop flights

The example noun phrase given in Fig. 12.5 illustrates some of the complexity
that arises when these rules are combined.

12.3.4 The Verb Phrase
The verb phrase consists of the verb and a number of other constituents. In the
simple rules we have built so far, these other constituents include NPs and PPs and
combinations of the two:

VP → Verb disappear
VP → Verb NP prefer a morning flight
VP → Verb NP PP leave Boston in the morning
VP → Verb PP leaving on Thursday

Verb phrases can be significantly more complicated than this. Many other kinds
of constituents, such as an entire embedded sentence, can follow the verb. These are
called sentential complements:sentential

complements

You [VP [V said [S you had a two hundred sixty-six dollar fare]]
[VP [V Tell] [NP me] [S how to get from the airport to downtown]]
I [VP [V think [S I would like to take the nine thirty flight]]
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NP

NP

Nom

GerundiveVP

leaving before 10

Nom

PP

to Tampa

Nom

PP

from Denver

Nom

Noun
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Det

the

PreDet

all

Figure 12.5 A parse tree for “all the morning flights from Denver to Tampa leaving before 10”.

Here’s a rule for these:

VP → Verb S

Similarly, another potential constituent of the VP is another VP. This is often the
case for verbs like want, would like, try, intend, need:

I want [VP to fly from Milwaukee to Orlando]
Hi, I want [VP to arrange three flights]

While a verb phrase can have many possible kinds of constituents, not every
verb is compatible with every verb phrase. For example, the verb want can be used
either with an NP complement (I want a flight . . . ) or with an infinitive VP comple-
ment (I want to fly to . . . ). By contrast, a verb like find cannot take this sort of VP
complement (* I found to fly to Dallas).

This idea that verbs are compatible with different kinds of complements is a very
old one; traditional grammar distinguishes between transitive verbs like find, whichtransitive

take a direct object NP (I found a flight), and intransitive verbs like disappear,intransitive

which do not (*I disappeared a flight).
Where traditional grammars subcategorize verbs into these two categories (tran-subcategorize

sitive and intransitive), modern grammars distinguish as many as 100 subcategories.
We say that a verb like find subcategorizes for an NP, and a verb like want sub-subcategorizes

for
categorizes for either an NP or a non-finite VP. We also call these constituents the
complements of the verb (hence our use of the term sentential complement above).complements

So we say that want can take a VP complement. These possible sets of complements
are called the subcategorization frame for the verb. Another way of talking aboutsubcategorization

frame
the relation between the verb and these other constituents is to think of the verb as
a logical predicate and the constituents as logical arguments of the predicate. So we
can think of such predicate-argument relations as FIND(I, A FLIGHT) or WANT(I, TO
FLY). We talk more about this view of verbs and arguments in Chapter 15 when we
talk about predicate calculus representations of verb semantics. Subcategorization
frames for a set of example verbs are given in Fig. 12.6.
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Frame Verb Example
/0 eat, sleep I ate
NP prefer, find, leave Find [NP the flight from Pittsburgh to Boston]
NP NP show, give Show [NP me] [NP airlines with flights from Pittsburgh]
PPfrom PPto fly, travel I would like to fly [PP from Boston] [PP to Philadelphia]
NP PPwith help, load Can you help [NP me] [PP with a flight]
VPto prefer, want, need I would prefer [VPto to go by United Airlines]
S mean Does this mean [S AA has a hub in Boston]

Figure 12.6 Subcategorization frames for a set of example verbs.

We can capture the association between verbs and their complements by making
separate subtypes of the class Verb (e.g., Verb-with-NP-complement, Verb-with-Inf-
VP-complement, Verb-with-S-complement, and so on):

Verb-with-NP-complement → find | leave | repeat | . . .
Verb-with-S-complement → think | believe | say | . . .

Verb-with-Inf-VP-complement → want | try | need | . . .

Each VP rule could then be modified to require the appropriate verb subtype:

VP → Verb-with-no-complement disappear
VP → Verb-with-NP-comp NP prefer a morning flight
VP → Verb-with-S-comp S said there were two flights

A problem with this approach is the significant increase in the number of rules and
the associated loss of generality.

12.3.5 Coordination
The major phrase types discussed here can be conjoined with conjunctions like and,conjunctions

or, and but to form larger constructions of the same type. For example, a coordinatecoordinate

noun phrase can consist of two other noun phrases separated by a conjunction:

Please repeat [NP [NP the flights] and [NP the costs]]
I need to know [NP [NP the aircraft] and [NP the flight number]]

Here’s a rule that allows these structures:

NP → NP and NP

Note that the ability to form coordinate phrases through conjunctions is often
used as a test for constituency. Consider the following examples, which differ from
the ones given above in that they lack the second determiner.

Please repeat the [Nom [Nom flights] and [Nom costs]]
I need to know the [Nom [Nom aircraft] and [Nom flight number]]

The fact that these phrases can be conjoined is evidence for the presence of the
underlying Nominal constituent we have been making use of. Here’s a rule for this:

Nominal → Nominal and Nominal

The following examples illustrate conjunctions involving VPs and Ss.
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What flights do you have [VP [VP leaving Denver] and [VP arriving in
San Francisco]]
[S [S I’m interested in a flight from Dallas to Washington] and [S I’m
also interested in going to Baltimore]]

The rules for VP and S conjunctions mirror the NP one given above.

VP → VP and VP

S → S and S

Since all the major phrase types can be conjoined in this fashion, it is also possible
to represent this conjunction fact more generally; a number of grammar formalisms
such as GPSG (Gazdar et al., 1985) do this using metarules like:metarules

X → X and X

This metarule states that any non-terminal can be conjoined with the same non-
terminal to yield a constituent of the same type; the variable X must be designated
as a variable that stands for any non-terminal rather than a non-terminal itself.

12.4 Treebanks

Sufficiently robust grammars consisting of context-free grammar rules can be used
to assign a parse tree to any sentence. This means that it is possible to build a
corpus where every sentence in the collection is paired with a corresponding parse
tree. Such a syntactically annotated corpus is called a treebank. Treebanks playtreebank

an important role in parsing, as we discuss in Chapter 13, as well as in linguistic
investigations of syntactic phenomena.

A wide variety of treebanks have been created, generally through the use of
parsers (of the sort described in the next few chapters) to automatically parse each
sentence, followed by the use of humans (linguists) to hand-correct the parses. The
Penn Treebank project (whose POS tagset we introduced in Chapter 8) has pro-Penn Treebank

duced treebanks from the Brown, Switchboard, ATIS, and Wall Street Journal cor-
pora of English, as well as treebanks in Arabic and Chinese. A number of treebanks
use the dependency representation we will introduce in Chapter 14, including many
that are part of the Universal Dependencies project (Nivre et al., 2016b).

12.4.1 Example: The Penn Treebank Project
Figure 12.7 shows sentences from the Brown and ATIS portions of the Penn Tree-
bank.1 Note the formatting differences for the part-of-speech tags; such small dif-
ferences are common and must be dealt with in processing treebanks. The Penn
Treebank part-of-speech tagset was defined in Chapter 8. The use of LISP-style
parenthesized notation for trees is extremely common and resembles the bracketed
notation we saw earlier in (12.1). For those who are not familiar with it we show a
standard node-and-line tree representation in Fig. 12.8.

Figure 12.9 shows a tree from the Wall Street Journal. This tree shows an-
other feature of the Penn Treebanks: the use of traces (-NONE- nodes) to marktraces

1 The Penn Treebank project released treebanks in multiple languages and in various stages; for exam-
ple, there were Treebank I (Marcus et al., 1993), Treebank II (Marcus et al., 1994), and Treebank III
releases of English treebanks. We use Treebank III for our examples.
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((S

(NP-SBJ (DT That)

(JJ cold) (, ,)

(JJ empty) (NN sky) )

(VP (VBD was)

(ADJP-PRD (JJ full)

(PP (IN of)

(NP (NN fire)

(CC and)

(NN light) ))))

(. .) ))

((S

(NP-SBJ The/DT flight/NN )

(VP should/MD

(VP arrive/VB

(PP-TMP at/IN

(NP eleven/CD a.m/RB ))

(NP-TMP tomorrow/NN )))))

(a) (b)

Figure 12.7 Parsed sentences from the LDC Treebank3 version of the (a) Brown and (b)
ATIS corpora.
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Figure 12.8 The tree corresponding to the Brown corpus sentence in the previous figure.

long-distance dependencies or syntactic movement. For example, quotations oftensyntactic
movement

follow a quotative verb like say. But in this example, the quotation “We would have
to wait until we have collected on those assets” precedes the words he said. An
empty S containing only the node -NONE- marks the position after said where the
quotation sentence often occurs. This empty node is marked (in Treebanks II and
III) with the index 2, as is the quotation S at the beginning of the sentence. Such
co-indexing may make it easier for some parsers to recover the fact that this fronted
or topicalized quotation is the complement of the verb said. A similar -NONE- node
marks the fact that there is no syntactic subject right before the verb to wait; instead,
the subject is the earlier NP We. Again, they are both co-indexed with the index 1.

The Penn Treebank II and Treebank III releases added further information to
make it easier to recover the relationships between predicates and arguments. Cer-
tain phrases were marked with tags indicating the grammatical function of the phrase
(as surface subject, logical topic, cleft, non-VP predicates) its presence in particular
text categories (headlines, titles), and its semantic function (temporal phrases, lo-
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( (S (‘‘ ‘‘)

(S-TPC-2

(NP-SBJ-1 (PRP We) )

(VP (MD would)

(VP (VB have)

(S

(NP-SBJ (-NONE- *-1) )

(VP (TO to)

(VP (VB wait)

(SBAR-TMP (IN until)

(S

(NP-SBJ (PRP we) )

(VP (VBP have)

(VP (VBN collected)

(PP-CLR (IN on)

(NP (DT those)(NNS assets)))))))))))))

(, ,) (’’ ’’)

(NP-SBJ (PRP he) )

(VP (VBD said)

(S (-NONE- *T*-2) ))

(. .) ))

Figure 12.9 A sentence from the Wall Street Journal portion of the LDC Penn Treebank.
Note the use of the empty -NONE- nodes.

cations) (Marcus et al. 1994, Bies et al. 1995). Figure 12.9 shows examples of the
-SBJ (surface subject) and -TMP (temporal phrase) tags. Figure 12.8 shows in addi-
tion the -PRD tag, which is used for predicates that are not VPs (the one in Fig. 12.8
is an ADJP). We’ll return to the topic of grammatical function when we consider
dependency grammars and parsing in Chapter 14.

12.4.2 Treebanks as Grammars
The sentences in a treebank implicitly constitute a grammar of the language repre-
sented by the corpus being annotated. For example, from the three parsed sentences
in Fig. 12.7 and Fig. 12.9, we can extract each of the CFG rules in them. For sim-
plicity, let’s strip off the rule suffixes (-SBJ and so on). The resulting grammar is
shown in Fig. 12.10.

The grammar used to parse the Penn Treebank is relatively flat, resulting in very
many and very long rules. For example, among the approximately 4,500 different
rules for expanding VPs are separate rules for PP sequences of any length and every
possible arrangement of verb arguments:

VP → VBD PP
VP → VBD PP PP
VP → VBD PP PP PP
VP → VBD PP PP PP PP
VP → VB ADVP PP
VP → VB PP ADVP
VP → ADVP VB PP

as well as even longer rules, such as

VP → VBP PP PP PP PP PP ADVP PP
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Grammar Lexicon
S→ NP VP . PRP→ we | he
S→ NP VP DT→ the | that | those
S→ “ S ” , NP VP . JJ→ cold | empty | full
S→ -NONE- NN→ sky | fire | light | flight | tomorrow
NP→ DT NN NNS→ assets
NP→ DT NNS CC→ and
NP→ NN CC NN IN→ of | at | until | on
NP→ CD RB CD→ eleven
NP→ DT JJ , JJ NN RB→ a.m.
NP→ PRP VB→ arrive | have | wait
NP→ -NONE- VBD→ was | said
VP→MD VP VBP→ have
VP→ VBD ADJP VBN→ collected
VP→ VBD S MD→ should | would
VP→ VBN PP TO→ to
VP→ VB S
VP→ VB SBAR
VP→ VBP VP
VP→ VBN PP
VP→ TO VP
SBAR→ IN S
ADJP→ JJ PP
PP→ IN NP

Figure 12.10 A sample of the CFG grammar rules and lexical entries that would be ex-
tracted from the three treebank sentences in Fig. 12.7 and Fig. 12.9.

which comes from the VP marked in italics:

This mostly happens because we go from football in the fall to lifting in the
winter to football again in the spring.

Some of the many thousands of NP rules include

NP → DT JJ NN
NP → DT JJ NNS
NP → DT JJ NN NN
NP → DT JJ JJ NN
NP → DT JJ CD NNS
NP → RB DT JJ NN NN
NP → RB DT JJ JJ NNS
NP → DT JJ JJ NNP NNS
NP → DT NNP NNP NNP NNP JJ NN
NP → DT JJ NNP CC JJ JJ NN NNS
NP → RB DT JJS NN NN SBAR
NP → DT VBG JJ NNP NNP CC NNP
NP → DT JJ NNS , NNS CC NN NNS NN
NP → DT JJ JJ VBG NN NNP NNP FW NNP
NP → NP JJ , JJ ‘‘ SBAR ’’ NNS

The last two of those rules, for example, come from the following two noun phrases:

[DT The] [JJ state-owned] [JJ industrial] [VBG holding] [NN company] [NNP Instituto] [NNP Nacional]
[FW de] [NNP Industria]

[NP Shearson’s] [JJ easy-to-film], [JJ black-and-white] “[SBAR Where We Stand]” [NNS commercials]

Viewed as a large grammar in this way, the Penn Treebank III Wall Street Journal
corpus, which contains about 1 million words, also has about 1 million non-lexical
rule tokens, consisting of about 17,500 distinct rule types.
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S(dumped)

VP(dumped)

PP(into)

NP(bin)

NN(bin)

bin

DT(a)

a

P

into

NP(sacks)

NNS(sacks)

sacks

VBD(dumped)

dumped

NP(workers)

NNS(workers)

workers

Figure 12.11 A lexicalized tree from Collins (1999).

Various facts about the treebank grammars, such as their large numbers of flat
rules, pose problems for probabilistic parsing algorithms. For this reason, it is com-
mon to make various modifications to a grammar extracted from a treebank. We
discuss these further in Appendix C.

12.4.3 Heads and Head Finding
We suggested informally earlier that syntactic constituents could be associated with
a lexical head; N is the head of an NP, V is the head of a VP. This idea of a head for
each constituent dates back to Bloomfield (1914), and is central to the dependency
grammars and dependency parsing we’ll introduce in Chapter 14. Heads are also
important in probabilistic parsing (Appendix C) and in constituent-based grammar
formalisms like Head-Driven Phrase Structure Grammar (Pollard and Sag, 1994)..

In one simple model of lexical heads, each context-free rule is associated with
a head (Charniak 1997, Collins 1999). The head is the word in the phrase that is
grammatically the most important. Heads are passed up the parse tree; thus, each
non-terminal in a parse tree is annotated with a single word, which is its lexical head.
Figure 12.11 shows an example of such a tree from Collins (1999), in which each
non-terminal is annotated with its head.

For the generation of such a tree, each CFG rule must be augmented to identify
one right-side constituent to be the head child. The headword for a node is then set to
the headword of its head child. Choosing these head children is simple for textbook
examples (NN is the head of NP) but is complicated and indeed controversial for
most phrases. (Should the complementizer to or the verb be the head of an infinite
verb phrase?) Modern linguistic theories of syntax generally include a component
that defines heads (see, e.g., (Pollard and Sag, 1994)).

An alternative approach to finding a head is used in most practical computational
systems. Instead of specifying head rules in the grammar itself, heads are identified
dynamically in the context of trees for specific sentences. In other words, once
a sentence is parsed, the resulting tree is walked to decorate each node with the
appropriate head. Most current systems rely on a simple set of handwritten rules,
such as a practical one for Penn Treebank grammars given in Collins (1999) but
developed originally by Magerman (1995). For example, the rule for finding the
head of an NP is as follows (Collins, 1999, p. 238):

• If the last word is tagged POS, return last-word.
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• Else search from right to left for the first child which is an NN, NNP, NNPS, NX, POS,
or JJR.

• Else search from left to right for the first child which is an NP.
• Else search from right to left for the first child which is a $, ADJP, or PRN.
• Else search from right to left for the first child which is a CD.
• Else search from right to left for the first child which is a JJ, JJS, RB or QP.
• Else return the last word

Selected other rules from this set are shown in Fig. 12.12. For example, for VP
rules of the form VP→ Y1 · · · Yn, the algorithm would start from the left of Y1 · · ·
Yn looking for the first Yi of type TO; if no TOs are found, it would search for the
first Yi of type VBD; if no VBDs are found, it would search for a VBN, and so on.
See Collins (1999) for more details.

Parent Direction Priority List
ADJP Left NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT FW RBR RBS

SBAR RB
ADVP Right RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN
PRN Left
PRT Right RP
QP Left $ IN NNS NN JJ RB DT CD NCD QP JJR JJS
S Left TO IN VP S SBAR ADJP UCP NP
SBAR Left WHNP WHPP WHADVP WHADJP IN DT S SQ SINV SBAR FRAG
VP Left TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP
Figure 12.12 Some head rules from Collins (1999). The head rules are also called a head percolation table.

12.5 Grammar Equivalence and Normal Form

A formal language is defined as a (possibly infinite) set of strings of words. This
suggests that we could ask if two grammars are equivalent by asking if they gener-
ate the same set of strings. In fact, it is possible to have two distinct context-free
grammars generate the same language.

We usually distinguish two kinds of grammar equivalence: weak equivalence
and strong equivalence. Two grammars are strongly equivalent if they generate the
same set of strings and if they assign the same phrase structure to each sentence
(allowing merely for renaming of the non-terminal symbols). Two grammars are
weakly equivalent if they generate the same set of strings but do not assign the same
phrase structure to each sentence.

It is sometimes useful to have a normal form for grammars, in which each ofnormal form

the productions takes a particular form. For example, a context-free grammar is in
Chomsky normal form (CNF) (Chomsky, 1963) if it is ε-free and if in additionChomsky

normal form
each production is either of the form A→ B C or A→ a. That is, the right-hand side
of each rule either has two non-terminal symbols or one terminal symbol. Chomsky
normal form grammars are binary branching, that is they have binary trees (downbinary

branching
to the prelexical nodes). We make use of this binary branching property in the CKY
parsing algorithm in Chapter 13.

Any context-free grammar can be converted into a weakly equivalent Chomsky
normal form grammar. For example, a rule of the form

A → B C D
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can be converted into the following two CNF rules (Exercise 12.8 asks the reader to
formulate the complete algorithm):

A → B X

X → C D

Sometimes using binary branching can actually produce smaller grammars. For
example, the sentences that might be characterized as

VP -> VBD NP PP*

are represented in the Penn Treebank by this series of rules:

VP → VBD NP PP

VP → VBD NP PP PP

VP → VBD NP PP PP PP

VP → VBD NP PP PP PP PP

...

but could also be generated by the following two-rule grammar:

VP → VBD NP PP

VP → VP PP

The generation of a symbol A with a potentially infinite sequence of symbols B with
a rule of the form A → A B is known as Chomsky-adjunction.Chomsky-

adjunction

12.6 Lexicalized Grammars

The approach to grammar presented thus far emphasizes phrase-structure rules while
minimizing the role of the lexicon. However, as we saw in the discussions of
agreement, subcategorization, and long-distance dependencies, this approach leads
to solutions that are cumbersome at best, yielding grammars that are redundant,
hard to manage, and brittle. To overcome these issues, numerous alternative ap-
proaches have been developed that all share the common theme of making bet-
ter use of the lexicon. Among the more computationally relevant approaches are
Lexical-Functional Grammar (LFG) (Bresnan, 1982), Head-Driven Phrase Structure
Grammar (HPSG) (Pollard and Sag, 1994), Tree-Adjoining Grammar (TAG) (Joshi,
1985), and Combinatory Categorial Grammar (CCG). These approaches differ with
respect to how lexicalized they are — the degree to which they rely on the lexicon
as opposed to phrase structure rules to capture facts about the language.

The following section provides an introduction to CCG, a heavily lexicalized
approach motivated by both syntactic and semantic considerations, which we will
return to in Chapter 15. Chapter 14 discusses dependency grammars, an approach
that eliminates phrase-structure rules entirely.

12.6.1 Combinatory Categorial Grammar
In this section, we provide an overview of categorial grammar (Ajdukiewicz 1935,categorial

grammar
Bar-Hillel 1953), an early lexicalized grammar model, as well as an important mod-
ern extension, combinatory categorial grammar, or CCG (Steedman 1996, Steed-

combinatory
categorial
grammar

man 1989, Steedman 2000).
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The categorial approach consists of three major elements: a set of categories,
a lexicon that associates words with categories, and a set of rules that govern how
categories combine in context.

Categories

Categories are either atomic elements or single-argument functions that return a cat-
egory as a value when provided with a desired category as argument. More formally,
we can define C, a set of categories for a grammar as follows:

• A⊆ C, where A is a given set of atomic elements
• (X/Y), (X\Y) ∈ C, if X, Y ∈ C

The slash notation shown here is used to define the functions in the grammar.
It specifies the type of the expected argument, the direction it is expected be found,
and the type of the result. Thus, (X/Y) is a function that seeks a constituent of type
Y to its right and returns a value of X; (X\Y) is the same except it seeks its argument
to the left.

The set of atomic categories is typically very small and includes familiar el-
ements such as sentences and noun phrases. Functional categories include verb
phrases and complex noun phrases among others.

The Lexicon

The lexicon in a categorial approach consists of assignments of categories to words.
These assignments can either be to atomic or functional categories, and due to lexical
ambiguity words can be assigned to multiple categories. Consider the following
sample lexical entries.

flight : N

Miami : NP

cancel : (S\NP)/NP

Nouns and proper nouns like flight and Miami are assigned to atomic categories,
reflecting their typical role as arguments to functions. On the other hand, a transitive
verb like cancel is assigned the category (S\NP)/NP: a function that seeks an NP on
its right and returns as its value a function with the type (S\NP). This function can,
in turn, combine with an NP on the left, yielding an S as the result. This captures the
kind of subcategorization information discussed in Section 12.3.4, however here the
information has a rich, computationally useful, internal structure.

Ditransitive verbs like give, which expect two arguments after the verb, would
have the category ((S\NP)/NP)/NP: a function that combines with an NP on its
right to yield yet another function corresponding to the transitive verb (S\NP)/NP
category such as the one given above for cancel.

Rules

The rules of a categorial grammar specify how functions and their arguments com-
bine. The following two rule templates constitute the basis for all categorial gram-
mars.

X/Y Y ⇒ X (12.4)

Y X\Y ⇒ X (12.5)
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The first rule applies a function to its argument on the right, while the second
looks to the left for its argument. We’ll refer to the first as forward function appli-
cation, and the second as backward function application. The result of applying
either of these rules is the category specified as the value of the function being ap-
plied.

Given these rules and a simple lexicon, let’s consider an analysis of the sentence
United serves Miami. Assume that serves is a transitive verb with the category
(S\NP)/NP and that United and Miami are both simple NPs. Using both forward
and backward function application, the derivation would proceed as follows:

United serves Miami

NP (S\NP)/NP NP
>

S\NP
<

S

Categorial grammar derivations are illustrated growing down from the words,
rule applications are illustrated with a horizontal line that spans the elements in-
volved, with the type of the operation indicated at the right end of the line. In this
example, there are two function applications: one forward function application indi-
cated by the > that applies the verb serves to the NP on its right, and one backward
function application indicated by the < that applies the result of the first to the NP
United on its left.

With the addition of another rule, the categorial approach provides a straight-
forward way to implement the coordination metarule described earlier on page 244.
Recall that English permits the coordination of two constituents of the same type,
resulting in a new constituent of the same type. The following rule provides the
mechanism to handle such examples.

X CONJ X ⇒ X (12.6)

This rule states that when two constituents of the same category are separated by a
constituent of type CONJ they can be combined into a single larger constituent of
the same type. The following derivation illustrates the use of this rule.

We flew to Geneva and drove to Chamonix

NP (S\NP)/PP PP/NP NP CONJ (S\NP)/PP PP/NP NP
> >

PP PP
> >

S\NP S\NP
<Φ>

S\NP
<

S

Here the two S\NP constituents are combined via the conjunction operator <Φ>

to form a larger constituent of the same type, which can then be combined with the
subject NP via backward function application.

These examples illustrate the lexical nature of the categorial grammar approach.
The grammatical facts about a language are largely encoded in the lexicon, while the
rules of the grammar are boiled down to a set of three rules. Unfortunately, the basic
categorial approach does not give us any more expressive power than we had with
traditional CFG rules; it just moves information from the grammar to the lexicon. To
move beyond these limitations CCG includes operations that operate over functions.
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The first pair of operators permit us to compose adjacent functions.

X/Y Y/Z ⇒ X/Z (12.7)

Y\Z X\Y ⇒ X\Z (12.8)

The first rule, called forward composition, can be applied to adjacent con-forward
composition

stituents where the first is a function seeking an argument of type Y to its right, and
the second is a function that provides Y as a result. This rule allows us to compose
these two functions into a single one with the type of the first constituent and the
argument of the second. Although the notation is a little awkward, the second rule,
backward composition is the same, except that we’re looking to the left instead ofbackward

composition
to the right for the relevant arguments. Both kinds of composition are signalled by a
B in CCG diagrams, accompanied by a < or > to indicate the direction.

The next operator is type raising. Type raising elevates simple categories to thetype raising

status of functions. More specifically, type raising takes a category and converts
it to function that seeks as an argument a function that takes the original category
as its argument. The following schema show two versions of type raising: one for
arguments to the right, and one for the left.

X ⇒ T/(T\X) (12.9)

X ⇒ T\(T/X) (12.10)

The category T in these rules can correspond to any of the atomic or functional
categories already present in the grammar.

A particularly useful example of type raising transforms a simple NP argument
in subject position to a function that can compose with a following VP. To see how
this works, let’s revisit our earlier example of United serves Miami. Instead of clas-
sifying United as an NP which can serve as an argument to the function attached to
serve, we can use type raising to reinvent it as a function in its own right as follows.

NP ⇒ S/(S\NP)

Combining this type-raised constituent with the forward composition rule (12.7)
permits the following alternative to our previous derivation.

United serves Miami

NP (S\NP)/NP NP
>T

S/(S\NP)
>B

S/NP
>

S
By type raising United to S/(S\NP), we can compose it with the transitive verb
serves to yield the (S/NP) function needed to complete the derivation.

There are several interesting things to note about this derivation. First, it pro-
vides a left-to-right, word-by-word derivation that more closely mirrors the way
humans process language. This makes CCG a particularly apt framework for psy-
cholinguistic studies. Second, this derivation involves the use of an intermediate
unit of analysis, United serves, that does not correspond to a traditional constituent
in English. This ability to make use of such non-constituent elements provides CCG
with the ability to handle the coordination of phrases that are not proper constituents,
as in the following example.

(12.11) We flew IcelandAir to Geneva and SwissAir to London.
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Here, the segments that are being coordinated are IcelandAir to Geneva and
SwissAir to London, phrases that would not normally be considered constituents, as
can be seen in the following standard derivation for the verb phrase flew IcelandAir
to Geneva.

flew IcelandAir to Geneva

(VP/PP)/NP NP PP/NP NP
> >

VP/PP PP
>

VP
In this derivation, there is no single constituent that corresponds to IcelandAir

to Geneva, and hence no opportunity to make use of the <Φ> operator. Note that
complex CCG categories can get a little cumbersome, so we’ll use VP as a shorthand
for (S\NP) in this and the following derivations.

The following alternative derivation provides the required element through the
use of both backward type raising (12.10) and backward function composition (12.8).

flew IcelandAir to Geneva

(V P/PP)/NP NP PP/NP NP
<T >

(V P/PP)\((V P/PP)/NP) PP
<T

V P\(V P/PP)
<B

V P\((V P/PP)/NP)
<

V P
Applying the same analysis to SwissAir to London satisfies the requirements

for the <Φ> operator, yielding the following derivation for our original example
(12.11).

flew IcelandAir to Geneva and SwissAir to London

(V P/PP)/NP NP PP/NP NP CONJ NP PP/NP NP
<T > <T >

(V P/PP)\((V P/PP)/NP) PP (V P/PP)\((V P/PP)/NP) PP
<T <T

V P\(V P/PP) V P\(V P/PP)
< <

V P\((V P/PP)/NP) V P\((V P/PP)/NP)
<Φ>

V P\((V P/PP)/NP)
<

V P

Finally, let’s examine how these advanced operators can be used to handle long-
distance dependencies (also referred to as syntactic movement or extraction). As
mentioned in Section 12.3.1, long-distance dependencies arise from many English
constructions including wh-questions, relative clauses, and topicalization. What
these constructions have in common is a constituent that appears somewhere dis-
tant from its usual, or expected, location. Consider the following relative clause as
an example.

the flight that United diverted

Here, divert is a transitive verb that expects two NP arguments, a subject NP to its
left and a direct object NP to its right; its category is therefore (S\NP)/NP. However,
in this example the direct object the flight has been “moved” to the beginning of the
clause, while the subject United remains in its normal position. What is needed is a
way to incorporate the subject argument, while dealing with the fact that the flight is
not in its expected location.

The following derivation accomplishes this, again through the combined use of
type raising and function composition.
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the flight that United diverted

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP

As we saw with our earlier examples, the first step of this derivation is type raising
United to the category S/(S\NP) allowing it to combine with diverted via forward
composition. The result of this composition is S/NP which preserves the fact that we
are still looking for an NP to fill the missing direct object. The second critical piece
is the lexical category assigned to the word that: (NP\NP)/(S/NP). This function
seeks a verb phrase missing an argument to its right, and transforms it into an NP
seeking a missing element to its left, precisely where we find the flight.

CCGBank

As with phrase-structure approaches, treebanks play an important role in CCG-
based approaches to parsing. CCGBank (Hockenmaier and Steedman, 2007) is the
largest and most widely used CCG treebank. It was created by automatically trans-
lating phrase-structure trees from the Penn Treebank via a rule-based approach. The
method produced successful translations of over 99% of the trees in the Penn Tree-
bank resulting in 48,934 sentences paired with CCG derivations. It also provides a
lexicon of 44,000 words with over 1200 categories. Appendix C will discuss how
these resources can be used to train CCG parsers.

12.7 Summary

This chapter has introduced a number of fundamental concepts in syntax through
the use of context-free grammars.

• In many languages, groups of consecutive words act as a group or a con-
stituent, which can be modeled by context-free grammars (which are also
known as phrase-structure grammars).

• A context-free grammar consists of a set of rules or productions, expressed
over a set of non-terminal symbols and a set of terminal symbols. Formally,
a particular context-free language is the set of strings that can be derived
from a particular context-free grammar.

• A generative grammar is a traditional name in linguistics for a formal lan-
guage that is used to model the grammar of a natural language.

• There are many sentence-level grammatical constructions in English; declar-
ative, imperative, yes-no question, and wh-question are four common types;
these can be modeled with context-free rules.

• An English noun phrase can have determiners, numbers, quantifiers, and
adjective phrases preceding the head noun, which can be followed by a num-
ber of postmodifiers; gerundive and infinitive VPs are common possibilities.

• Subjects in English agree with the main verb in person and number.
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• Verbs can be subcategorized by the types of complements they expect. Sim-
ple subcategories are transitive and intransitive; most grammars include
many more categories than these.

• Treebanks of parsed sentences exist for many genres of English and for many
languages. Treebanks can be searched with tree-search tools.

• Any context-free grammar can be converted to Chomsky normal form, in
which the right-hand side of each rule has either two non-terminals or a single
terminal.

• Lexicalized grammars place more emphasis on the structure of the lexicon,
lessening the burden on pure phrase-structure rules.

• Combinatorial categorial grammar (CCG) is an important computationally
relevant lexicalized approach.

Bibliographical and Historical Notes
According to Percival (1976), the idea of breaking up a sentence into a hierarchy of
constituents appeared in the Völkerpsychologie of the groundbreaking psychologist
Wilhelm Wundt (Wundt, 1900):

...den sprachlichen Ausdruck für die willkürliche Gliederung einer Ge-
sammtvorstellung in ihre in logische Beziehung zueinander gesetzten
Bestandteile

[the linguistic expression for the arbitrary division of a total idea
into its constituent parts placed in logical relations to one another]

Wundt’s idea of constituency was taken up into linguistics by Leonard Bloom-
field in his early book An Introduction to the Study of Language (Bloomfield, 1914).
By the time of his later book, Language (Bloomfield, 1933), what was then called
“immediate-constituent analysis” was a well-established method of syntactic study
in the United States. By contrast, traditional European grammar, dating from the
Classical period, defined relations between words rather than constituents, and Eu-
ropean syntacticians retained this emphasis on such dependency grammars, the sub-
ject of Chapter 14.

American Structuralism saw a number of specific definitions of the immediate
constituent, couched in terms of their search for a “discovery procedure”: a method-
ological algorithm for describing the syntax of a language. In general, these attempt
to capture the intuition that “The primary criterion of the immediate constituent is the
degree in which combinations behave as simple units” (Bazell, 1966, p. 284). The
most well known of the specific definitions is Harris’ idea of distributional similarity
to individual units, with the substitutability test. Essentially, the method proceeded
by breaking up a construction into constituents by attempting to substitute simple
structures for possible constituents—if a substitution of a simple form, say, man,
was substitutable in a construction for a more complex set (like intense young man),
then the form intense young man was probably a constituent. Harris’s test was the
beginning of the intuition that a constituent is a kind of equivalence class.

The first formalization of this idea of hierarchical constituency was the phrase-
structure grammar defined in Chomsky (1956) and further expanded upon (and
argued against) in Chomsky (1957) and Chomsky (1975). From this time on, most
generative linguistic theories were based at least in part on context-free grammars or
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generalizations of them (such as Head-Driven Phrase Structure Grammar (Pollard
and Sag, 1994), Lexical-Functional Grammar (Bresnan, 1982), the Minimalist Pro-
gram (Chomsky, 1995), and Construction Grammar (Kay and Fillmore, 1999), inter
alia); many of these theories used schematic context-free templates known as X-bar
schemata, which also relied on the notion of syntactic head.X-bar

schemata
Shortly after Chomsky’s initial work, the context-free grammar was reinvented

by Backus (1959) and independently by Naur et al. (1960) in their descriptions of
the ALGOL programming language; Backus (1996) noted that he was influenced by
the productions of Emil Post and that Naur’s work was independent of his (Backus’)
own. After this early work, a great number of computational models of natural
language processing were based on context-free grammars because of the early de-
velopment of efficient algorithms to parse these grammars (see Chapter 13).

Thre are various classes of extensions to CFGs, many designed to handle long-
distance dependencies in the syntax. (Other grammars instead treat long-distance-
dependent items as being related semantically rather than syntactically (Kay and
Fillmore 1999, Culicover and Jackendoff 2005).

One extended formalism is Tree Adjoining Grammar (TAG) (Joshi, 1985).
The primary TAG data structure is the tree, rather than the rule. Trees come in two
kinds: initial trees and auxiliary trees. Initial trees might, for example, represent
simple sentential structures, and auxiliary trees add recursion into a tree. Trees are
combined by two operations called substitution and adjunction. The adjunction
operation handles long-distance dependencies. See Joshi (1985) for more details.
Tree Adjoining Grammar is a member of the family of mildly context-sensitive
languages.

We mentioned on page 245 another way of handling long-distance dependencies,
based on the use of empty categories and co-indexing. The Penn Treebank uses
this model, which draws (in various Treebank corpora) from the Extended Standard
Theory and Minimalism (Radford, 1997).

Readers interested in the grammar of English should get one of the three large
reference grammars of English: Huddleston and Pullum (2002), Biber et al. (1999),
and Quirk et al. (1985).

There are many good introductory textbooks on syntax from different perspec-
tives. Sag et al. (2003) is an introduction to syntax from a generative perspective,generative

focusing on the use of phrase-structure rules, unification, and the type hierarchy in
Head-Driven Phrase Structure Grammar. Van Valin, Jr. and La Polla (1997) is an
introduction from a functional perspective, focusing on cross-linguistic data and onfunctional

the functional motivation for syntactic structures.

Exercises
12.1 Draw tree structures for the following ATIS phrases:

1. Dallas
2. from Denver
3. after five p.m.
4. arriving in Washington
5. early flights
6. all redeye flights
7. on Thursday
8. a one-way fare
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9. any delays in Denver

12.2 Draw tree structures for the following ATIS sentences:

1. Does American Airlines have a flight between five a.m. and six a.m.?
2. I would like to fly on American Airlines.
3. Please repeat that.
4. Does American 487 have a first-class section?
5. I need to fly between Philadelphia and Atlanta.
6. What is the fare from Atlanta to Denver?
7. Is there an American Airlines flight from Philadelphia to Dallas?

12.3 Assume a grammar that has many VP rules for different subcategorizations,
as expressed in Section 12.3.4, and differently subcategorized verb rules like
Verb-with-NP-complement. How would the rule for postnominal relative clauses
(12.4) need to be modified if we wanted to deal properly with examples like
the earliest flight that you have? Recall that in such examples the pronoun
that is the object of the verb get. Your rules should allow this noun phrase but
should correctly rule out the ungrammatical S *I get.

12.4 Does your solution to the previous problem correctly model the NP the earliest
flight that I can get? How about the earliest flight that I think my mother
wants me to book for her? Hint: this phenomenon is called long-distance
dependency.

12.5 Write rules expressing the verbal subcategory of English auxiliaries; for ex-
ample, you might have a rule verb-with-bare-stem-VP-complement→ can.

12.6 NPs like Fortune’s office or my uncle’s marks are called possessive or genitivepossessive

genitive noun phrases. We can model possessive noun phrases by treating the sub-NP
like Fortune’s or my uncle’s as a determiner of the following head noun. Write
grammar rules for English possessives. You may treat ’s as if it were a separate
word (i.e., as if there were always a space before ’s).

12.7 Page 238 discussed the need for a Wh-NP constituent. The simplest Wh-NP
is one of the Wh-pronouns (who, whom, whose, which). The Wh-words what
and which can be determiners: which four will you have?, what credit do you
have with the Duke? Write rules for the different types of Wh-NPs.

12.8 Write an algorithm for converting an arbitrary context-free grammar into Chom-
sky normal form.



CHAPTER

13 Constituency Parsing

One morning I shot an elephant in my pajamas.
How he got into my pajamas I don’t know.

Groucho Marx, Animal Crackers, 1930

Syntactic parsing is the task of assigning a syntactic structure to a sentence. This
chapter focuses on constituency structures, those assigned by context-free grammars
of the kind described in Chapter 12. In the next chapter we’ll introduce dependency
parses, an alternative kind of parse structure,

Parse trees can be used in applications such as grammar checking: sentence that
cannot be parsed may have grammatical errors (or at least be hard to read). Parse
trees can be an intermediate stage of representation for semantic analysis (as we
show in Chapter 16) and thus play a role in applications like question answering.
For example to answer the question

Which flights to Denver depart before the Seattle flight?

we’ll need to know that the questioner wants a list of flights going to Denver, not
flights going to Seattle, and parse structure (knowing that to Denver modifies flights,
and which flights to Denver is the subject of the depart) can help us.

We begin by discussing ambiguity and the problems it presents, and then give
the Cocke-Kasami-Younger (CKY) algorithm (Kasami 1965, Younger 1967), the
standard dynamic programming approach to syntactic parsing. We’ve already seen
other dynamic programming algorithms like minimum edit distance (Chapter 2) and
Viterbi (Chapter 8).

The vanilla CKY algorithm returns an efficient representation of the set of parse
trees for a sentence, but doesn’t tell us which parse tree is the right one. For that,
we need to augment CKY with scores for each possible constituent. We’ll see how
to do this with neural span-based parsers. And we’ll introduce other methods like
supertagging for parsing CCG, partial parsing methods, for use in situations in
which a superficial syntactic analysis of an input may be sufficient, and the standard
set of metrics for evaluating parser accuracy.

13.1 Ambiguity

Ambiguity is the most serious problem faced by syntactic parsers. Chapter 8 intro-
duced the notions of part-of-speech ambiguity and part-of-speech disambigua-
tion. Here, we introduce a new kind of ambiguity, called structural ambiguity,structural

ambiguity
illustrated with a new toy grammar L1, shown in Figure 13.1, which adds a few
rules to the L0 grammar from the last chapter.

Structural ambiguity occurs when the grammar can assign more than one parse
to a sentence. Groucho Marx’s well-known line as Captain Spaulding in Animal
Crackers is ambiguous because the phrase in my pajamas can be part of the NP
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Grammar Lexicon
S → NP VP Det → that | this | the | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | NWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP
Figure 13.1 The L1 miniature English grammar and lexicon.

S

VP

NP

Nominal

PP

in my pajamas

Nominal

Noun

elephant

Det

an

Verb

shot

NP

Pronoun

I

S

VP

PP

in my pajamas

VP

NP

Nominal

Noun

elephant

Det

an

Verb

shot

NP

Pronoun

I

Figure 13.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous
reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which
Captain Spaulding did the shooting in his pajamas.

headed by elephant or a part of the verb phrase headed by shot. Figure 13.2 illus-
trates these two analyses of Marx’s line using rules from L1.

Structural ambiguity, appropriately enough, comes in many forms. Two common
kinds of ambiguity are attachment ambiguity and coordination ambiguity. A
sentence has an attachment ambiguity if a particular constituent can be attached toattachment

ambiguity
the parse tree at more than one place. The Groucho Marx sentence is an example of
PP-attachment ambiguity. Various kinds of adverbial phrases are also subject to this
kind of ambiguity. For instance, in the following example the gerundive-VP flying
to Paris can be part of a gerundive sentence whose subject is the Eiffel Tower or it
can be an adjunct modifying the VP headed by saw:

(13.1) We saw the Eiffel Tower flying to Paris.

In coordination ambiguity phrases can be conjoined by a conjunction like and.coordination
ambiguity
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For example, the phrase old men and women can be bracketed as [old [men and
women]], referring to old men and old women, or as [old men] and [women], in
which case it is only the men who are old. These ambiguities combine in complex
ways in real sentences, like the following news sentence from the Brown corpus:

(13.2) President Kennedy today pushed aside other White House business to
devote all his time and attention to working on the Berlin crisis address he
will deliver tomorrow night to the American people over nationwide
television and radio.

This sentence has a number of ambiguities, although since they are semantically
unreasonable, it requires a careful reading to see them. The last noun phrase could be
parsed [nationwide [television and radio]] or [[nationwide television] and radio].
The direct object of pushed aside should be other White House business but could
also be the bizarre phrase [other White House business to devote all his time and
attention to working] (i.e., a structure like Kennedy affirmed [his intention to propose
a new budget to address the deficit]). Then the phrase on the Berlin crisis address he
will deliver tomorrow night to the American people could be an adjunct modifying
the verb pushed. A PP like over nationwide television and radio could be attached
to any of the higher VPs or NPs (e.g., it could modify people or night).

The fact that there are many grammatically correct but semantically unreason-
able parses for naturally occurring sentences is an irksome problem that affects all
parsers. Fortunately, the CKY algorithm below is designed to efficiently handle
structural ambiguities. And as we’ll see in the following section, we can augment
CKY with neural methods to choose a single correct parse by syntactic disambigua-
tion.syntactic

disambiguation

13.2 CKY Parsing: A Dynamic Programming Approach

Dynamic programming provides a powerful framework for addressing the prob-
lems caused by ambiguity in grammars. Recall that a dynamic programming ap-
proach systematically fills in a table of solutions to sub-problems. The complete ta-
ble has the solution to all the sub-problems needed to solve the problem as a whole.
In the case of syntactic parsing, these sub-problems represent parse trees for all the
constituents detected in the input.

The dynamic programming advantage arises from the context-free nature of our
grammar rules — once a constituent has been discovered in a segment of the input
we can record its presence and make it available for use in any subsequent derivation
that might require it. This provides both time and storage efficiencies since subtrees
can be looked up in a table, not reanalyzed. This section presents the Cocke-Kasami-
Younger (CKY) algorithm, the most widely used dynamic-programming based ap-
proach to parsing. Chart parsing (Kaplan 1973, Kay 1982) is a related approach,
and dynamic programming methods are often referred to as chart parsing methods.chart parsing

13.2.1 Conversion to Chomsky Normal Form
The CKY algorithm requires grammars to first be in Chomsky Normal Form (CNF).
Recall from Chapter 12 that grammars in CNF are restricted to rules of the form
A → B C or A → w. That is, the right-hand side of each rule must expand either to
two non-terminals or to a single terminal. Restricting a grammar to CNF does not
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lead to any loss in expressiveness, since any context-free grammar can be converted
into a corresponding CNF grammar that accepts exactly the same set of strings as
the original grammar.

Let’s start with the process of converting a generic CFG into one represented in
CNF. Assuming we’re dealing with an ε-free grammar, there are three situations we
need to address in any generic grammar: rules that mix terminals with non-terminals
on the right-hand side, rules that have a single non-terminal on the right-hand side,
and rules in which the length of the right-hand side is greater than 2.

The remedy for rules that mix terminals and non-terminals is to simply introduce
a new dummy non-terminal that covers only the original terminal. For example, a
rule for an infinitive verb phrase such as INF-VP → to VP would be replaced by the
two rules INF-VP → TO VP and TO → to.

Rules with a single non-terminal on the right are called unit productions. WeUnit
productions

can eliminate unit productions by rewriting the right-hand side of the original rules
with the right-hand side of all the non-unit production rules that they ultimately lead
to. More formally, if A ∗⇒ B by a chain of one or more unit productions and B→ γ

is a non-unit production in our grammar, then we add A→ γ for each such rule in
the grammar and discard all the intervening unit productions. As we demonstrate
with our toy grammar, this can lead to a substantial flattening of the grammar and a
consequent promotion of terminals to fairly high levels in the resulting trees.

Rules with right-hand sides longer than 2 are normalized through the introduc-
tion of new non-terminals that spread the longer sequences over several new rules.
Formally, if we have a rule like

A → B C γ

we replace the leftmost pair of non-terminals with a new non-terminal and introduce
a new production, resulting in the following new rules:

A → X1 γ

X1 → B C

In the case of longer right-hand sides, we simply iterate this process until the of-
fending rule has been replaced by rules of length 2. The choice of replacing the
leftmost pair of non-terminals is purely arbitrary; any systematic scheme that results
in binary rules would suffice.

In our current grammar, the rule S → Aux NP VP would be replaced by the two
rules S → X1 VP and X1 → Aux NP.

The entire conversion process can be summarized as follows:

1. Copy all conforming rules to the new grammar unchanged.
2. Convert terminals within rules to dummy non-terminals.
3. Convert unit productions.
4. Make all rules binary and add them to new grammar.

Figure 13.3 shows the results of applying this entire conversion procedure to
the L1 grammar introduced earlier on page 260. Note that this figure doesn’t show
the original lexical rules; since these original lexical rules are already in CNF, they
all carry over unchanged to the new grammar. Figure 13.3 does, however, show
the various places where the process of eliminating unit productions has, in effect,
created new lexical rules. For example, all the original verbs have been promoted to
both VPs and to Ss in the converted grammar.
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L1 Grammar L1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP
Figure 13.3 L1 Grammar and its conversion to CNF. Note that although they aren’t shown
here, all the original lexical entries from L1 carry over unchanged as well.

13.2.2 CKY Recognition
With our grammar now in CNF, each non-terminal node above the part-of-speech
level in a parse tree will have exactly two daughters. A two-dimensional matrix can
be used to encode the structure of an entire tree. For a sentence of length n, we will
work with the upper-triangular portion of an (n+1)× (n+1) matrix. Each cell [i, j]
in this matrix contains the set of non-terminals that represent all the constituents that
span positions i through j of the input. Since our indexing scheme begins with 0, it’s
natural to think of the indexes as pointing at the gaps between the input words (as in
0 Book 1 that 2 flight 3). These gaps are often called fenceposts, on the metaphor offenceposts

the posts between segments of fencing. It follows then that the cell that represents
the entire input resides in position [0,n] in the matrix.

Since each non-terminal entry in our table has two daughters in the parse, it fol-
lows that for each constituent represented by an entry [i, j], there must be a position
in the input, k, where it can be split into two parts such that i < k < j. Given such
a position k, the first constituent [i,k] must lie to the left of entry [i, j] somewhere
along row i, and the second entry [k, j] must lie beneath it, along column j.

To make this more concrete, consider the following example with its completed
parse matrix, shown in Fig. 13.4.

(13.3) Book the flight through Houston.

The superdiagonal row in the matrix contains the parts of speech for each word in
the input. The subsequent diagonals above that superdiagonal contain constituents
that cover all the spans of increasing length in the input.

Given this setup, CKY recognition consists of filling the parse table in the right
way. To do this, we’ll proceed in a bottom-up fashion so that at the point where
we are filling any cell [i, j], the cells containing the parts that could contribute to
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Book the flight through Houston

S, VP, Verb, 
Nominal, 
Noun

S,VP,X2 S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Figure 13.4 Completed parse table for Book the flight through Houston.

this entry (i.e., the cells to the left and the cells below) have already been filled.
The algorithm given in Fig. 13.5 fills the upper-triangular matrix a column at a time
working from left to right, with each column filled from bottom to top, as the right
side of Fig. 13.4 illustrates. This scheme guarantees that at each point in time we
have all the information we need (to the left, since all the columns to the left have
already been filled, and below since we’re filling bottom to top). It also mirrors on-
line processing, since filling the columns from left to right corresponds to processing
each word one at a time.

function CKY-PARSE(words, grammar) returns table

for j← from 1 to LENGTH(words) do
for all {A | A → words[ j] ∈ grammar}

table[ j−1, j]← table[ j−1, j] ∪ A
for i← from j−2 down to 0 do

for k← i+1 to j−1 do
for all {A | A → BC ∈ grammar and B ∈ table[i,k] and C ∈ table[k, j]}

table[i,j]← table[i,j] ∪ A

Figure 13.5 The CKY algorithm.

The outermost loop of the algorithm given in Fig. 13.5 iterates over the columns,
and the second loop iterates over the rows, from the bottom up. The purpose of the
innermost loop is to range over all the places where a substring spanning i to j in
the input might be split in two. As k ranges over the places where the string can be
split, the pairs of cells we consider move, in lockstep, to the right along row i and
down along column j. Figure 13.6 illustrates the general case of filling cell [i, j]. At
each such split, the algorithm considers whether the contents of the two cells can be
combined in a way that is sanctioned by a rule in the grammar. If such a rule exists,
the non-terminal on its left-hand side is entered into the table.

Figure 13.7 shows how the five cells of column 5 of the table are filled after the
word Houston is read. The arrows point out the two spans that are being used to add
an entry to the table. Note that the action in cell [0,5] indicates the presence of three
alternative parses for this input, one where the PP modifies the flight, one where
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...

...

[0,n]

[i,i+1] [i,i+2] [i,j-2] [i,j-1]

[i+1,j]

[i+2,j]

[j-1,j]

[j-2,j]

[i,j]

...

[0,1]

[n-1, n]

Figure 13.6 All the ways to fill the [i, j]th cell in the CKY table.

it modifies the booking, and one that captures the second argument in the original
VP→ Verb NP PP rule, now captured indirectly with the VP→ X2 PP rule.

13.2.3 CKY Parsing

The algorithm given in Fig. 13.5 is a recognizer, not a parser; for it to succeed, it
simply has to find an S in cell [0,n]. To turn it into a parser capable of returning all
possible parses for a given input, we can make two simple changes to the algorithm:
the first change is to augment the entries in the table so that each non-terminal is
paired with pointers to the table entries from which it was derived (more or less as
shown in Fig. 13.7), the second change is to permit multiple versions of the same
non-terminal to be entered into the table (again as shown in Fig. 13.7). With these
changes, the completed table contains all the possible parses for a given input. Re-
turning an arbitrary single parse consists of choosing an S from cell [0,n] and then
recursively retrieving its component constituents from the table.

Returning every parse for a sentence may not be useful, since there may be an
exponential number of parses. We’ll see in the next section how to retrieve only the
best parse.
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Figure 13.7 Filling the cells of column 5 after reading the word Houston.
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13.2.4 CKY in Practice
Finally, we should note that while the restriction to CNF does not pose a prob-
lem theoretically, it does pose some non-trivial problems in practice. Obviously, as
things stand now, our parser isn’t returning trees that are consistent with the grammar
given to us by our friendly syntacticians. In addition to making our grammar devel-
opers unhappy, the conversion to CNF will complicate any syntax-driven approach
to semantic analysis.

One approach to getting around these problems is to keep enough information
around to transform our trees back to the original grammar as a post-processing step
of the parse. This is trivial in the case of the transformation used for rules with length
greater than 2. Simply deleting the new dummy non-terminals and promoting their
daughters restores the original tree.

In the case of unit productions, it turns out to be more convenient to alter the ba-
sic CKY algorithm to handle them directly than it is to store the information needed
to recover the correct trees. Exercise 13.3 asks you to make this change. Many of
the probabilistic parsers presented in Appendix C use the CKY algorithm altered in
just this manner.

13.3 Span-Based Neural Constituency Parsing

While the CKY parsing algorithm we’ve seen so far does great at enumerating all
the possible parse trees for a sentence, it has a large problem: it doesn’t tell us which
parse is the correct one! That is, it doesn’t disambiguate among the possible parses.
To solve the disambiguation problem we’ll use a simple neural extension of the
CKY algorithm. The intuition of such parsing algorithms (often called span-based
constituency parsing, or neural CKY), is to train a neural classifier to assign a
score to each constituent, and then use a modified version of CKY to combine these
constituent scores to find the best-scoring parse tree. Here we’ll describe a version
of the algorithm from Kitaev et al. (2019).

13.3.1 Computing Scores for a Span
Let’s begin by considering just the constituent (we’ll call it a span) that lies betweenspan

fencepost positions i and j with non-terminal symbol label l. We’ll build a classifier
to assign a score s(i, j, l) to this constituent span.

Fig. 13.8 sketches the architecture. The input word tokens are embedded by
passing them through a pretrained language model like BERT. Because BERT oper-
ates on the level of subword (wordpiece) tokens rather than words, we’ll first need to
convert the BERT outputs to word representations. One standard way of doing this
is to simply use the last subword unit as the representation for the word (using the
first subword unit seems to work equivalently well). The embeddings can then be
passed through some postprocessing layers; Kitaev et al. (2019), for example, use 8
Transformer layers.

The resulting word encoder outputs yt are then use to compute a span score.
First, we must map the word encodings (indexed by word positions) to span encod-
ings (indexed by fenceposts). We do this by representing each fencepost with two
separate values; the intuition is that a span endpoint to the right of a word represents
different information than a span endpoint to the left of a word. We convert each
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BERT

[START] Book the flight through Houston [END]

map to subwords

map back to words

0 1 32 4 5

MLP

i=1
hj-hi

j=3

NP

Compute score for span

Represent span

CKY for computing best parse

postprocessing layers

Figure 13.8 A simplified outline of computing the span score for the span the flight with
the label NP.

word output yt into a (leftward-pointing) value for spans ending at this fencepost,−→y t , and a (rightward-pointing) value ←−y t for spans beginning at this fencepost, by
splitting yt into two halves. Each span then stretches from one double-vector fence-
post to another, as in the following representation of the flight, which is span(1,3):

START0 Book the flight through
y0
−→y0
←−y1 y1

−→y1
←−y2 y2

−→y2
←−y3 y3

−→y3
←−y4 y4

−→y4
←−y5 . . .

0© 1© 2© 3© 4©

span(1,3)

A traditional way to represent a span, developed originally for RNN-based models
(Wang and Chang, 2016), but extended also to Transformers, is to take the differ-
ence between the embeddings of its start and end, i.e., representing span (i, j) by
subtracting the embedding of i from the embedding of j. Here we represent a span
by concatenating the difference of each of its fencepost components:

v(i, j) = [−→y j −−→yi ; ←−−y j+1−←−−yi+1] (13.4)

The span vector v is then passed through an MLP span classifier, with two fully-
connected layers and one ReLU activation function, whose output dimensionality is
the number of possible non-terminal labels:

s(i, j, ·) =W2 ReLU(LayerNorm(W1v(i, j))) (13.5)

The MLP then outputs a score for each possible non-terminal.

13.3.2 Integrating Span Scores into a Parse
Now we have a score for each labeled constituent span s(i, j, l). But we need a score
for an entire parse tree. Formally a tree T is represented as a set of |T | such labeled
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spans, with the t th span starting at position it and ending at position jt , with label lt :

T = {(it , jt , lt) : t = 1, . . . , |T |} (13.6)

Thus once we have a score for each span, the parser can compute a score for the
whole tree s(T ) simply by summing over the scores of its constituent spans:

s(T ) =
∑

(i, j,l)∈T

s(i, j, l) (13.7)

And we can choose the final parse tree as the tree with the maximum score:

T̂ = argmax
T

s(T ) (13.8)

The simplest method to produce the most likely parse is to greedily choose the
highest scoring label for each span. This greedy method is not guaranteed to produce
a tree, since the best label for a span might not fit into a complete tree. In practice,
however, the greedy method tends to find trees; in their experiments Gaddy et al.
(2018) finds that 95% of predicted bracketings form valid trees.

Nonetheless it is more common to use a variant the CKY algorithm to find the
full parse. The variant defined in Gaddy et al. (2018) works as follows. Let’s define
sbest(i, j) as the score of the best subtree spanning (i, j). For spans of length one, we
choose the best label:

sbest(i, i+1) = max
l

s(i, i+1, l) (13.9)

For other spans (i, j), the recursion is:

sbest(i, j) = max
l

s(i, j, l)

+ max
k

[sbest(i,k)+ sbest(k, j)] (13.10)

For more details on span-based parsing, including the margin-based training al-
gorithm, see Stern et al. (2017), Gaddy et al. (2018), Kitaev and Klein (2018), and
Kitaev et al. (2019).

13.4 Evaluating Parsers

The standard tool for evaluating parsers that assign a single parse tree to a sentence
is the PARSEVAL metrics (Black et al., 1991). The PARSEVAL metric measuresPARSEVAL

how much the constituents in the hypothesis parse tree look like the constituents in a
hand-labeled, reference parse. PARSEVAL thus requires a human-labeled reference
(or “gold standard”) parse tree for each sentence in the test set; we generally draw
these reference parses from a treebank like the Penn Treebank.

A constituent in a hypothesis parse Ch of a sentence s is labeled correct if there
is a constituent in the reference parse Cr with the same starting point, ending point,
and non-terminal symbol. We can then measure the precision and recall just as for
tasks we’ve seen already like named entity tagging:

labeled recall: = # of correct constituents in hypothesis parse of s
# of correct constituents in reference parse of s
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labeled precision: = # of correct constituents in hypothesis parse of s
# of total constituents in hypothesis parse of s

As usual, we often report a combination of the two, F1:

F1 =
2PR

P+R
(13.11)

We additionally use a new metric, crossing brackets, for each sentence s:

cross-brackets: the number of constituents for which the reference parse has a
bracketing such as ((A B) C) but the hypothesis parse has a bracketing such
as (A (B C)).

For comparing parsers that use different grammars, the PARSEVAL metric in-
cludes a canonicalization algorithm for removing information likely to be grammar-
specific (auxiliaries, pre-infinitival “to”, etc.) and for computing a simplified score
(Black et al., 1991). The canonical implementation of the PARSEVAL metrics is
called evalb (Sekine and Collins, 1997).evalb

13.5 Partial Parsing

Many language processing tasks do not require complex, complete parse trees for all
inputs. For these tasks, a partial parse, or shallow parse, of input sentences may bepartial parse

shallow parse sufficient. For example, information extraction systems generally do not extract all
the possible information from a text: they simply identify and classify the segments
in a text that are likely to contain valuable information.

One kind of partial parsing is known as chunking. Chunking is the processchunking

of identifying and classifying the flat, non-overlapping segments of a sentence that
constitute the basic non-recursive phrases corresponding to the major content-word
parts-of-speech: noun phrases, verb phrases, adjective phrases, and prepositional
phrases. The task of finding all the base noun phrases in a text is particularly com-
mon. Since chunked texts lack a hierarchical structure, a simple bracketing notation
is sufficient to denote the location and the type of the chunks in a given example:

(13.12) [NP The morning flight] [PP from] [NP Denver] [VP has arrived.]

This bracketing notation makes clear the two fundamental tasks that are involved
in chunking: segmenting (finding the non-overlapping extents of the chunks) and
labeling (assigning the correct tag to the discovered chunks). Some input words
may not be part of any chunk, particularly in tasks like base NP:

(13.13) [NP The morning flight] from [NP Denver] has arrived.

What constitutes a syntactic base phrase depends on the application (and whether
the phrases come from a treebank). Nevertheless, some standard guidelines are fol-
lowed in most systems. First and foremost, base phrases of a given type do not
recursively contain any constituents of the same type. Eliminating this kind of recur-
sion leaves us with the problem of determining the boundaries of the non-recursive
phrases. In most approaches, base phrases include the headword of the phrase, along
with any pre-head material within the constituent, while crucially excluding any
post-head material. Eliminating post-head modifiers obviates the need to resolve
attachment ambiguities. This exclusion does lead to certain oddities, such as PPs
and VPs often consisting solely of their heads. Thus a flight from Indianapolis to
Houston would be reduced to the following:
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(13.14) [NP a flight] [PP from] [NP Indianapolis][PP to][NP Houston]

Chunking Algorithms Chunking is generally done via supervised learning, train-
ing a BIO sequence labeler of the sort we saw in Chapter 8 from annotated training
data. Recall that in BIO tagging, we have a tag for the beginning (B) and inside (I) of
each chunk type, and one for tokens outside (O) any chunk. The following example
shows the bracketing notation of (13.12) on page 270 reframed as a tagging task:

(13.15) The
B NP

morning
I NP

flight
I NP

from
B PP

Denver
B NP

has
B VP

arrived
I VP

The same sentence with only the base-NPs tagged illustrates the role of the O tags.

(13.16) The
B NP

morning
I NP

flight
I NP

from
O

Denver
B NP

has
O

arrived.
O

Since annotation efforts are expensive and time consuming, chunkers usually
rely on existing treebanks like the Penn Treebank, extracting syntactic phrases from
the full parse constituents of a sentence, finding the appropriate heads and then in-
cluding the material to the left of the head, ignoring the text to the right. This is
somewhat error-prone since it relies on the accuracy of the head-finding rules de-
scribed in Chapter 12.

Given a training set, any sequence model can be used to chunk: CRF, RNN,
Transformer, etc. As with the evaluation of named-entity taggers, the evaluation of
chunkers proceeds by comparing chunker output with gold-standard answers pro-
vided by human annotators, using precision, recall, and F1.

13.6 CCG Parsing

Lexicalized grammar frameworks such as CCG pose problems for which the phrase-
based methods we’ve been discussing are not particularly well-suited. To quickly
review, CCG consists of three major parts: a set of categories, a lexicon that asso-
ciates words with categories, and a set of rules that govern how categories combine
in context. Categories can be either atomic elements, such as S and NP, or functions
such as (S\NP)/NP which specifies the transitive verb category. Rules specify how
functions, their arguments, and other functions combine. For example, the following
rule templates, forward and backward function application, specify the way that
functions apply to their arguments.

X/Y Y ⇒ X

Y X\Y ⇒ X

The first rule applies a function to its argument on the right, while the second
looks to the left for its argument. The result of applying either of these rules is the
category specified as the value of the function being applied. For the purposes of
this discussion, we’ll rely on these two rules along with the forward and backward
composition rules and type-raising, as described in Chapter 12.

13.6.1 Ambiguity in CCG
As is always the case in parsing, managing ambiguity is the key to successful CCG
parsing. The difficulties with CCG parsing arise from the ambiguity caused by the
large number of complex lexical categories combined with the very general nature of
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the grammatical rules. To see some of the ways that ambiguity arises in a categorial
framework, consider the following example.

(13.17) United diverted the flight to Reno.

Our grasp of the role of the flight in this example depends on whether the prepo-
sitional phrase to Reno is taken as a modifier of the flight, as a modifier of the entire
verb phrase, or as a potential second argument to the verb divert. In a context-free
grammar approach, this ambiguity would manifest itself as a choice among the fol-
lowing rules in the grammar.

Nominal → Nominal PP

VP → VP PP

VP → Verb NP PP

In a phrase-structure approach we would simply assign the word to to the cate-
gory P allowing it to combine with Reno to form a prepositional phrase. The sub-
sequent choice of grammar rules would then dictate the ultimate derivation. In the
categorial approach, we can associate to with distinct categories to reflect the ways
in which it might interact with other elements in a sentence. The fairly abstract
combinatoric rules would then sort out which derivations are possible. Therefore,
the source of ambiguity arises not from the grammar but rather from the lexicon.

Let’s see how this works by considering several possible derivations for this
example. To capture the case where the prepositional phrase to Reno modifies the
flight, we assign the preposition to the category (NP\NP)/NP, which gives rise to
the following derivation.

United diverted the flight to Reno

NP (S\NP)/NP NP/N N (NP\NP)/NP NP
> >

NP NP\NP
<

NP
>

S\NP
<

S

Here, the category assigned to to expects to find two arguments: one to the right as
with a traditional preposition, and one to the left that corresponds to the NP to be
modified.

Alternatively, we could assign to to the category (S\S)/NP, which permits the
following derivation where to Reno modifies the preceding verb phrase.

United diverted the flight to Reno

NP (S\NP)/NP NP/N N (S\S)/NP NP
> >

NP S\S
>

S\NP
<B

S\NP
<

S

A third possibility is to view divert as a ditransitive verb by assigning it to the
category ((S\NP)/PP)/NP, while treating to Reno as a simple prepositional phrase.
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United diverted the flight to Reno

NP ((S\NP)/PP)/NP NP/N N PP/NP NP
> >

NP PP
>

(S\NP)/PP
>

S\NP
<

S

While CCG parsers are still subject to ambiguity arising from the choice of
grammar rules, including the kind of spurious ambiguity discussed in Chapter 12,
it should be clear that the choice of lexical categories is the primary problem to be
addressed in CCG parsing.

13.6.2 CCG Parsing Frameworks
Since the rules in combinatory grammars are either binary or unary, a bottom-up,
tabular approach based on the CKY algorithm should be directly applicable to CCG
parsing. Unfortunately, the large number of lexical categories available for each
word, combined with the promiscuity of CCG’s combinatoric rules, leads to an ex-
plosion in the number of (mostly useless) constituents added to the parsing table.
The key to managing this explosion of zombie constituents is to accurately assess
and exploit the most likely lexical categories possible for each word — a process
called supertagging.

The following sections describe two approaches to CCG parsing that make use of
supertags. Section 13.6.4, presents an approach that structures the parsing process
as a heuristic search through the use of the A* algorithm. The following section
then briefly describes a more traditional classifier-based approach that manages the
search space complexity through the use of adaptive supertagging — a process that
iteratively considers more and more tags until a parse is found.

13.6.3 Supertagging
Chapter 8 introduced the task of part-of-speech tagging, the process of assigning the
correct lexical category to each word in a sentence. Supertagging is the correspond-supertagging

ing task for highly lexicalized grammar frameworks, where the assigned tags often
dictate much of the derivation for a sentence.

CCG supertaggers rely on treebanks such as CCGbank to provide both the over-
all set of lexical categories as well as the allowable category assignments for each
word in the lexicon. CCGbank includes over 1000 lexical categories, however, in
practice, most supertaggers limit their tagsets to those tags that occur at least 10
times in the training corpus. This results in a total of around 425 lexical categories
available for use in the lexicon. Note that even this smaller number is large in con-
trast to the 45 POS types used by the Penn Treebank tagset.

As with traditional part-of-speech tagging, the standard approach to building a
CCG supertagger is to use supervised machine learning to build a sequence labeler
from hand-annotated training data. To find the most likely sequence of tags given a
sentence, it is most common to use a neural sequence model, either RNN or Trans-
former.

It’s also possible, however, to use the CRF tagging model described in Chapter 8,
using similar features; the current word wi, its surrounding words within l words,
local POS tags and character suffixes, and the supertag from the prior timestep,
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training by maximizing log-likelihood of the training corpus and decoding via the
Viterbi algorithm as described in Chapter 8.

Unfortunately the large number of possible supertags combined with high per-
word ambiguity leads the naive CRF algorithm to error rates that are too high for
practical use in a parser. The single best tag sequence T̂ will typically contain too
many incorrect tags for effective parsing to take place. To overcome this, we instead
return a probability distribution over the possible supertags for each word in the
input. The following table illustrates an example distribution for a simple sentence,
in which each column represents the probability of each supertag for a given word
in the context of the input sentence. The “...” represent all the remaining supertags
possible for each word.

United serves Denver
N/N: 0.4 (S\NP)/NP: 0.8 NP: 0.9
NP: 0.3 N: 0.1 N/N: 0.05
S/S: 0.1 ... ...
S\S: .05

...

To get the probability of each possible word/tag pair, we’ll need to sum the
probabilities of all the supertag sequences that contain that tag at that location. This
can be done with the forward-backward algorithm that is also used to train the CRF,
described in Appendix A.

13.6.4 CCG Parsing using the A* Algorithm
The A* algorithm is a heuristic search method that employs an agenda to find an
optimal solution. Search states representing partial solutions are added to an agenda
based on a cost function, with the least-cost option being selected for further ex-
ploration at each iteration. When a state representing a complete solution is first
selected from the agenda, it is guaranteed to be optimal and the search terminates.

The A* cost function, f (n), is used to efficiently guide the search to a solution.
The f -cost has two components: g(n), the exact cost of the partial solution repre-
sented by the state n, and h(n) a heuristic approximation of the cost of a solution
that makes use of n. When h(n) satisfies the criteria of not overestimating the actual
cost, A* will find an optimal solution. Not surprisingly, the closer the heuristic can
get to the actual cost, the more effective A* is at finding a solution without having
to explore a significant portion of the solution space.

When applied to parsing, search states correspond to edges representing com-
pleted constituents. Each edge specifies a constituent’s start and end positions, its
grammatical category, and its f -cost. Here, the g component represents the current
cost of an edge and the h component represents an estimate of the cost to complete
a derivation that makes use of that edge. The use of A* for phrase structure parsing
originated with Klein and Manning (2003), while the CCG approach presented here
is based on the work of Lewis and Steedman (2014).

Using information from a supertagger, an agenda and a parse table are initial-
ized with states representing all the possible lexical categories for each word in the
input, along with their f -costs. The main loop removes the lowest cost edge from
the agenda and tests to see if it is a complete derivation. If it reflects a complete
derivation it is selected as the best solution and the loop terminates. Otherwise, new
states based on the applicable CCG rules are generated, assigned costs, and entered
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into the agenda to await further processing. The loop continues until a complete
derivation is discovered, or the agenda is exhausted, indicating a failed parse. The
algorithm is given in Fig. 13.9.

function CCG-ASTAR-PARSE(words) returns table or failure

supertags←SUPERTAGGER(words)
for i← from 1 to LENGTH(words) do

for all {A | (words[i], A, score) ∈ supertags}
edge←MAKEEDGE(i−1, i, A, score)
table← INSERTEDGE(table, edge)
agenda← INSERTEDGE(agenda, edge)

loop do
if EMPTY?(agenda) return failure
current←POP(agenda)
if COMPLETEDPARSE?(current) return table
table← INSERTEDGE(chart, edge)
for each rule in APPLICABLERULES(edge) do

successor←APPLY(rule, edge)
if successor not ∈ in agenda or chart

agenda← INSERTEDGE(agenda, successor)
else if successor ∈ agenda with higher cost

agenda←REPLACEEDGE(agenda, successor)

Figure 13.9 A*-based CCG parsing.

Heuristic Functions

Before we can define a heuristic function for our A* search, we need to decide how
to assess the quality of CCG derivations. We’ll make the simplifying assumption
that the probability of a CCG derivation is just the product of the probability of
the supertags assigned to the words in the derivation, ignoring the rules used in the
derivation. More formally, given a sentence S and derivation D that contains supertag
sequence T , we have:

P(D,S) = P(T,S) (13.18)

=

n∏

i=1

P(ti|si) (13.19)

To better fit with the traditional A* approach, we’d prefer to have states scored by
a cost function where lower is better (i.e., we’re trying to minimize the cost of a
derivation). To achieve this, we’ll use negative log probabilities to score deriva-
tions; this results in the following equation, which we’ll use to score completed
CCG derivations.

P(D,S) = P(T,S) (13.20)

=

n∑

i=1

− logP(ti|si) (13.21)

Given this model, we can define our f -cost as follows. The f -cost of an edge is
the sum of two components: g(n), the cost of the span represented by the edge, and
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h(n), the estimate of the cost to complete a derivation containing that edge (these
are often referred to as the inside and outside costs). We’ll define g(n) for an edge
using Equation 13.21. That is, it is just the sum of the costs of the supertags that
comprise the span.

For h(n), we need a score that approximates but never overestimates the actual
cost of the final derivation. A simple heuristic that meets this requirement assumes
that each of the words in the outside span will be assigned its most probable su-
pertag. If these are the tags used in the final derivation, then its score will equal
the heuristic. If any other tags are used in the final derivation the f -cost will be
higher since the new tags must have higher costs, thus guaranteeing that we will not
overestimate.

Putting this all together, we arrive at the following definition of a suitable f -cost
for an edge.

f (wi, j, ti, j) = g(wi, j)+h(wi, j) (13.22)

=

j∑

k=i

− logP(tk|wk)+

i−1∑

k=1

min
t∈tags

(− logP(t|wk))+

N∑

k= j+1

min
t∈tags

(− logP(t|wk))

As an example, consider an edge representing the word serves with the supertag N
in the following example.

(13.23) United serves Denver.

The g-cost for this edge is just the negative log probability of this tag, −log10(0.1),
or 1. The outside h-cost consists of the most optimistic supertag assignments for
United and Denver, which are N/N and NP respectively. The resulting f -cost for
this edge is therefore 1.443.

An Example

Fig. 13.10 shows the initial agenda and the progress of a complete parse for this
example. After initializing the agenda and the parse table with information from the
supertagger, it selects the best edge from the agenda — the entry for United with
the tag N/N and f -cost 0.591. This edge does not constitute a complete parse and is
therefore used to generate new states by applying all the relevant grammar rules. In
this case, applying forward application to United: N/N and serves: N results in the
creation of the edge United serves: N[0,2], 1.795 to the agenda.

Skipping ahead, at the third iteration an edge representing the complete deriva-
tion United serves Denver, S[0,3], .716 is added to the agenda. However, the algo-
rithm does not terminate at this point since the cost of this edge (.716) does not place
it at the top of the agenda. Instead, the edge representing Denver with the category
NP is popped. This leads to the addition of another edge to the agenda (type-raising
Denver). Only after this edge is popped and dealt with does the earlier state repre-
senting a complete derivation rise to the top of the agenda where it is popped, goal
tested, and returned as a solution.

The effectiveness of the A* approach is reflected in the coloring of the states
in Fig. 13.10 as well as the final parsing table. The edges shown in blue (includ-
ing all the initial lexical category assignments not explicitly shown) reflect states in
the search space that never made it to the top of the agenda and, therefore, never
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United serves: N[0,2]
1.795

United: N/N
.591

Denver: N/N
2.494

Denver: N
1.795

serves: N
1.494

United: S\S
1.494

United: S/S
1.1938

United: NP
.716

Denver: NP
.591

serves: (S\NP)/NP
.591

serves Denver: S\NP[1,3]
.591

United serves Denver: S[0,3]
.716

Denver: S/(S\NP)[0,1]
.591

1

2 3

4 5

6

Initial 
Agenda

Goal State

…

S: 0.716

S/NP: 0.591

United serves

[0,1] [0,2] [0,3]

[1,2] [1,3]

[2,3]

N/N: 0.591
NP: 0.716
S/S: 1.1938
S\S: 1.494
…

Denver

(S\NP)/NP: 0.591
N: 1.494
…

NP: 0.591
N: 1.795
N/N: 2.494
…

N: 1.795

Figure 13.10 Example of an A* search for the example “United serves Denver”. The circled numbers on the
blue boxes indicate the order in which the states are popped from the agenda. The costs in each state are based
on f-costs using negative log10 probabilities.

contributed any edges to the final table. This is in contrast to the PCKY approach
where the parser systematically fills the parse table with all possible constituents for
all possible spans in the input, filling the table with myriad constituents that do not
contribute to the final analysis.

13.7 Summary

This chapter introduced constituency parsing. Here’s a summary of the main points:
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• Structural ambiguity is a significant problem for parsers. Common sources
of structural ambiguity include PP-attachment, coordination ambiguity,
and noun-phrase bracketing ambiguity.

• Dynamic programming parsing algorithms, such as CKY, use a table of
partial parses to efficiently parse ambiguous sentences.

• CKY restricts the form of the grammar to Chomsky normal form (CNF).
•
• Parsers are evaluated with three metrics: labeled recall, labeled precision,

and cross-brackets.
• Partial parsing and chunking are methods for identifying shallow syntac-

tic constituents in a text. They are solved by sequence models trained on
syntactically-annotated data.

Bibliographical and Historical Notes
Writing about the history of compilers, Knuth notes:

In this field there has been an unusual amount of parallel discovery of
the same technique by people working independently.

Well, perhaps not unusual, since multiple discovery is the norm in science (see
page ??). But there has certainly been enough parallel publication that this his-
tory errs on the side of succinctness in giving only a characteristic early mention of
each algorithm; the interested reader should see Aho and Ullman (1972).

Bottom-up parsing seems to have been first described by Yngve (1955), who
gave a breadth-first, bottom-up parsing algorithm as part of an illustration of a ma-
chine translation procedure. Top-down approaches to parsing and translation were
described (presumably independently) by at least Glennie (1960), Irons (1961), and
Kuno and Oettinger (1963). Dynamic programming parsing, once again, has a his-
tory of independent discovery. According to Martin Kay (personal communica-
tion), a dynamic programming parser containing the roots of the CKY algorithm
was first implemented by John Cocke in 1960. Later work extended and formalized
the algorithm, as well as proving its time complexity (Kay 1967, Younger 1967,
Kasami 1965). The related well-formed substring table (WFST) seems to haveWFST

been independently proposed by Kuno (1965) as a data structure that stores the re-
sults of all previous computations in the course of the parse. Based on a general-
ization of Cocke’s work, a similar data structure had been independently described
in Kay (1967) (and Kay 1973). The top-down application of dynamic programming
to parsing was described in Earley’s Ph.D. dissertation (Earley 1968, Earley 1970).
Sheil (1976) showed the equivalence of the WFST and the Earley algorithm. Norvig
(1991) shows that the efficiency offered by dynamic programming can be captured
in any language with a memoization function (such as in LISP) simply by wrapping
the memoization operation around a simple top-down parser.

While parsing via cascades of finite-state automata had been common in the
early history of parsing (Harris, 1962), the focus shifted to full CFG parsing quite
soon afterward. Church (1980) argued for a return to finite-state grammars as a
processing model for natural language understanding; other early finite-state parsing
models include Ejerhed (1988).
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The classic reference for parsing algorithms is Aho and Ullman (1972); although
the focus of that book is on computer languages, most of the algorithms have been
applied to natural language. A good programming languages textbook such as Aho
et al. (1986) is also useful.

Exercises
13.1 Implement the algorithm to convert arbitrary context-free grammars to CNF.

Apply your program to the L1 grammar.

13.2 Implement the CKY algorithm and test it with your converted L1 grammar.

13.3 Rewrite the CKY algorithm given in Fig. 13.5 on page 264 so that it can accept
grammars that contain unit productions.

13.4 Discuss the relative advantages and disadvantages of partial versus full pars-
ing.

13.5 Discuss how to augment a parser to deal with input that may be incorrect, for
example, containing spelling errors or mistakes arising from automatic speech
recognition.

13.6 Implement the PARSEVAL metrics described in Section 13.4. Next, use a
parser and a treebank, compare your metrics against a standard implementa-
tion. Analyze the errors in your approach.
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CHAPTER

14 Dependency Parsing

The focus of the two previous chapters has been on context-free grammars and their
use in automatically generating constituent-based representations. Here we present
another family of grammar formalisms called dependency grammars that are quitedependency

grammars
important in contemporary speech and language processing systems. In these for-
malisms, phrasal constituents and phrase-structure rules do not play a direct role.
Instead, the syntactic structure of a sentence is described solely in terms of the words
(or lemmas) in a sentence and an associated set of directed binary grammatical rela-
tions that hold among the words.

The following diagram illustrates a dependency-style analysis using the standard
graphical method favored in the dependency-parsing community.

(14.1)
I prefer the morning flight through Denver

nsubj

dobj

det

nmod

nmod

case

root

Relations among the words are illustrated above the sentence with directed, la-
beled arcs from heads to dependents. We call this a typed dependency structuretyped

dependency
because the labels are drawn from a fixed inventory of grammatical relations. It also
includes a root node that explicitly marks the root of the tree, the head of the entire
structure.

Figure 14.1 shows the same dependency analysis as a tree alongside its corre-
sponding phrase-structure analysis of the kind given in Chapter 12. Note the ab-
sence of nodes corresponding to phrasal constituents or lexical categories in the
dependency parse; the internal structure of the dependency parse consists solely
of directed relations between lexical items in the sentence. These relationships di-
rectly encode important information that is often buried in the more complex phrase-
structure parses. For example, the arguments to the verb prefer are directly linked to
it in the dependency structure, while their connection to the main verb is more dis-
tant in the phrase-structure tree. Similarly, morning and Denver, modifiers of flight,
are linked to it directly in the dependency structure.

A major advantage of dependency grammars is their ability to deal with lan-
guages that are morphologically rich and have a relatively free word order. Forfree word order

example, word order in Czech can be much more flexible than in English; a gram-
matical object might occur before or after a location adverbial. A phrase-structure
grammar would need a separate rule for each possible place in the parse tree where
such an adverbial phrase could occur. A dependency-based approach would just
have one link type representing this particular adverbial relation. Thus, a depen-
dency grammar approach abstracts away from word order information, representing
only the information that is necessary for the parse.

An additional practical motivation for a dependency-based approach is that the
head-dependent relations provide an approximation to the semantic relationship be-
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prefer

flight

Denver

through

morningthe

I

S

VP

NP

Nom

PP

NP

Pro

Denver

P

through

Nom

Noun

flight

Nom

Noun

morning

Det

the

Verb

prefer

NP

Pro

I

Figure 14.1 A dependency-style parse alongside the corresponding constituent-based analysis for I prefer the
morning flight through Denver.

tween predicates and their arguments that makes them directly useful for many ap-
plications such as coreference resolution, question answering and information ex-
traction. Constituent-based approaches to parsing provide similar information, but it
often has to be distilled from the trees via techniques such as the head-finding rules
discussed in Chapter 12.

In the following sections, we’ll discuss in more detail the inventory of relations
used in dependency parsing, as well as the formal basis for these dependency struc-
tures. We’ll then move on to discuss the dominant families of algorithms that are
used to automatically produce these structures. Finally, we’ll discuss how to eval-
uate dependency parsers and point to some of the ways they are used in language
processing applications.

14.1 Dependency Relations

The traditional linguistic notion of grammatical relation provides the basis for thegrammatical
relation

binary relations that comprise these dependency structures. The arguments to these
relations consist of a head and a dependent. We’ve already discussed the notionhead

dependent of heads in Chapter 12 and Appendix C in the context of constituent structures.
There, the head word of a constituent was the central organizing word of a larger
constituent (e.g, the primary noun in a noun phrase, or verb in a verb phrase). The
remaining words in the constituent are either direct, or indirect, dependents of their
head. In dependency-based approaches, the head-dependent relationship is made
explicit by directly linking heads to the words that are immediately dependent on
them, bypassing the need for constituent structures.

In addition to specifying the head-dependent pairs, dependency grammars allow
us to further classify the kinds of grammatical relations, or grammatical function,grammatical

function
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Clausal Argument Relations Description
NSUBJ Nominal subject
DOBJ Direct object
IOBJ Indirect object
CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description
NMOD Nominal modifier
AMOD Adjectival modifier
NUMMOD Numeric modifier
APPOS Appositional modifier
DET Determiner
CASE Prepositions, postpositions and other case markers
Other Notable Relations Description
CONJ Conjunct
CC Coordinating conjunction
Figure 14.2 Selected dependency relations from the Universal Dependency set. (de Marn-
effe et al., 2014)

in terms of the role that the dependent plays with respect to its head. Familiar notions
such as subject, direct object and indirect object are among the kind of relations we
have in mind. In English these notions strongly correlate with, but by no means de-
termine, both position in a sentence and constituent type and are therefore somewhat
redundant with the kind of information found in phrase-structure trees. However, in
more flexible languages the information encoded directly in these grammatical rela-
tions is critical since phrase-based constituent syntax provides little help.

Not surprisingly, linguists have developed taxonomies of relations that go well
beyond the familiar notions of subject and object. While there is considerable vari-
ation from theory to theory, there is enough commonality that efforts to develop a
computationally useful standard are now possible. The Universal DependenciesUniversal

Dependencies
project (Nivre et al., 2016b) provides an inventory of dependency relations that are
linguistically motivated, computationally useful, and cross-linguistically applicable.
Fig. 14.2 shows a subset of the relations from this effort. Fig. 14.3 provides some
example sentences illustrating selected relations.

The motivation for all of the relations in the Universal Dependency scheme is
beyond the scope of this chapter, but the core set of frequently used relations can be
broken into two sets: clausal relations that describe syntactic roles with respect to a
predicate (often a verb), and modifier relations that categorize the ways that words
that can modify their heads.

Consider the following example sentence:

(14.2)
United canceled the morning flights to Houston

nsubj

dobj

det

nmod

nmod

case

root

The clausal relations NSUBJ and DOBJ identify the subject and direct object of
the predicate cancel, while the NMOD, DET, and CASE relations denote modifiers of
the nouns flights and Houston.



14.2 • DEPENDENCY FORMALISMS 283

Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
IOBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.
Figure 14.3 Examples of core Universal Dependency relations.

14.2 Dependency Formalisms

In their most general form, the dependency structures we’re discussing are simply
directed graphs. That is, structures G = (V,A) consisting of a set of vertices V , and
a set of ordered pairs of vertices A, which we’ll refer to as arcs.

For the most part we will assume that the set of vertices, V , corresponds exactly
to the set of words in a given sentence. However, they might also correspond to
punctuation, or when dealing with morphologically complex languages the set of
vertices might consist of stems and affixes. The set of arcs, A, captures the head-
dependent and grammatical function relationships between the elements in V .

Further constraints on these dependency structures are specific to the underlying
grammatical theory or formalism. Among the more frequent restrictions are that the
structures must be connected, have a designated root node, and be acyclic or planar.
Of most relevance to the parsing approaches discussed in this chapter is the common,
computationally-motivated, restriction to rooted trees. That is, a dependency treedependency

tree
is a directed graph that satisfies the following constraints:

1. There is a single designated root node that has no incoming arcs.
2. With the exception of the root node, each vertex has exactly one incoming arc.
3. There is a unique path from the root node to each vertex in V .

Taken together, these constraints ensure that each word has a single head, that the
dependency structure is connected, and that there is a single root node from which
one can follow a unique directed path to each of the words in the sentence.

14.2.1 Projectivity
The notion of projectivity imposes an additional constraint that is derived from the
order of the words in the input. An arc from a head to a dependent is said to be
projective if there is a path from the head to every word that lies between the head
and the dependent in the sentence. A dependency tree is then said to be projective
if all the arcs that make it up are projective. All the dependency trees we’ve seen
thus far have been projective. There are, however, many perfectly valid constructions
which lead to non-projective trees, particularly in languages with a relatively flexible
word order.
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Consider the following example.

(14.3)
JetBlue canceled our flight this morning which was already late

nsubj

dobj

mod

det

nmod

det case

mod

adv

root

In this example, the arc from flight to its modifier was is non-projective since
there is no path from flight to the intervening words this and morning. As we can
see from this diagram, projectivity (and non-projectivity) can be detected in the way
we’ve been drawing our trees. A dependency tree is projective if it can be drawn
with no crossing edges. Here there is no way to link flight to its dependent was
without crossing the arc that links morning to its head.

Our concern with projectivity arises from two related issues. First, the most
widely used English dependency treebanks were automatically derived from phrase-
structure treebanks through the use of head-finding rules (Chapter 12). The trees
generated in such a fashion are guaranteed to be projective since they’re generated
from context-free grammars.

Second, there are computational limitations to the most widely used families of
parsing algorithms. The transition-based approaches discussed in Section 14.4 can
only produce projective trees, hence any sentences with non-projective structures
will necessarily contain some errors. This limitation is one of the motivations for
the more flexible graph-based parsing approach described in Section 14.5.

14.3 Dependency Treebanks

As with constituent-based methods, treebanks play a critical role in the development
and evaluation of dependency parsers. Dependency treebanks have been created
using similar approaches to those discussed in Chapter 12 — having human annota-
tors directly generate dependency structures for a given corpus, or using automatic
parsers to provide an initial parse and then having annotators hand correct those
parsers. We can also use a deterministic process to translate existing constituent-
based treebanks into dependency trees through the use of head rules.

For the most part, directly annotated dependency treebanks have been created for
morphologically rich languages such as Czech, Hindi and Finnish that lend them-
selves to dependency grammar approaches, with the Prague Dependency Treebank
(Bejček et al., 2013) for Czech being the most well-known effort. The major English
dependency treebanks have largely been extracted from existing resources such as
the Wall Street Journal sections of the Penn Treebank (Marcus et al., 1993). The
more recent OntoNotes project (Hovy et al. 2006, Weischedel et al. 2011) extends
this approach going beyond traditional news text to include conversational telephone
speech, weblogs, usenet newsgroups, broadcasts, and talk shows in English, Chinese
and Arabic.

The translation process from constituent to dependency structures has two sub-
tasks: identifying all the head-dependent relations in the structure and identifying
the correct dependency relations for these relations. The first task relies heavily on
the use of head rules discussed in Chapter 12 first developed for use in lexicalized
probabilistic parsers (Magerman 1994, Collins 1999, Collins 2003). Here’s a simple
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and effective algorithm from Xia and Palmer (2001).

1. Mark the head child of each node in a phrase structure, using the appropriate
head rules.

2. In the dependency structure, make the head of each non-head child depend on
the head of the head-child.

When a phrase-structure parse contains additional information in the form of
grammatical relations and function tags, as in the case of the Penn Treebank, these
tags can be used to label the edges in the resulting tree. When applied to the parse
tree in Fig. 14.4, this algorithm would produce the dependency structure in exam-
ple 14.4.

(14.4)
Vinken will join the board as a nonexecutive director Nov 29

sbj

aux

dobj

clr

tmp

nmod

case

nmod

amod num

root

The primary shortcoming of these extraction methods is that they are limited by
the information present in the original constituent trees. Among the most impor-
tant issues are the failure to integrate morphological information with the phrase-
structure trees, the inability to easily represent non-projective structures, and the
lack of internal structure to most noun-phrases, as reflected in the generally flat
rules used in most treebank grammars. For these reasons, outside of English, most
dependency treebanks are developed directly using human annotators.

14.4 Transition-Based Dependency Parsing

Our first approach to dependency parsing is motivated by a stack-based approach
called shift-reduce parsing originally developed for analyzing programming lan-shift-reduce

parsing
guages (Aho and Ullman, 1972). This classic approach is simple and elegant, em-
ploying a context-free grammar, a stack, and a list of tokens to be parsed. Input
tokens are successively shifted onto the stack and the top two elements of the stack
are matched against the right-hand side of the rules in the grammar; when a match is
found the matched elements are replaced on the stack (reduced) by the non-terminal
from the left-hand side of the rule being matched. In adapting this approach for
dependency parsing, we forgo the explicit use of a grammar and alter the reduce
operation so that instead of adding a non-terminal to a parse tree, it introduces a
dependency relation between a word and its head. More specifically, the reduce ac-
tion is replaced with two possible actions: assert a head-dependent relation between
the word at the top of the stack and the word below it, or vice versa. Figure 14.5
illustrates the basic operation of such a parser.

A key element in transition-based parsing is the notion of a configuration whichconfiguration

consists of a stack, an input buffer of words, or tokens, and a set of relations rep-
resenting a dependency tree. Given this framework, the parsing process consists of
a sequence of transitions through the space of possible configurations. The goal of
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Figure 14.4 A phrase-structure tree from the Wall Street Journal component of the Penn Treebank 3.

this process is to find a final configuration where all the words have been accounted
for and an appropriate dependency tree has been synthesized.

To implement such a search, we’ll define a set of transition operators, which
when applied to a configuration produce new configurations. Given this setup, we
can view the operation of a parser as a search through a space of configurations for
a sequence of transitions that leads from a start state to a desired goal state. At the
start of this process we create an initial configuration in which the stack contains the
ROOT node, the word list is initialized with the set of the words or lemmatized tokens
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Dependency
Relations

wnw1 w2

s2

...

s1

sn

Parser

Input buffer

Stack Oracle

Figure 14.5 Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-
tion.

in the sentence, and an empty set of relations is created to represent the parse. In the
final goal state, the stack and the word list should be empty, and the set of relations
will represent the final parse.

In the standard approach to transition-based parsing, the operators used to pro-
duce new configurations are surprisingly simple and correspond to the intuitive ac-
tions one might take in creating a dependency tree by examining the words in a
single pass over the input from left to right (Covington, 2001):

• Assign the current word as the head of some previously seen word,
• Assign some previously seen word as the head of the current word,
• Or postpone doing anything with the current word, adding it to a store for later

processing.

To make these actions more precise, we’ll create three transition operators that
will operate on the top two elements of the stack:

• LEFTARC: Assert a head-dependent relation between the word at the top of
the stack and the word directly beneath it; remove the lower word from the
stack.

• RIGHTARC: Assert a head-dependent relation between the second word on
the stack and the word at the top; remove the word at the top of the stack;

• SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

This particular set of operators implements what is known as the arc standardarc standard

approach to transition-based parsing (Covington 2001, Nivre 2003). There are two
notable characteristics to this approach: the transition operators only assert relations
between elements at the top of the stack, and once an element has been assigned
its head it is removed from the stack and is not available for further processing.
As we’ll see, there are alternative transition systems which demonstrate different
parsing behaviors, but the arc standard approach is quite effective and is simple to
implement.
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To assure that these operators are used properly we’ll need to add some pre-
conditions to their use. First, since, by definition, the ROOT node cannot have any
incoming arcs, we’ll add the restriction that the LEFTARC operator cannot be ap-
plied when ROOT is the second element of the stack. Second, both reduce operators
require two elements to be on the stack to be applied. Given these transition opera-
tors and preconditions, the specification of a transition-based parser is quite simple.
Fig. 14.6 gives the basic algorithm.

function DEPENDENCYPARSE(words) returns dependency tree

state←{[root], [words], [] } ; initial configuration
while state not final

t←ORACLE(state) ; choose a transition operator to apply
state←APPLY(t, state) ; apply it, creating a new state

return state

Figure 14.6 A generic transition-based dependency parser

At each step, the parser consults an oracle (we’ll come back to this shortly) that
provides the correct transition operator to use given the current configuration. It then
applies that operator to the current configuration, producing a new configuration.
The process ends when all the words in the sentence have been consumed and the
ROOT node is the only element remaining on the stack.

The efficiency of transition-based parsers should be apparent from the algorithm.
The complexity is linear in the length of the sentence since it is based on a single left
to right pass through the words in the sentence. More specifically, each word must
first be shifted onto the stack and then later reduced.

Note that unlike the dynamic programming and search-based approaches dis-
cussed in Chapters 12 and 13, this approach is a straightforward greedy algorithm
— the oracle provides a single choice at each step and the parser proceeds with that
choice, no other options are explored, no backtracking is employed, and a single
parse is returned in the end.

Figure 14.7 illustrates the operation of the parser with the sequence of transitions
leading to a parse for the following example.

(14.5)
Book me the morning flight

iobj

dobj

det

nmod

root

Let’s consider the state of the configuration at Step 2, after the word me has been
pushed onto the stack.

Stack Word List Relations
[root, book, me] [the, morning, flight]

The correct operator to apply here is RIGHTARC which assigns book as the head of
me and pops me from the stack resulting in the following configuration.

Stack Word List Relations
[root, book] [the, morning, flight] (book→ me)
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Step Stack Word List Action Relation Added
0 [root] [book, me, the, morning, flight] SHIFT

1 [root, book] [me, the, morning, flight] SHIFT

2 [root, book, me] [the, morning, flight] RIGHTARC (book→ me)
3 [root, book] [the, morning, flight] SHIFT

4 [root, book, the] [morning, flight] SHIFT

5 [root, book, the, morning] [flight] SHIFT

6 [root, book, the, morning, flight] [] LEFTARC (morning← flight)
7 [root, book, the, flight] [] LEFTARC (the← flight)
8 [root, book, flight] [] RIGHTARC (book→ flight)
9 [root, book] [] RIGHTARC (root→ book)

10 [root] [] Done
Figure 14.7 Trace of a transition-based parse.

After several subsequent applications of the SHIFT and LEFTARC operators, the con-
figuration in Step 6 looks like the following:

Stack Word List Relations
[root, book, the, morning, flight] [] (book→ me)

Here, all the remaining words have been passed onto the stack and all that is left
to do is to apply the appropriate reduce operators. In the current configuration, we
employ the LEFTARC operator resulting in the following state.

Stack Word List Relations
[root, book, the, flight] [] (book→ me)

(morning← flight)

At this point, the parse for this sentence consists of the following structure.

(14.6)
Book me the morning flight

iobj nmod

There are several important things to note when examining sequences such as
the one in Figure 14.7. First, the sequence given is not the only one that might lead
to a reasonable parse. In general, there may be more than one path that leads to the
same result, and due to ambiguity, there may be other transition sequences that lead
to different equally valid parses.

Second, we are assuming that the oracle always provides the correct operator
at each point in the parse — an assumption that is unlikely to be true in practice.
As a result, given the greedy nature of this algorithm, incorrect choices will lead to
incorrect parses since the parser has no opportunity to go back and pursue alternative
choices. Section 14.4.2 will introduce several techniques that allow transition-based
approaches to explore the search space more fully.

Finally, for simplicity, we have illustrated this example without the labels on
the dependency relations. To produce labeled trees, we can parameterize the LEFT-
ARC and RIGHTARC operators with dependency labels, as in LEFTARC(NSUBJ) or
RIGHTARC(DOBJ). This is equivalent to expanding the set of transition operators
from our original set of three to a set that includes LEFTARC and RIGHTARC opera-
tors for each relation in the set of dependency relations being used, plus an additional
one for the SHIFT operator. This, of course, makes the job of the oracle more difficult
since it now has a much larger set of operators from which to choose.
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14.4.1 Creating an Oracle
State-of-the-art transition-based systems use supervised machine learning methods
to train classifiers that play the role of the oracle. Given appropriate training data,
these methods learn a function that maps from configurations to transition operators.

As with all supervised machine learning methods, we will need access to appro-
priate training data and we will need to extract features useful for characterizing the
decisions to be made. The source for this training data will be representative tree-
banks containing dependency trees. The features will consist of many of the same
features we encountered in Chapter 8 for part-of-speech tagging, as well as those
used in Appendix C for statistical parsing models.

Generating Training Data

Let’s revisit the oracle from the algorithm in Fig. 14.6 to fully understand the learn-
ing problem. The oracle takes as input a configuration and returns as output a tran-
sition operator. Therefore, to train a classifier, we will need configurations paired
with transition operators (i.e., LEFTARC, RIGHTARC, or SHIFT). Unfortunately,
treebanks pair entire sentences with their corresponding trees, and therefore they
don’t directly provide what we need.

To generate the required training data, we will employ the oracle-based parsing
algorithm in a clever way. We will supply our oracle with the training sentences
to be parsed along with their corresponding reference parses from the treebank. To
produce training instances, we will then simulate the operation of the parser by run-
ning the algorithm and relying on a new training oracle to give us correct transitiontraining oracle

operators for each successive configuration.
To see how this works, let’s first review the operation of our parser. It begins with

a default initial configuration where the stack contains the ROOT, the input list is just
the list of words, and the set of relations is empty. The LEFTARC and RIGHTARC
operators each add relations between the words at the top of the stack to the set of
relations being accumulated for a given sentence. Since we have a gold-standard
reference parse for each training sentence, we know which dependency relations are
valid for a given sentence. Therefore, we can use the reference parse to guide the
selection of operators as the parser steps through a sequence of configurations.

To be more precise, given a reference parse and a configuration, the training
oracle proceeds as follows:

• Choose LEFTARC if it produces a correct head-dependent relation given the
reference parse and the current configuration,

• Otherwise, choose RIGHTARC if (1) it produces a correct head-dependent re-
lation given the reference parse and (2) all of the dependents of the word at
the top of the stack have already been assigned,

• Otherwise, choose SHIFT.

The restriction on selecting the RIGHTARC operator is needed to ensure that a
word is not popped from the stack, and thus lost to further processing, before all its
dependents have been assigned to it.

More formally, during training the oracle has access to the following informa-
tion:

• A current configuration with a stack S and a set of dependency relations Rc

• A reference parse consisting of a set of vertices V and a set of dependency
relations Rp
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Step Stack Word List Predicted Action
0 [root] [book, the, flight, through, houston] SHIFT

1 [root, book] [the, flight, through, houston] SHIFT

2 [root, book, the] [flight, through, houston] SHIFT

3 [root, book, the, flight] [through, houston] LEFTARC

4 [root, book, flight] [through, houston] SHIFT

5 [root, book, flight, through] [houston] SHIFT

6 [root, book, flight, through, houston] [] LEFTARC

7 [root, book, flight, houston ] [] RIGHTARC

8 [root, book, flight] [] RIGHTARC

9 [root, book] [] RIGHTARC

10 [root] [] Done
Figure 14.8 Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

Given this information, the oracle chooses transitions as follows:

LEFTARC(r): if (S1 r S2) ∈ Rp

RIGHTARC(r): if (S2 r S1) ∈ Rp and ∀r′,w s.t.(S1 r′ w) ∈ Rp then (S1 r′ w) ∈
Rc

SHIFT: otherwise

Let’s walk through the steps of this process with the following example as shown
in Fig. 14.8.

(14.7)
Book the flight through Houston

dobj

det

nmod

case

root

At Step 1, LEFTARC is not applicable in the initial configuration since it asserts
a relation, (root ← book), not in the reference answer; RIGHTARC does assert a
relation contained in the final answer (root → book), however book has not been
attached to any of its dependents yet, so we have to defer, leaving SHIFT as the only
possible action. The same conditions hold in the next two steps. In step 3, LEFTARC
is selected to link the to its head.

Now consider the situation in Step 4.

Stack Word buffer Relations
[root, book, flight] [through, Houston] (the← flight)

Here, we might be tempted to add a dependency relation between book and flight,
which is present in the reference parse. But doing so now would prevent the later
attachment of Houston since flight would have been removed from the stack. For-
tunately, the precondition on choosing RIGHTARC prevents this choice and we’re
again left with SHIFT as the only viable option. The remaining choices complete the
set of operators needed for this example.

To recap, we derive appropriate training instances consisting of configuration-
transition pairs from a treebank by simulating the operation of a parser in the con-
text of a reference dependency tree. We can deterministically record correct parser
actions at each step as we progress through each training example, thereby creating
the training set we require.
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Features

Having generated appropriate training instances (configuration-transition pairs), we
need to extract useful features from the configurations so we can train classifiers.
The features that are used to train transition-based systems vary by language, genre,
and the kind of classifier being employed. For example, morphosyntactic features
such as case marking on subjects or direct objects may be more or less important
depending on the language being processed. That said, the basic features that we
have already seen with part-of-speech tagging and partial parsing have proven to
be useful in training dependency parsers across a wide range of languages. Word
forms, lemmas and parts of speech are all powerful features, as are the head, and
dependency relation to the head.

In the transition-based parsing framework, such features need to be extracted
from the configurations that make up the training data. Recall that configurations
consist of three elements: the stack, the buffer and the current set of relations. In
principle, any property of any or all of these elements can be represented as features
in the usual way for training. However, to avoid sparsity and encourage generaliza-
tion, it is best to focus the learning algorithm on the most useful aspects of decision
making at each point in the parsing process. The focus of feature extraction for
transition-based parsing is, therefore, on the top levels of the stack, the words near
the front of the buffer, and the dependency relations already associated with any of
those elements.

By combining simple features, such as word forms or parts of speech, with spe-
cific locations in a configuration, we can employ the notion of a feature templatefeature

template
that we’ve already encountered with sentiment analysis and part-of-speech tagging.
Feature templates allow us to automatically generate large numbers of specific fea-
tures from a training set. As an example, consider the following feature templates
that are based on single positions in a configuration.

〈s1.w,op〉,〈s2.w,op〉〈s1.t,op〉,〈s2.t,op〉
〈b1.w,op〉,〈b1.t,op〉〈s1.wt,op〉 (14.8)

In these examples, individual features are denoted as location.property, where s
denotes the stack, b the word buffer, and r the set of relations. Individual properties
of locations include w for word forms, l for lemmas, and t for part-of-speech. For
example, the feature corresponding to the word form at the top of the stack would be
denoted as s1.w, and the part of speech tag at the front of the buffer b1.t. We can also
combine individual features via concatenation into more specific features that may
prove useful. For example, the feature designated by s1.wt represents the word form
concatenated with the part of speech of the word at the top of the stack. Finally, op
stands for the transition operator for the training example in question (i.e., the label
for the training instance).

Let’s consider the simple set of single-element feature templates given above
in the context of the following intermediate configuration derived from a training
oracle for Example 14.2.

Stack Word buffer Relations
[root, canceled, flights] [to Houston] (canceled→ United)

(flights→ morning)
(flights→ the)

The correct transition here is SHIFT (you should convince yourself of this before
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proceeding). The application of our set of feature templates to this configuration
would result in the following set of instantiated features.

〈s1.w = flights,op = shift〉 (14.9)

〈s2.w = canceled,op = shift〉
〈s1.t = NNS,op = shift〉
〈s2.t = VBD,op = shift〉
〈b1.w = to,op = shift〉
〈b1.t = TO,op = shift〉

〈s1.wt = flightsNNS,op = shift〉

Given that the left and right arc transitions operate on the top two elements of
the stack, features that combine properties from these positions are even more useful.
For example, a feature like s1.t ◦ s2.t concatenates the part of speech tag of the word
at the top of the stack with the tag of the word beneath it.

〈s1.t ◦ s2.t = NNSVBD,op = shift〉 (14.10)

Not surprisingly, if two properties are useful then three or more should be even
better. Figure 14.9 gives a baseline set of feature templates that have been employed
(Zhang and Clark 2008, Huang and Sagae 2010, Zhang and Nivre 2011).

Note that some of these features make use of dynamic features — features such
as head words and dependency relations that have been predicted at earlier steps in
the parsing process, as opposed to features that are derived from static properties of
the input.

Source Feature templates
One word s1.w s1.t s1.wt

s2.w s2.t s2.wt
b1.w b1.w b0.wt

Two word s1.w◦ s2.w s1.t ◦ s2.t s1.t ◦b1.w
s1.t ◦ s2.wt s1.w◦ s2.w◦ s2.t s1.w◦ s1.t ◦ s2.t
s1.w◦ s1.t ◦ s2.t s1.w◦ s1.t

Figure 14.9 Standard feature templates for training transition-based dependency parsers.
In the template specifications sn refers to a location on the stack, bn refers to a location in the
word buffer, w refers to the wordform of the input, and t refers to the part of speech of the
input.

Learning

Over the years, the dominant approaches to training transition-based dependency
parsers have been multinomial logistic regression and support vector machines, both
of which can make effective use of large numbers of sparse features of the kind
described in the last section. More recently, neural network, or deep learning,
approaches of the kind described in Chapter 8 have been applied successfully to
transition-based parsing (Chen and Manning, 2014). These approaches eliminate the
need for complex, hand-crafted features and have been particularly effective at over-
coming the data sparsity issues normally associated with training transition-based
parsers.
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14.4.2 Advanced Methods in Transition-Based Parsing
The basic transition-based approach can be elaborated in a number of ways to im-
prove performance by addressing some of the most obvious flaws in the approach.

Alternative Transition Systems

The arc-standard transition system described above is only one of many possible sys-
tems. A frequently used alternative is the arc eager transition system. The arc eagerarc eager

approach gets its name from its ability to assert rightward relations much sooner
than in the arc standard approach. To see this, let’s revisit the arc standard trace of
Example 14.7, repeated here.

Book the flight through Houston

dobj

det

nmod

case

root

Consider the dependency relation between book and flight in this analysis. As
is shown in Fig. 14.8, an arc-standard approach would assert this relation at Step 8,
despite the fact that book and flight first come together on the stack much earlier at
Step 4. The reason this relation can’t be captured at this point is due to the presence
of the postnominal modifier through Houston. In an arc-standard approach, depen-
dents are removed from the stack as soon as they are assigned their heads. If flight
had been assigned book as its head in Step 4, it would no longer be available to serve
as the head of Houston.

While this delay doesn’t cause any issues in this example, in general the longer
a word has to wait to get assigned its head the more opportunities there are for
something to go awry. The arc-eager system addresses this issue by allowing words
to be attached to their heads as early as possible, before all the subsequent words
dependent on them have been seen. This is accomplished through minor changes to
the LEFTARC and RIGHTARC operators and the addition of a new REDUCE operator.

• LEFTARC: Assert a head-dependent relation between the word at the front of
the input buffer and the word at the top of the stack; pop the stack.

• RIGHTARC: Assert a head-dependent relation between the word on the top of
the stack and the word at front of the input buffer; shift the word at the front
of the input buffer to the stack.

• SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

• REDUCE: Pop the stack.

The LEFTARC and RIGHTARC operators are applied to the top of the stack and
the front of the input buffer, instead of the top two elements of the stack as in the
arc-standard approach. The RIGHTARC operator now moves the dependent to the
stack from the buffer rather than removing it, thus making it available to serve as the
head of following words. The new REDUCE operator removes the top element from
the stack. Together these changes permit a word to be eagerly assigned its head and
still allow it to serve as the head for later dependents. The trace shown in Fig. 14.10
illustrates the new decision sequence for this example.

In addition to demonstrating the arc-eager transition system, this example demon-
strates the power and flexibility of the overall transition-based approach. We were
able to swap in a new transition system without having to make any changes to the
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Step Stack Word List Action Relation Added
0 [root] [book, the, flight, through, houston] RIGHTARC (root→ book)
1 [root, book] [the, flight, through, houston] SHIFT

2 [root, book, the] [flight, through, houston] LEFTARC (the← flight)
3 [root, book] [flight, through, houston] RIGHTARC (book→ flight)
4 [root, book, flight] [through, houston] SHIFT

5 [root, book, flight, through] [houston] LEFTARC (through← houston)
6 [root, book, flight] [houston] RIGHTARC (flight→ houston)
7 [root, book, flight, houston] [] REDUCE

8 [root, book, flight] [] REDUCE

9 [root, book] [] REDUCE

10 [root] [] Done
Figure 14.10 A processing trace of Book the flight through Houston using the arc-eager
transition operators.

underlying parsing algorithm. This flexibility has led to the development of a di-
verse set of transition systems that address different aspects of syntax and semantics
including: assigning part of speech tags (Choi and Palmer, 2011a), allowing the
generation of non-projective dependency structures (Nivre, 2009), assigning seman-
tic roles (Choi and Palmer, 2011b), and parsing texts containing multiple languages
(Bhat et al., 2017).

Beam Search

The computational efficiency of the transition-based approach discussed earlier de-
rives from the fact that it makes a single pass through the sentence, greedily making
decisions without considering alternatives. Of course, this is also the source of its
greatest weakness – once a decision has been made it can not be undone, even in
the face of overwhelming evidence arriving later in a sentence. Another approach
is to systematically explore alternative decision sequences, selecting the best among
those alternatives. The key problem for such a search is to manage the large number
of potential sequences. Beam search accomplishes this by combining a breadth-firstbeam search

search strategy with a heuristic filter that prunes the search frontier to stay within a
fixed-size beam width.beam width

In applying beam search to transition-based parsing, we’ll elaborate on the al-
gorithm given in Fig. 14.6. Instead of choosing the single best transition operator
at each iteration, we’ll apply all applicable operators to each state on an agenda and
then score the resulting configurations. We then add each of these new configura-
tions to the frontier, subject to the constraint that there has to be room within the
beam. As long as the size of the agenda is within the specified beam width, we can
add new configurations to the agenda. Once the agenda reaches the limit, we only
add new configurations that are better than the worst configuration on the agenda
(removing the worst element so that we stay within the limit). Finally, to insure that
we retrieve the best possible state on the agenda, the while loop continues as long as
there are non-final states on the agenda.

The beam search approach requires a more elaborate notion of scoring than we
used with the greedy algorithm. There, we assumed that a classifier trained using
supervised machine learning would serve as an oracle, selecting the best transition
operator based on features extracted from the current configuration. Regardless of
the specific learning approach, this choice can be viewed as assigning a score to all
the possible transitions and picking the best one.

T̂ (c) = argmaxScore(t,c)
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With a beam search we are now searching through the space of decision se-
quences, so it makes sense to base the score for a configuration on its entire history.
More specifically, we can define the score for a new configuration as the score of its
predecessor plus the score of the operator used to produce it.

ConfigScore(c0) = 0.0
ConfigScore(ci) = ConfigScore(ci−1)+Score(ti,ci−1)

This score is used both in filtering the agenda and in selecting the final answer.
The new beam search version of transition-based parsing is given in Fig. 14.11.

function DEPENDENCYBEAMPARSE(words, width) returns dependency tree

state←{[root], [words], [], 0.0} ;initial configuration
agenda←〈state〉 ;initial agenda

while agenda contains non-final states
newagenda←〈〉
for each state ∈ agenda do

for all {t | t ∈ VALIDOPERATORS(state)} do
child←APPLY(t, state)
newagenda←ADDTOBEAM(child, newagenda, width)

agenda←newagenda
return BESTOF(agenda)

function ADDTOBEAM(state, agenda, width) returns updated agenda

if LENGTH(agenda) < width then
agenda← INSERT(state, agenda)

else if SCORE(state) > SCORE(WORSTOF(agenda))
agenda←REMOVE(WORSTOF(agenda))
agenda← INSERT(state, agenda)

return agenda

Figure 14.11 Beam search applied to transition-based dependency parsing.

14.5 Graph-Based Dependency Parsing

Graph-based approaches to dependency parsing search through the space of possible
trees for a given sentence for a tree (or trees) that maximize some score. These
methods encode the search space as directed graphs and employ methods drawn
from graph theory to search the space for optimal solutions. More formally, given a
sentence S we’re looking for the best dependency tree in Gs, the space of all possible
trees for that sentence, that maximizes some score.

T̂ (S) = argmax
t∈GS

score(t,S)

As with the probabilistic approaches to context-free parsing discussed in Ap-
pendix C, the overall score for a tree can be viewed as a function of the scores of the
parts of the tree. The focus of this section is on edge-factored approaches where theedge-factored
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score for a tree is based on the scores of the edges that comprise the tree.

score(t,S) =
∑

e∈t

score(e)

There are several motivations for the use of graph-based methods. First, unlike
transition-based approaches, these methods are capable of producing non-projective
trees. Although projectivity is not a significant issue for English, it is definitely a
problem for many of the world’s languages. A second motivation concerns parsing
accuracy, particularly with respect to longer dependencies. Empirically, transition-
based methods have high accuracy on shorter dependency relations but accuracy de-
clines significantly as the distance between the head and dependent increases (Mc-
Donald and Nivre, 2011). Graph-based methods avoid this difficulty by scoring
entire trees, rather than relying on greedy local decisions.

The following section examines a widely-studied approach based on the use of a
maximum spanning tree (MST) algorithm for weighted, directed graphs. We thenmaximum

spanning tree
discuss features that are typically used to score trees, as well as the methods used to
train the scoring models.

14.5.1 Parsing
The approach described here uses an efficient greedy algorithm to search for optimal
spanning trees in directed graphs. Given an input sentence, it begins by constructing
a fully-connected, weighted, directed graph where the vertices are the input words
and the directed edges represent all possible head-dependent assignments. An addi-
tional ROOT node is included with outgoing edges directed at all of the other vertices.
The weights in the graph reflect the score for each possible head-dependent relation
as provided by a model generated from training data. Given these weights, a maxi-
mum spanning tree of this graph emanating from the ROOT represents the preferred
dependency parse for the sentence. A directed graph for the example Book that
flight is shown in Fig. 14.12, with the maximum spanning tree corresponding to the
desired parse shown in blue. For ease of exposition, we’ll focus here on unlabeled
dependency parsing. Graph-based approaches to labeled parsing are discussed in
Section 14.5.3.

Before describing the algorithm it’s useful to consider two intuitions about di-
rected graphs and their spanning trees. The first intuition begins with the fact that
every vertex in a spanning tree has exactly one incoming edge. It follows from this
that every connected component of a spanning tree will also have one incoming edge.
The second intuition is that the absolute values of the edge scores are not critical to
determining its maximum spanning tree. Instead, it is the relative weights of the
edges entering each vertex that matters. If we were to subtract a constant amount
from each edge entering a given vertex it would have no impact on the choice of
the maximum spanning tree since every possible spanning tree would decrease by
exactly the same amount.

The first step of the algorithm itself is quite straightforward. For each vertex
in the graph, an incoming edge (representing a possible head assignment) with the
highest score is chosen. If the resulting set of edges produces a spanning tree then
we’re done. More formally, given the original fully-connected graph G = (V,E), a
subgraph T = (V,F) is a spanning tree if it has no cycles and each vertex (other than
the root) has exactly one edge entering it. If the greedy selection process produces
such a tree then it is the best possible one.
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root Book that flight
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Figure 14.12 Initial rooted, directed graph for Book that flight.

Unfortunately, this approach doesn’t always lead to a tree since the set of edges
selected may contain cycles. Fortunately, in yet another case of multiple discovery,
there is a straightforward way to eliminate cycles generated during the greedy se-
lection phase. Chu and Liu (1965) and Edmonds (1967) independently developed
an approach that begins with greedy selection and follows with an elegant recursive
cleanup phase that eliminates cycles.

The cleanup phase begins by adjusting all the weights in the graph by subtracting
the score of the maximum edge entering each vertex from the score of all the edges
entering that vertex. This is where the intuitions mentioned earlier come into play.
We have scaled the values of the edges so that the weight of the edges in the cycle
have no bearing on the weight of any of the possible spanning trees. Subtracting the
value of the edge with maximum weight from each edge entering a vertex results
in a weight of zero for all of the edges selected during the greedy selection phase,
including all of the edges involved in the cycle.

Having adjusted the weights, the algorithm creates a new graph by selecting a
cycle and collapsing it into a single new node. Edges that enter or leave the cycle
are altered so that they now enter or leave the newly collapsed node. Edges that do
not touch the cycle are included and edges within the cycle are dropped.

Now, if we knew the maximum spanning tree of this new graph, we would have
what we need to eliminate the cycle. The edge of the maximum spanning tree di-
rected towards the vertex representing the collapsed cycle tells us which edge to
delete to eliminate the cycle. How do we find the maximum spanning tree of this
new graph? We recursively apply the algorithm to the new graph. This will either
result in a spanning tree or a graph with a cycle. The recursions can continue as long
as cycles are encountered. When each recursion completes we expand the collapsed
vertex, restoring all the vertices and edges from the cycle with the exception of the
single edge to be deleted.

Putting all this together, the maximum spanning tree algorithm consists of greedy
edge selection, re-scoring of edge costs and a recursive cleanup phase when needed.
The full algorithm is shown in Fig. 14.13.

Fig. 14.14 steps through the algorithm with our Book that flight example. The
first row of the figure illustrates greedy edge selection with the edges chosen shown
in blue (corresponding to the set F in the algorithm). This results in a cycle between
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function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree

F← []
T’← []
score’← []
for each v ∈ V do

bestInEdge←argmaxe=(u,v)∈ E score[e]
F←F ∪ bestInEdge
for each e=(u,v) ∈ E do

score’[e]←score[e] − score[bestInEdge]

if T=(V,F) is a spanning tree then return it
else

C←a cycle in F
G’←CONTRACT(G, C)
T’←MAXSPANNINGTREE(G’, root, score’)
T←EXPAND(T’, C)
return T

function CONTRACT(G, C) returns contracted graph

function EXPAND(T, C) returns expanded graph

Figure 14.13 The Chu-Liu Edmonds algorithm for finding a maximum spanning tree in a
weighted directed graph.

that and flight. The scaled weights using the maximum value entering each node are
shown in the graph to the right.

Collapsing the cycle between that and flight to a single node (labelled tf) and
recursing with the newly scaled costs is shown in the second row. The greedy selec-
tion step in this recursion yields a spanning tree that links root to book, as well as an
edge that links book to the contracted node. Expanding the contracted node, we can
see that this edge corresponds to the edge from book to flight in the original graph.
This in turn tells us which edge to drop to eliminate the cycle

On arbitrary directed graphs, this version of the CLE algorithm runs in O(mn)
time, where m is the number of edges and n is the number of nodes. Since this par-
ticular application of the algorithm begins by constructing a fully connected graph
m = n2 yielding a running time of O(n3). Gabow et al. (1986) present a more effi-
cient implementation with a running time of O(m+nlogn).

14.5.2 Features and Training
Given a sentence, S, and a candidate tree, T , edge-factored parsing models reduce
the score for the tree to a sum of the scores of the edges that comprise the tree.

score(S,T ) =
∑

e∈T

score(S,e)

Each edge score can, in turn, be reduced to a weighted sum of features extracted
from it.

score(S,e) =

N∑

i=1

wi fi(S,e)
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Figure 14.14 Chu-Liu-Edmonds graph-based example for Book that flight

Or more succinctly.

score(S,e) = w · f

Given this formulation, we are faced with two problems in training our parser:
identifying relevant features and finding the weights used to score those features.

The features used to train edge-factored models mirror those used in training
transition-based parsers (as shown in Fig. 14.9). This is hardly surprising since in
both cases we’re trying to capture information about the relationship between heads
and their dependents in the context of a single relation. To summarize this earlier
discussion, commonly used features include:

• Wordforms, lemmas, and parts of speech of the headword and its dependent.
• Corresponding features derived from the contexts before, after and between

the words.
• Word embeddings.
• The dependency relation itself.
• The direction of the relation (to the right or left).
• The distance from the head to the dependent.

As with transition-based approaches, pre-selected combinations of these features are
often used as well.

Given a set of features, our next problem is to learn a set of weights correspond-
ing to each. Unlike many of the learning problems discussed in earlier chapters,
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here we are not training a model to associate training items with class labels, or
parser actions. Instead, we seek to train a model that assigns higher scores to cor-
rect trees than to incorrect ones. An effective framework for problems like this is to
use inference-based learning combined with the perceptron learning rule. In thisinference-based

learning
framework, we parse a sentence (i.e, perform inference) from the training set using
some initially random set of initial weights. If the resulting parse matches the cor-
responding tree in the training data, we do nothing to the weights. Otherwise, we
find those features in the incorrect parse that are not present in the reference parse
and we lower their weights by a small amount based on the learning rate. We do this
incrementally for each sentence in our training data until the weights converge.

State-of-the-art algorithms in multilingual parsing are based on recurrent neural
networks (RNNs) (Zeman et al. 2017, Dozat et al. 2017).

14.5.3 Advanced Issues in Graph-Based Parsing

14.6 Evaluation

As with phrase structure-based parsing, the evaluation of dependency parsers pro-
ceeds by measuring how well they work on a test set. An obvious metric would be
exact match (EM) — how many sentences are parsed correctly. This metric is quite
pessimistic, with most sentences being marked wrong. Such measures are not fine-
grained enough to guide the development process. Our metrics need to be sensitive
enough to tell if actual improvements are being made.

For these reasons, the most common method for evaluating dependency parsers
are labeled and unlabeled attachment accuracy. Labeled attachment refers to the
proper assignment of a word to its head along with the correct dependency relation.
Unlabeled attachment simply looks at the correctness of the assigned head, ignor-
ing the dependency relation. Given a system output and a corresponding reference
parse, accuracy is simply the percentage of words in an input that are assigned the
correct head with the correct relation. These metrics are usually referred to as the
labeled attachment score (LAS) and unlabeled attachment score (UAS). Finally, we
can make use of a label accuracy score (LS), the percentage of tokens with correct
labels, ignoring where the relations are coming from.

As an example, consider the reference parse and system parse for the following
example shown in Fig. 14.15.

(14.11) Book me the flight through Houston.

The system correctly finds 4 of the 6 dependency relations present in the refer-
ence parse and receives an LAS of 2/3. However, one of the 2 incorrect relations
found by the system holds between book and flight, which are in a head-dependent
relation in the reference parse; the system therefore achieves a UAS of 5/6.

Beyond attachment scores, we may also be interested in how well a system is
performing on a particular kind of dependency relation, for example NSUBJ, across
a development corpus. Here we can make use of the notions of precision and recall
introduced in Chapter 8, measuring the percentage of relations labeled NSUBJ by
the system that were correct (precision), and the percentage of the NSUBJ relations
present in the development set that were in fact discovered by the system (recall).
We can employ a confusion matrix to keep track of how often each dependency type
was confused for another.
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Book me the flight through Houston
Reference

obj

iobj

det

nmod

case

root

Book me the flight through Houston
System

x-comp

nsubj

det

nmod

case

root

Figure 14.15 Reference and system parses for Book me the flight through Houston, resulting in an LAS of
2/3 and an UAS of 5/6.

14.7 Summary

This chapter has introduced the concept of dependency grammars and dependency
parsing. Here’s a summary of the main points that we covered:

• In dependency-based approaches to syntax, the structure of a sentence is de-
scribed in terms of a set of binary relations that hold between the words in a
sentence. Larger notions of constituency are not directly encoded in depen-
dency analyses.

• The relations in a dependency structure capture the head-dependent relation-
ship among the words in a sentence.

• Dependency-based analysis provides information directly useful in further
language processing tasks including information extraction, semantic parsing
and question answering.

• Transition-based parsing systems employ a greedy stack-based algorithm to
create dependency structures.

• Graph-based methods for creating dependency structures are based on the use
of maximum spanning tree methods from graph theory.

• Both transition-based and graph-based approaches are developed using super-
vised machine learning techniques.

• Treebanks provide the data needed to train these systems. Dependency tree-
banks can be created directly by human annotators or via automatic transfor-
mation from phrase-structure treebanks.

• Evaluation of dependency parsers is based on labeled and unlabeled accuracy
scores as measured against withheld development and test corpora.

Bibliographical and Historical Notes
The dependency-based approach to grammar is much older than the relatively re-
cent phrase-structure or constituency grammars that have been the primary focus of
both theoretical and computational linguistics for years. It has its roots in the an-
cient Greek and Indian linguistic traditions. Contemporary theories of dependency
grammar all draw heavily on the work of Tesnière (1959). The most influential
dependency grammar frameworks include Meaning-Text Theory (MTT) (Mel’c̆uk,
1988), Word Grammar (Hudson, 1984), Functional Generative Description (FDG)
(Sgall et al., 1986). These frameworks differ along a number of dimensions in-
cluding the degree and manner in which they deal with morphological, syntactic,
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semantic and pragmatic factors, their use of multiple layers of representation, and
the set of relations used to categorize dependency relations.

Automatic parsing using dependency grammars was first introduced into compu-
tational linguistics by early work on machine translation at the RAND Corporation
led by David Hays. This work on dependency parsing closely paralleled work on
constituent parsing and made explicit use of grammars to guide the parsing process.
After this early period, computational work on dependency parsing remained inter-
mittent over the following decades. Notable implementations of dependency parsers
for English during this period include Link Grammar (Sleator and Temperley, 1993),
Constraint Grammar (Karlsson et al., 1995), and MINIPAR (Lin, 2003).

Dependency parsing saw a major resurgence in the late 1990’s with the appear-
ance of large dependency-based treebanks and the associated advent of data driven
approaches described in this chapter. Eisner (1996) developed an efficient dynamic
programming approach to dependency parsing based on bilexical grammars derived
from the Penn Treebank. Covington (2001) introduced the deterministic word by
word approach underlying current transition-based approaches. Yamada and Mat-
sumoto (2003) and Kudo and Matsumoto (2002) introduced both the shift-reduce
paradigm and the use of supervised machine learning in the form of support vector
machines to dependency parsing.

Nivre (2003) defined the modern, deterministic, transition-based approach to de-
pendency parsing. Subsequent work by Nivre and his colleagues formalized and an-
alyzed the performance of numerous transition systems, training methods, and meth-
ods for dealing with non-projective language Nivre and Scholz 2004, Nivre 2006,
Nivre and Nilsson 2005, Nivre et al. 2007, Nivre 2007.

The graph-based maximum spanning tree approach to dependency parsing was
introduced by McDonald et al. 2005, McDonald et al. 2005.

The earliest source of data for training and evaluating dependency English parsers
came from the WSJ Penn Treebank (Marcus et al., 1993) described in Chapter 12.
The use of head-finding rules developed for use with probabilistic parsing facili-
tated the automatic extraction of dependency parses from phrase-based ones (Xia
and Palmer, 2001).

The long-running Prague Dependency Treebank project (Hajič, 1998) is the most
significant effort to directly annotate a corpus with multiple layers of morphological,
syntactic and semantic information. The current PDT 3.0 now contains over 1.5 M
tokens (Bejček et al., 2013).

Universal Dependencies (UD) (Nivre et al., 2016b) is a project directed at cre-
ating a consistent framework for dependency treebank annotation across languages
with the goal of advancing parser development across the world’s languages. The
UD annotation scheme evolved out of several distinct efforts including Stanford de-
pendencies (de Marneffe et al. 2006, de Marneffe and Manning 2008, de Marneffe
et al. 2014), Google’s universal part-of-speech tags (Petrov et al., 2012), and the In-
terset interlingua for morphosyntactic tagsets (Zeman, 2008). Under the auspices of
this effort, treebanks for over 90 languages have been annotated and made available
in a single consistent format (Nivre et al., 2016b).

The Conference on Natural Language Learning (CoNLL) has conducted an in-
fluential series of shared tasks related to dependency parsing over the years (Buch-
holz and Marsi 2006, Nilsson et al. 2007, Surdeanu et al. 2008, Hajič et al. 2009).
More recent evaluations have focused on parser robustness with respect to morpho-
logically rich languages (Seddah et al., 2013), and non-canonical language forms
such as social media, texts, and spoken language (Petrov and McDonald, 2012).
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Choi et al. (2015) presents a performance analysis of 10 dependency parsers across
a range of metrics, as well as DEPENDABLE, a robust parser evaluation tool.

Exercises



CHAPTER

15 Logical Representations of
Sentence Meaning

ISHMAEL: Surely all this is not without meaning.
Herman Melville, Moby Dick

In this chapter we introduce the idea that the meaning of linguistic expressions can
be captured in formal structures called meaning representations. Consider tasksmeaning

representations
that require some form of semantic processing, like learning to use a new piece of
software by reading the manual, deciding what to order at a restaurant by reading
a menu, or following a recipe. Accomplishing these tasks requires representations
that link the linguistic elements to the necessary non-linguistic knowledge of the
world. Reading a menu and deciding what to order, giving advice about where to
go to dinner, following a recipe, and generating new recipes all require knowledge
about food and its preparation, what people like to eat, and what restaurants are like.
Learning to use a piece of software by reading a manual, or giving advice on using
software, requires knowledge about the software and similar apps, computers, and
users in general.

In this chapter, we assume that linguistic expressions have meaning representa-
tions that are made up of the same kind of stuff that is used to represent this kind of
everyday common-sense knowledge of the world. The process whereby such repre-
sentations are created and assigned to linguistic inputs is called semantic parsing orsemantic

parsing
semantic analysis, and the entire enterprise of designing meaning representations
and associated semantic parsers is referred to as computational semantics.computational

semantics

∃e,y Having(e)∧Haver(e,Speaker)∧HadT hing(e,y)∧Car(y)

h / have-01

c / cari / i 

arg0 arg1 (h / have-01
        arg0: (i / i)
        arg1: (c / car))

Having:
      Haver:  Speaker
      HadThing:  Car

Figure 15.1 A list of symbols, two directed graphs, and a record structure: a sampler of
meaning representations for I have a car.

Consider Fig. 15.1, which shows example meaning representations for the sen-
tence I have a car using four commonly used meaning representation languages.
The top row illustrates a sentence in First-Order Logic, covered in detail in Sec-
tion 15.3; the directed graph and its corresponding textual form is an example of
an Abstract Meaning Representation (AMR) form (Banarescu et al., 2013), and
on the right is a frame-based or slot-filler representation, discussed in Section 15.5
and again in Chapter 17.
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While there are non-trivial differences among these approaches, they all share
the notion that a meaning representation consists of structures composed from a
set of symbols, or representational vocabulary. When appropriately arranged, these
symbol structures are taken to correspond to objects, properties of objects, and rela-
tions among objects in some state of affairs being represented or reasoned about. In
this case, all four representations make use of symbols corresponding to the speaker,
a car, and a relation denoting the possession of one by the other.

Importantly, these representations can be viewed from at least two distinct per-
spectives in all of these approaches: as representations of the meaning of the par-
ticular linguistic input I have a car, and as representations of the state of affairs in
some world. It is this dual perspective that allows these representations to be used
to link linguistic inputs to the world and to our knowledge of it.

In the next sections we give some background: our desiderata for a meaning
representation language and some guarantees that these representations will actually
do what we need them to do—provide a correspondence to the state of affairs being
represented. In Section 15.3 we introduce First-Order Logic, historically the primary
technique for investigating natural language semantics, and see in Section 15.4 how
it can be used to capture the semantics of events and states in English. Chapter 16
then introduces techniques for semantic parsing: generating these formal meaning
representations given linguistic inputs.

15.1 Computational Desiderata for Representations

Let’s consider why meaning representations are needed and what they should do for
us. To focus this discussion, let’s consider a system that gives restaurant advice to
tourists based on a knowledge base.

Verifiability

Consider the following simple question:

(15.1) Does Maharani serve vegetarian food?

To answer this question, we have to know what it’s asking, and know whether what
it’s asking is true of Maharini or not. verifiability is a system’s ability to compareverifiability

the state of affairs described by a representation to the state of affairs in some world
as modeled in a knowledge base. For example we’ll need some sort of representation
like Serves(Maharani,VegetarianFood), which a system can can match against its
knowledge base of facts about particular restaurants, and if it find a representation
matching this proposition, it can answer yes. Otherwise, it must either say No if its
knowledge of local restaurants is complete, or say that it doesn’t know if it knows
its knowledge is incomplete.

Unambiguous Representations

Semantics, like all the other domains we have studied, is subject to ambiguity.
Words and sentences have different meaning representations in different contexts.
Consider the following example:

(15.2) I wanna eat someplace that’s close to ICSI.

This sentence can either mean that the speaker wants to eat at some nearby location,
or under a Godzilla-as-speaker interpretation, the speaker may want to devour some
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nearby location. The sentence is ambiguous; a single linguistic expression can have
one of two meanings. But our meaning representations itself cannot be ambiguous.
The representation of an input’s meaning should be free from any ambiguity, so that
the the system can reason over a representation that means either one thing or the
other in order to decide how to answer.

A concept closely related to ambiguity is vagueness: in which a meaning repre-vagueness

sentation leaves some parts of the meaning underspecified. Vagueness does not give
rise to multiple representations. Consider the following request:

(15.3) I want to eat Italian food.

While Italian food may provide enough information to provide recommendations, it
is nevertheless vague as to what the user really wants to eat. A vague representation
of the meaning of this phrase may be appropriate for some purposes, while a more
specific representation may be needed for other purposes.

Canonical Form

The doctrine of canonical form says that distinct inputs that mean the same thingcanonical form

should have the same meaning representation. This approach greatly simplifies rea-
soning, since systems need only deal with a single meaning representation for a
potentially wide range of expressions.

Consider the following alternative ways of expressing (15.1):

(15.4) Does Maharani have vegetarian dishes?
(15.5) Do they have vegetarian food at Maharani?
(15.6) Are vegetarian dishes served at Maharani?
(15.7) Does Maharani serve vegetarian fare?

Despite the fact these alternatives use different words and syntax, we want them
to map to a single canonical meaning representations. If they were all different,
assuming the system’s knowledge base contains only a single representation of this
fact, most of the representations wouldn’t match. We could, of course, store all
possible alternative representations of the same fact in the knowledge base, but doing
so would lead to enormous difficult in keeping the knowledge base consistent.

Canonical form does complicate the task of semantic parsing. Our system must
conclude that vegetarian fare, vegetarian dishes, and vegetarian food refer to the
same thing, that having and serving are equivalent here, and that all these parse
structures still lead to the same meaning representation. Or consider this pair of
examples:

(15.8) Maharani serves vegetarian dishes.
(15.9) Vegetarian dishes are served by Maharani.

Despite the different placement of the arguments to serve, a system must still assign
Maharani and vegetarian dishes to the same roles in the two examples by draw-
ing on grammatical knowledge, such as the relationship between active and passive
sentence constructions.

Inference and Variables

What about more complex requests such as:

(15.10) Can vegetarians eat at Maharani?

This request results in the same answer as the others not because they mean the same
thing, but because there is a common-sense connection between what vegetarians eat
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and what vegetarian restaurants serve. This is a fact about the world. We’ll need to
connect the meaning representation of this request with this fact about the world in a
knowledge base. A system must be able to use inference—to draw valid conclusionsinference

based on the meaning representation of inputs and its background knowledge. It
must be possible for the system to draw conclusions about the truth of propositions
that are not explicitly represented in the knowledge base but that are nevertheless
logically derivable from the propositions that are present.

Now consider the following somewhat more complex request:

(15.11) I’d like to find a restaurant where I can get vegetarian food.

This request does not make reference to any particular restaurant; the user wants in-
formation about an unknown restaurant that serves vegetarian food. Since no restau-
rants are named, simple matching is not going to work. Answering this request
requires the use of variables, using some representation like the following:variables

Serves(x,VegetarianFood) (15.12)

Matching succeeds only if the variable x can be replaced by some object in the
knowledge base in such a way that the entire proposition will then match. The con-
cept that is substituted for the variable can then be used to fulfill the user’s request.
It is critical for any meaning representation language to be able to handle these kinds
of indefinite references.

Expressiveness

Finally, a meaning representation scheme must be expressive enough to handle a
wide range of subject matter, ideally any sensible natural language utterance. Al-
though this is probably too much to expect from any single representational system,
First-Order Logic, as described in Section 15.3, is expressive enough to handle quite
a lot of what needs to be represented.

15.2 Model-Theoretic Semantics

What is it about about meaning representation languages that allows them to fulfill
these desiderata, bridging the gap from formal representations to representations that
tell us something about some state of affairs in the world?

The answer is a model. A model is a formal construct that stands for the partic-model

ular state of affairs in the world. Expressions in a meaning representation language
can be mapped to elements of the model, like objects, properties of objects, and
relations among objects. If the model accurately captures the facts we’re interested
in, then a consistent mapping between the meaning representation and the model
provides the bridge between meaning representation and world. Models provide a
surprisingly simple and powerful way to ground the expressions in meaning repre-
sentation languages.

First, some terminology. The vocabulary of a meaning representation consists of
two parts: the non-logical vocabulary and the logical vocabulary. The non-logical
vocabulary consists of the open-ended set of names for the objects, properties, andnon-logical

vocabulary
relations that make up the world we’re trying to represent. These appear in various
schemes as predicates, nodes, labels on links, or labels in slots in frames, The log-
ical vocabulary consists of the closed set of symbols, operators, quantifiers, links,logical

vocabulary
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etc., that provide the formal means for composing expressions in a given meaning
representation language.

Each element of the non-logical vocabulary must have a denotation in the model,denotation

meaning that every element corresponds to a fixed, well-defined part of the model.
Let’s start with objects. The domain of a model is the set of objects that are beingdomain

represented. Each distinct concept, category, or individual denotes a unique element
in the domain.

We represent properties of objects in a model by denoting the domain elements
that have the property; that is, properties denote sets. The denotation of the property
red is the set of things we think are red. Similarly, a relations among object denote a
set of ordered lists, or tuples, of domain elements that take part in the relations: the
denotation of the relation Married is set of pairs of domain objects that are married.
This approach to properties and relations is called extensional, because we defineextensional

concepts by their extension, their denotations. To summarize:

• Objects denote elements of the domain
• Properties denote sets of elements of the domain
• Relations denote sets of tuples of elements of the domain

We now need a mapping that gets us from our meaning representation to the
corresponding denotations: a function that maps from the non-logical vocabulary of
our meaning representation to the proper denotations in the model. We’ll call such
a mapping an interpretation.interpretation

Let’s return to our restaurant advice application, and let its domain consist of
sets of restaurants, patrons, facts about the likes and dislikes of the patrons, and
facts about the restaurants such as their cuisine, typical cost, and noise level. To
begin populating our domain, D, let’s assume that we’re dealing with four patrons
designated by the non-logical symbols Matthew, Franco, Katie, and Caroline. de-
noting four unique domain elements. We’ll use the constants a,b,c and, d to stand
for these domain elements. We’re deliberately using meaningless, non-mnemonic
names for our domain elements to emphasize the fact that whatever it is that we
know about these entities has to come from the formal properties of the model and
not from the names of the symbols. Continuing, let’s assume that our application
includes three restaurants, designated as Frasca, Med, and Rio in our meaning rep-
resentation, that denote the domain elements e, f , and g. Finally, let’s assume that
we’re dealing with the three cuisines Italian, Mexican, and Eclectic, denoted by h, i,
and j in our model.

Properties like Noisy denote the subset of restaurants from our domain that are
known to be noisy. Two-place relational notions, such as which restaurants individ-
ual patrons Like, denote ordered pairs, or tuples, of the objects from the domain.
And, since we decided to represent cuisines as objects in our model, we can cap-
ture which restaurants Serve which cuisines as a set of tuples. One possible state of
affairs using this scheme is given in Fig. 15.2.

Given this simple scheme, we can ground our meaning representations by con-
sulting the appropriate denotations in the corresponding model. For example, we can
evaluate a representation claiming that Matthew likes the Rio, or that The Med serves
Italian by mapping the objects in the meaning representations to their corresponding
domain elements and mapping any links, predicates, or slots in the meaning repre-
sentation to the appropriate relations in the model. More concretely, we can verify
a representation asserting that Matthew likes Frasca by first using our interpretation
function to map the symbol Matthew to its denotation a, Frasca to e, and the Likes
relation to the appropriate set of tuples. We then check that set of tuples for the
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Domain D= {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
Italian, Mexican, Eclectic h, i, j

Properties
Noisy Noisy = {e, f ,g}

Frasca, Med, and Rio are noisy

Relations
Likes Likes = {〈a, f 〉,〈c, f 〉,〈c,g〉,〈b,e〉,〈d, f 〉,〈d,g〉}

Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {〈 f , j〉,〈g, i〉,〈e,h〉}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 15.2 A model of the restaurant world.

presence of the tuple 〈a,e〉. If, as it is in this case, the tuple is present in the model,
then we can conclude that Matthew likes Frasca is true; if it isn’t then we can’t.

This is all pretty straightforward—we’re using sets and operations on sets to
ground the expressions in our meaning representations. Of course, the more inter-
esting part comes when we consider more complex examples such as the following:

(15.13) Katie likes the Rio and Matthew likes the Med.
(15.14) Katie and Caroline like the same restaurants.
(15.15) Franco likes noisy, expensive restaurants.
(15.16) Not everybody likes Frasca.

Our simple scheme for grounding the meaning of representations is not adequate
for examples such as these. Plausible meaning representations for these examples
will not map directly to individual entities, properties, or relations. Instead, they
involve complications such as conjunctions, equality, quantified variables, and nega-
tions. To assess whether these statements are consistent with our model, we’ll have
to tear them apart, assess the parts, and then determine the meaning of the whole
from the meaning of the parts.

Consider the first example above. A meaning representation for this example
will include two distinct propositions expressing the individual patron’s preferences,
conjoined with some kind of implicit or explicit conjunction operator. Our model
doesn’t have a relation that encodes pairwise preferences for all of the patrons and
restaurants in our model, nor does it need to. We know from our model that Matthew
likes the Med and separately that Katie likes the Rio (that is, the tuples 〈a, f 〉 and
〈c,g〉 are members of the set denoted by the Likes relation). All we really need to
know is how to deal with the semantics of the conjunction operator. If we assume
the simplest possible semantics for the English word and, the whole statement is
true if it is the case that each of the components is true in our model. In this case,
both components are true since the appropriate tuples are present and therefore the
sentence as a whole is true.

What we’ve done with this example is provide a truth-conditional semantics
truth-

conditional
semantics
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Formula → AtomicFormula
| Formula Connective Formula
| Quantifier Variable, . . . Formula
| ¬ Formula
| (Formula)

AtomicFormula → Predicate(Term, . . .)
Term → Function(Term, . . .)

| Constant
| Variable

Connective → ∧ | ∨ | =⇒
Quantifier → ∀ | ∃
Constant → A | VegetarianFood | Maharani · · ·
Variable → x | y | · · ·

Predicate → Serves | Near | · · ·
Function → LocationOf | CuisineOf | · · ·

Figure 15.3 A context-free grammar specification of the syntax of First-Order Logic rep-
resentations. Adapted from Russell and Norvig (2002).

for the assumed conjunction operator in some meaning representation. That is,
we’ve provided a method for determining the truth of a complex expression from
the meanings of the parts (by consulting a model) and the meaning of an operator by
consulting a truth table. Meaning representation languages are truth-conditional to
the extent that they give a formal specification as to how we can determine the mean-
ing of complex sentences from the meaning of their parts. In particular, we need to
know the semantics of the entire logical vocabulary of the meaning representation
scheme being used.

Note that although the details of how this happens depend on details of the par-
ticular meaning representation being used, it should be clear that assessing the truth
conditions of examples like these involves nothing beyond the simple set operations
we’ve been discussing. We return to these issues in the next section in the context of
the semantics of First-Order Logic.

15.3 First-Order Logic

First-Order Logic (FOL) is a flexible, well-understood, and computationally tractable
meaning representation language that satisfies many of the desiderata given in Sec-
tion 15.1. It provides a sound computational basis for the verifiability, inference,
and expressiveness requirements, as well as a sound model-theoretic semantics.

An additional attractive feature of FOL is that it makes few specific commitments
as to how things ought to be represented, and those it does are shared by many of
the schemes mentioned earlier: the represented world consists of objects, properties
of objects, and relations among objects.

The remainder of this section introduces the basic syntax and semantics of FOL
and then describes the application of FOL to the representation of events.

15.3.1 Basic Elements of First-Order Logic
Let’s explore FOL by first examining its various atomic elements and then showing
how they can be composed to create larger meaning representations. Figure 15.3,
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which provides a complete context-free grammar for the particular syntax of FOL
that we will use, is our roadmap for this section.

Let’s begin by examining the notion of a term, the FOL device for representingterm

objects. As can be seen from Fig. 15.3, FOL provides three ways to represent these
basic building blocks: constants, functions, and variables. Each of these devices can
be thought of as designating an object in the world under consideration.

Constants in FOL refer to specific objects in the world being described. Suchconstant

constants are conventionally depicted as either single capitalized letters such as A
and B or single capitalized words that are often reminiscent of proper nouns such as
Maharani and Harry. Like programming language constants, FOL constants refer
to exactly one object. Objects can, however, have multiple constants that refer to
them.

Functions in FOL correspond to concepts that are often expressed in English asfunction

genitives such as Frasca’s location. A FOL translation of such an expression might
look like the following.

LocationOf (Frasca) (15.17)

FOL functions are syntactically the same as single argument predicates. It is im-
portant to remember, however, that while they have the appearance of predicates,
they are in fact terms in that they refer to unique objects. Functions provide a con-
venient way to refer to specific objects without having to associate a named constant
with them. This is particularly convenient in cases in which many named objects,
like restaurants, have a unique concept such as a location associated with them.

Variables are our final FOL mechanism for referring to objects. Variables, de-variable

picted as single lower-case letters, let us make assertions and draw inferences about
objects without having to make reference to any particular named object. This ability
to make statements about anonymous objects comes in two flavors: making state-
ments about a particular unknown object and making statements about all the objects
in some arbitrary world of objects. We return to the topic of variables after we have
presented quantifiers, the elements of FOL that make variables useful.

Now that we have the means to refer to objects, we can move on to the FOL
mechanisms that are used to state relations that hold among objects. Predicates are
symbols that refer to, or name, the relations that hold among some fixed number
of objects in a given domain. Returning to the example introduced informally in
Section 15.1, a reasonable FOL representation for Maharani serves vegetarian food
might look like the following formula:

Serves(Maharani,VegetarianFood) (15.18)

This FOL sentence asserts that Serves, a two-place predicate, holds between the
objects denoted by the constants Maharani and VegetarianFood.

A somewhat different use of predicates is illustrated by the following fairly typ-
ical representation for a sentence like Maharani is a restaurant:

Restaurant(Maharani) (15.19)

This is an example of a one-place predicate that is used, not to relate multiple objects,
but rather to assert a property of a single object. In this case, it encodes the category
membership of Maharani.

With the ability to refer to objects, to assert facts about objects, and to relate
objects to one another, we can create rudimentary composite representations. These
representations correspond to the atomic formula level in Fig. 15.3. This ability
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to compose complex representations is, however, not limited to the use of single
predicates. Larger composite representations can also be put together through the
use of logical connectives. As can be seen from Fig. 15.3, logical connectives letlogical

connectives
us create larger representations by conjoining logical formulas using one of three
operators. Consider, for example, the following BERP sentence and one possible
representation for it:

(15.20) I only have five dollars and I don’t have a lot of time.

Have(Speaker,FiveDollars)∧¬Have(Speaker,LotOfTime) (15.21)

The semantic representation for this example is built up in a straightforward way
from the semantics of the individual clauses through the use of the∧ and¬ operators.
Note that the recursive nature of the grammar in Fig. 15.3 allows an infinite number
of logical formulas to be created through the use of these connectives. Thus, as with
syntax, we can use a finite device to create an infinite number of representations.

15.3.2 Variables and Quantifiers
We now have all the machinery necessary to return to our earlier discussion of vari-
ables. As noted above, variables are used in two ways in FOL: to refer to particular
anonymous objects and to refer generically to all objects in a collection. These two
uses are made possible through the use of operators known as quantifiers. The twoquantifiers

operators that are basic to FOL are the existential quantifier, which is denoted ∃ and
is pronounced as “there exists”, and the universal quantifier, which is denoted ∀ and
is pronounced as “for all”.

The need for an existentially quantified variable is often signaled by the presence
of an indefinite noun phrase in English. Consider the following example:

(15.22) a restaurant that serves Mexican food near ICSI.

Here, reference is being made to an anonymous object of a specified category with
particular properties. The following would be a reasonable representation of the
meaning of such a phrase:

∃xRestaurant(x) ∧ Serves(x,MexicanFood) (15.23)

∧ Near((LocationOf (x),LocationOf (ICSI))

The existential quantifier at the head of this sentence instructs us on how to
interpret the variable x in the context of this sentence. Informally, it says that for
this sentence to be true there must be at least one object such that if we were to
substitute it for the variable x, the resulting sentence would be true. For example,
if AyCaramba is a Mexican restaurant near ICSI, then substituting AyCaramba for x
results in the following logical formula:

Restaurant(AyCaramba)∧Serves(AyCaramba,MexicanFood) (15.24)

∧Near((LocationOf (AyCaramba),LocationOf (ICSI))

Based on the semantics of the ∧ operator, this sentence will be true if all of its
three component atomic formulas are true. These in turn will be true if they are
either present in the system’s knowledge base or can be inferred from other facts in
the knowledge base.

The use of the universal quantifier also has an interpretation based on substi-
tution of known objects for variables. The substitution semantics for the universal
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quantifier takes the expression for all quite literally; the ∀ operator states that for the
logical formula in question to be true, the substitution of any object in the knowledge
base for the universally quantified variable should result in a true formula. This is in
marked contrast to the ∃ operator, which only insists on a single valid substitution
for the sentence to be true.

Consider the following example:

(15.25) All vegetarian restaurants serve vegetarian food.

A reasonable representation for this sentence would be something like the following:

∀xVegetarianRestaurant(x) =⇒ Serves(x,VegetarianFood) (15.26)

For this sentence to be true, every substitution of a known object for x must result in a
sentence that is true. We can divide the set of all possible substitutions into the set of
objects consisting of vegetarian restaurants and the set consisting of everything else.
Let us first consider the case in which the substituted object actually is a vegetarian
restaurant; one such substitution would result in the following sentence:

VegetarianRestaurant(Maharani) =⇒ Serves(Maharani,VegetarianFood)
(15.27)

If we assume that we know that the consequent clause

Serves(Maharani,VegetarianFood) (15.28)

is true, then this sentence as a whole must be true. Both the antecedent and the
consequent have the value True and, therefore, according to the first two rows of
Fig. 15.4 on page 316 the sentence itself can have the value True. This result will be
the same for all possible substitutions of Terms representing vegetarian restaurants
for x.

Remember, however, that for this sentence to be true, it must be true for all
possible substitutions. What happens when we consider a substitution from the set
of objects that are not vegetarian restaurants? Consider the substitution of a non-
vegetarian restaurant such as AyCaramba for the variable x:

VegetarianRestaurant(AyCaramba) =⇒ Serves(AyCaramba,VegetarianFood)

Since the antecedent of the implication is False, we can determine from Fig. 15.4
that the sentence is always True, again satisfying the ∀ constraint.

Note that it may still be the case that AyCaramba serves vegetarian food with-
out actually being a vegetarian restaurant. Note also that, despite our choice of
examples, there are no implied categorical restrictions on the objects that can be
substituted for x by this kind of reasoning. In other words, there is no restriction of
x to restaurants or concepts related to them. Consider the following substitution:

VegetarianRestaurant(Carburetor) =⇒ Serves(Carburetor,VegetarianFood)

Here the antecedent is still false so the rule remains true under this kind of irrelevant
substitution.

To review, variables in logical formulas must be either existentially (∃) or uni-
versally (∀) quantified. To satisfy an existentially quantified variable, at least one
substitution must result in a true sentence. To satisfy a universally quantified vari-
able, all substitutions must result in true sentences.
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15.3.3 Lambda Notation
The final element we need to complete our discussion of FOL is called the lambda
notation (Church, 1940). This notation provides a way to abstract from fully speci-lambda

notation
fied FOL formulas in a way that will be particularly useful for semantic analysis. The
lambda notation extends the syntax of FOL to include expressions of the following
form:

λx.P(x) (15.29)

Such expressions consist of the Greek symbol λ , followed by one or more variables,
followed by a FOL formula that makes use of those variables.

The usefulness of these λ -expressions is based on the ability to apply them to
logical terms to yield new FOL expressions where the formal parameter variables are
bound to the specified terms. This process is known as λ -reduction, and consistsλ -reduction
of a simple textual replacement of the λ variables and the removal of the λ . The
following expressions illustrate the application of a λ -expression to the constant A,
followed by the result of performing a λ -reduction on this expression:

λx.P(x)(A) (15.30)

P(A)

An important and useful variation of this technique is the use of one λ -expression
as the body of another as in the following expression:

λx.λy.Near(x,y) (15.31)

This fairly abstract expression can be glossed as the state of something being near
something else. The following expressions illustrate a single λ -application and sub-
sequent reduction with this kind of embedded λ -expression:

λx.λy.Near(x,y)(Bacaro) (15.32)

λy.Near(Bacaro,y)

The important point here is that the resulting expression is still a λ -expression; the
first reduction bound the variable x and removed the outer λ , thus revealing the
inner expression. As might be expected, this resulting λ -expression can, in turn,
be applied to another term to arrive at a fully specified logical formula, as in the
following:

λy.Near(Bacaro,y)(Centro) (15.33)

Near(Bacaro,Centro)

This general technique, called currying1 (Schönfinkel, 1924) is a way of convertingcurrying

a predicate with multiple arguments into a sequence of single-argument predicates.
As we show in Chapter 16, the λ -notation provides a way to incrementally gather

arguments to a predicate when they do not all appear together as daughters of the
predicate in a parse tree.

15.3.4 The Semantics of First-Order Logic
The various objects, properties, and relations represented in a FOL knowledge base
acquire their meanings by virtue of their correspondence to objects, properties, and

1 Currying is the standard term, although Heim and Kratzer (1998) present an interesting argument for
the term Schönkfinkelization over currying, since Curry later built on Schönfinkel’s work.
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relations out in the external world being modeled. We can accomplish this by em-
ploying the model-theoretic approach introduced in Section 15.2. Recall that this
approach employs simple set-theoretic notions to provide a truth-conditional map-
ping from the expressions in a meaning representation to the state of affairs being
modeled. We can apply this approach to FOL by going through all the elements in
Fig. 15.3 on page 311 and specifying how each should be accounted for.

We can start by asserting that the objects in our world, FOL terms, denote ele-
ments in a domain, and asserting that atomic formulas are captured either as sets of
domain elements for properties, or as sets of tuples of elements for relations. As an
example, consider the following:

(15.34) Centro is near Bacaro.

Capturing the meaning of this example in FOL involves identifying the Terms
and Predicates that correspond to the various grammatical elements in the sentence
and creating logical formulas that capture the relations implied by the words and
syntax of the sentence. For this example, such an effort might yield something like
the following:

Near(Centro,Bacaro) (15.35)

The meaning of this logical formula is based on whether the domain elements de-
noted by the terms Centro and Bacaro are contained among the tuples denoted by
the relation denoted by the predicate Near in the current model.

The interpretation of formulas involving logical connectives is based on the
meanings of the components in the formulas combined with the meanings of the
connectives they contain. Figure 15.4 gives interpretations for each of the logical
operators shown in Fig. 15.3.

P Q ¬ P P ∧ Q P ∨ Q P =⇒ Q
False False True False False True
False True True False True True
True False False False True False
True True False True True True

Figure 15.4 Truth table giving the semantics of the various logical connectives.

The semantics of the ∧ (and) and ¬ (not) operators are fairly straightforward,
and are correlated with at least some of the senses of the corresponding English
terms. However, it is worth pointing out that the ∨ (or) operator is not disjunctive
in the same way that the corresponding English word is, and that the =⇒ (im-
plies) operator is only loosely based on any common-sense notions of implication
or causation.

The final bit we need to address involves variables and quantifiers. Recall that
there are no variables in our set-based models, only elements of the domain and
relations that hold among them. We can provide a model-based account for formulas
with variables by employing the notion of a substitution introduced earlier on page
313. Formulas involving ∃ are true if a substitution of terms for variables results
in a formula that is true in the model. Formulas involving ∀ must be true under all
possible substitutions.

15.3.5 Inference
A meaning representation language must support inference to add valid new propo-
sitions to a knowledge base or to determine the truth of propositions not explicitly
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contained within a knowledge base (Section 15.1). This section briefly discusses
modus ponens, the most widely implemented inference method provided by FOL.

Modus ponens is a form of inference that corresponds to what is informallyModus ponens

known as if-then reasoning. We can abstractly define modus ponens as follows,
where α and β should be taken as FOL formulas:

α

α =⇒ β

β
(15.36)

A schema like this indicates that the formula below the line can be inferred from the
formulas above the line by some form of inference. Modus ponens states that if the
left-hand side of an implication rule is true, then the right-hand side of the rule can
be inferred. In the following discussions, we will refer to the left-hand side of an
implication as the antecedent and the right-hand side as the consequent.

For a typical use of modus ponens, consider the following example, which uses
a rule from the last section:

VegetarianRestaurant(Leaf )
∀xVegetarianRestaurant(x) =⇒ Serves(x,VegetarianFood)

Serves(Leaf ,VegetarianFood)
(15.37)

Here, the formula VegetarianRestaurant(Leaf ) matches the antecedent of the rule,
thus allowing us to use modus ponens to conclude Serves(Leaf ,VegetarianFood).

Modus ponens can be put to practical use in one of two ways: forward chaining
and backward chaining. In forward chaining systems, modus ponens is used inforward

chaining
precisely the manner just described. As individual facts are added to the knowledge
base, modus ponens is used to fire all applicable implication rules. In this kind of
arrangement, as soon as a new fact is added to the knowledge base, all applicable
implication rules are found and applied, each resulting in the addition of new facts to
the knowledge base. These new propositions in turn can be used to fire implication
rules applicable to them. The process continues until no further facts can be deduced.

The forward chaining approach has the advantage that facts will be present in
the knowledge base when needed, because, in a sense all inference is performed in
advance. This can substantially reduce the time needed to answer subsequent queries
since they should all amount to simple lookups. The disadvantage of this approach
is that facts that will never be needed may be inferred and stored.

In backward chaining, modus ponens is run in reverse to prove specific propo-backward
chaining

sitions called queries. The first step is to see if the query formula is true by determin-
ing if it is present in the knowledge base. If it is not, then the next step is to search
for applicable implication rules present in the knowledge base. An applicable rule
is one whereby the consequent of the rule matches the query formula. If there are
any such rules, then the query can be proved if the antecedent of any one them can
be shown to be true. This can be performed recursively by backward chaining on
the antecedent as a new query. The Prolog programming language is a backward
chaining system that implements this strategy.

To see how this works, let’s assume that we have been asked to verify the truth of
the proposition Serves(Leaf ,VegetarianFood), assuming the facts given above the
line in (15.37). Since this proposition is not present in the knowledge base, a search
for an applicable rule is initiated resulting in the rule given above. After substituting
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the constant Leaf for the variable x, our next task is to prove the antecedent of the
rule, VegetarianRestaurant(Leaf ), which, of course, is one of the facts we are given.

Note that it is critical to distinguish between reasoning by backward chaining
from queries to known facts and reasoning backwards from known consequents to
unknown antecedents. To be specific, by reasoning backwards we mean that if the
consequent of a rule is known to be true, we assume that the antecedent will be as
well. For example, let’s assume that we know that Serves(Leaf ,VegetarianFood) is
true. Since this fact matches the consequent of our rule, we might reason backwards
to the conclusion that VegetarianRestaurant(Leaf ).

While backward chaining is a sound method of reasoning, reasoning backwards
is an invalid, though frequently useful, form of plausible reasoning. Plausible rea-
soning from consequents to antecedents is known as abduction, and as we show inabduction

Chapter 22, is often useful in accounting for many of the inferences people make
while analyzing extended discourses.

While forward and backward reasoning are sound, neither is complete. Thiscomplete

means that there are valid inferences that cannot be found by systems using these
methods alone. Fortunately, there is an alternative inference technique called reso-
lution that is sound and complete. Unfortunately, inference systems based on res-resolution

olution are far more computationally expensive than forward or backward chaining
systems. In practice, therefore, most systems use some form of chaining and place
a burden on knowledge base developers to encode the knowledge in a fashion that
permits the necessary inferences to be drawn.

15.4 Event and State Representations

Much of the semantics that we wish to capture consists of representations of states
and events. States are conditions, or properties, that remain unchanged over an
extended period of time, and events denote changes in some state of affairs. The
representation of both states and events may involve a host of participants, props,
times and locations.

The representations for events and states that we have used thus far have con-
sisted of single predicates with as many arguments as are needed to incorporate all
the roles associated with a given example. For example, the representation for Leaf
serves vegetarian fare consists of a single predicate with arguments for the entity
doing the serving and the thing served.

Serves(Leaf ,VegetarianFare) (15.38)

This approach assumes that the predicate used to represent an event verb has the
same number of arguments as are present in the verb’s syntactic subcategorization
frame. Unfortunately, this is clearly not always the case. Consider the following
examples of the verb eat:

(15.39) I ate.
(15.40) I ate a turkey sandwich.
(15.41) I ate a turkey sandwich at my desk.
(15.42) I ate at my desk.
(15.43) I ate lunch.
(15.44) I ate a turkey sandwich for lunch.
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(15.45) I ate a turkey sandwich for lunch at my desk.

Clearly, choosing the correct number of arguments for the predicate represent-
ing the meaning of eat is a tricky problem. These examples introduce five distinct
arguments, or roles, in an array of different syntactic forms, locations, and combina-
tions. Unfortunately, predicates in FOL have fixed arity – they take a fixed numberarity

of arguments.
To address this problem, we introduce the notion of an event variable to allowevent variable

us to make assertions about particular events. To do this, we can refactor our event
predicates to have an existentially quantified variable as their first, and only, argu-
ment. Using this event variable, we can introduce additional predicates to represent
the other information we have about the event. These predicates take an event vari-
able as their first argument and related FOL terms as their second argument. The
following formula illustrates this scheme with the meaning representation of 15.40
from our earlier discussion.

∃e Eating(e) ∧ Eater(e,Speaker)∧Eaten(e,TurkeySandwich)

Here, the quantified variable e stands for the eating event and is used to bind the
event predicate with the core information provided via the named roles Eater and
Eaten. To handle the more complex examples, we simply add additional relations
to capture the provided information, as in the following for 15.45.

∃e Eating(e) ∧ Eater(e,Speaker)∧Eaten(e,TurkeySandwich) (15.46)

∧ Meal(e,Lunch)∧Location(e,Desk)

Event representations of this sort are referred to as neo-Davidsonian event rep-neo-
Davidsonian

resentations (Davidson 1967, Parsons 1990) after the philosopher Donald Davidson
who introduced the notion of an event variable (Davidson, 1967). To summarize, in
the neo-Davidsonian approach to event representations:

• Events are captured with predicates that take a single event variable as an
argument.

• There is no need to specify a fixed number of arguments for a given FOL
predicate; rather, as many roles and fillers can be glued on as are provided in
the input.

• No more roles are postulated than are mentioned in the input.
• The logical connections among closely related inputs that share the same pred-

icate are satisfied without the need for additional inference.

This approach still leaves us with the problem of determining the set of predi-
cates needed to represent roles associated with specific events like Eater and Eaten,
as well as more general concepts like Location and Time. We’ll return to this prob-
lem in more detail in Chapter 10.

15.4.1 Representing Time
In our discussion of events, we did not seriously address the issue of capturing the
time when the represented events are supposed to have occurred. The representation
of such information in a useful form is the domain of temporal logic. This dis-temporal logic

cussion introduces the most basic concerns of temporal logic and briefly discusses
the means by which human languages convey temporal information, which, among
other things, includes tense logic, the ways that verb tenses convey temporal infor-tense logic
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mation. A more detailed discussion of robust approaches to the representation and
analysis of temporal expressions is presented in Chapter 17.

The most straightforward theory of time holds that it flows inexorably forward
and that events are associated with either points or intervals in time, as on a timeline.
We can order distinct events by situating them on the timeline; one event precedes
another if the flow of time leads from the first event to the second. Accompanying
these notions in most theories is the idea of the current moment in time. Combin-
ing this notion with the idea of a temporal ordering relationship yields the familiar
notions of past, present, and future.

Many schemes can represent this kind of temporal information. The one pre-
sented here is a fairly simple one that stays within the FOL framework of reified
events that we have been pursuing. Consider the following examples:

(15.47) I arrived in New York.
(15.48) I am arriving in New York.
(15.49) I will arrive in New York.

These sentences all refer to the same kind of event and differ solely in the tense of
the verb. In our current scheme for representing events, all three would share the
following kind of representation, which lacks any temporal information:

∃eArriving(e)∧Arriver(e,Speaker)∧Destination(e,NewYork) (15.50)

The temporal information provided by the tense of the verbs can be exploited
by predicating additional information about the event variable e. Specifically, we
can add temporal variables representing the interval corresponding to the event, the
end point of the event, and temporal predicates relating this end point to the current
time as indicated by the tense of the verb. Such an approach yields the following
representations for our arriving examples:

∃e, i,n Arriving(e) ∧ Arriver(e,Speaker)∧Destination(e,NewYork)

∧ IntervalOf (e, i)∧EndPoint(i,n)∧Precedes(n,Now)

∃e, i,n Arriving(e) ∧ Arriver(e,Speaker)∧Destination(e,NewYork)

∧ IntervalOf (e, i)∧MemberOf (i,Now)

∃e, i,n Arriving(e) ∧ Arriver(e,Speaker)∧Destination(e,NewYork)

∧ IntervalOf (e, i)∧EndPoint(i,n)∧Precedes(Now,n)

This representation introduces a variable to stand for the interval of time as-
sociated with the event and a variable that stands for the end of that interval. The
two-place predicate Precedes represents the notion that the first time-point argument
precedes the second in time; the constant Now refers to the current time. For past
events, the end point of the interval must precede the current time. Similarly, for fu-
ture events the current time must precede the end of the event. For events happening
in the present, the current time is contained within the event interval.

Unfortunately, the relation between simple verb tenses and points in time is by
no means straightforward. Consider the following examples:

(15.51) Ok, we fly from San Francisco to Boston at 10.
(15.52) Flight 1390 will be at the gate an hour now.

In the first example, the present tense of the verb fly is used to refer to a future event,
while in the second the future tense is used to refer to a past event.

More complications occur when we consider some of the other verb tenses. Con-
sider the following examples:
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(15.53) Flight 1902 arrived late.
(15.54) Flight 1902 had arrived late.

Although both refer to events in the past, representing them in the same way seems
wrong. The second example seems to have another unnamed event lurking in the
background (e.g., Flight 1902 had already arrived late when something else hap-
pened). To account for this phenomena, Reichenbach (1947) introduced the notion
of a reference point. In our simple temporal scheme, the current moment in timereference point

is equated with the time of the utterance and is used as a reference point for when
the event occurred (before, at, or after). In Reichenbach’s approach, the notion of
the reference point is separated from the utterance time and the event time. The
following examples illustrate the basics of this approach:

(15.55) When Mary’s flight departed, I ate lunch.
(15.56) When Mary’s flight departed, I had eaten lunch.

In both of these examples, the eating event has happened in the past, that is, prior
to the utterance. However, the verb tense in the first example indicates that the eating
event began when the flight departed, while the second example indicates that the
eating was accomplished prior to the flight’s departure. Therefore, in Reichenbach’s
terms the departure event specifies the reference point. These facts can be accom-
modated by additional constraints relating the eating and departure events. In the
first example, the reference point precedes the eating event, and in the second exam-
ple, the eating precedes the reference point. Figure 15.5 illustrates Reichenbach’s
approach with the primary English tenses. Exercise 15.6 asks you to represent these
examples in FOL.

Past Perfect Simple Past Present Perfect

Simple Future Future PerfectPresent

E E

E E

R

R

U R,E U R,U

U,R,E U,R U

Figure 15.5 Reichenbach’s approach applied to various English tenses. In these diagrams,
time flows from left to right, E denotes the time of the event, R denotes the reference time,
and U denotes the time of the utterance.

This discussion has focused narrowly on the broad notions of past, present, and
future and how they are signaled by various English verb tenses. Of course, lan-
guages have many other ways to convey temporal information, including temporal
expressions:

(15.57) I’d like to go at 6:45 in the morning.
(15.58) Somewhere around noon, please.
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As we show in Chapter 17, grammars for such temporal expressions are of consid-
erable practical importance to information extraction and question-answering appli-
cations.

Finally, we should note that a systematic conceptual organization is reflected in
examples like these. In particular, temporal expressions in English are frequently
expressed in spatial terms, as is illustrated by the various uses of at, in, somewhere,
and near in these examples (Lakoff and Johnson 1980, Jackendoff 1983). Metaphor-
ical organizations such as these, in which one domain is systematically expressed in
terms of another, are very common in languages of the world.

15.4.2 Aspect
In the last section, we discussed ways to represent the time of an event with respect
to the time of an utterance describing it. In this section, we address the notion of
aspect, which concerns a cluster of related topics, including whether an event hasaspect

ended or is ongoing, whether it is conceptualized as happening at a point in time or
over some interval, and whether any particular state in the world comes about be-
cause of it. Based on these and related notions, event expressions have traditionally
been divided into four general classes illustrated in the following examples:

Stative: I know my departure gate.
Activity: John is flying.
Accomplishment: Sally booked her flight.
Achievement: She found her gate.

Although the earliest versions of this classification were discussed by Aristotle,
the one presented here is due to Vendler (1967).

Stative expressions represent the notion of an event participant having a partic-stative

ular property, or being in a state, at a given point in time. As such, these expressions
can be thought of as capturing an aspect of a world at a single point in time. Consider
the following ATIS examples.

(15.59) I like Flight 840 arriving at 10:06.
(15.60) I need the cheapest fare.
(15.61) I want to go first class.

In examples like these, the event participant denoted by the subject can be seen as
experiencing something at a specific point in time. Whether or not the experiencer
was in the same state earlier or will be in the future is left unspecified.

Activity expressions describe events undertaken by a participant and have noactivity

particular end point. Unlike statives, activities are seen as occurring over some span
of time and are therefore not associated with single points in time. Consider the
following examples:

(15.62) She drove a Mazda.
(15.63) I live in Brooklyn.

These examples both specify that the subject is engaged in, or has engaged in, the
activity specified by the verb for some period of time.

The final aspectual class, achievement expressions, is similar to accomplish-achievement
expressions

ments in that these expressions result in a state. Consider the following:

(15.64) She found her gate.
(15.65) I reached New York.
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Unlike accomplishments, achievement events are thought of as happening in an in-
stant and are not equated with any particular activity leading up to the state. To be
more specific, the events in these examples may have been preceded by extended
searching or traveling events, but the events corresponding directly to found and
reach are conceived of as points, not intervals.

Note that since both accomplishments and achievements are events that result
in a state, they are sometimes characterized as subtypes of a single aspectual class.
Members of this combined class are known as telic eventualities.telic

eventualities

15.5 Description Logics

As noted at the beginning of this chapter, a fair number of representational schemes
have been invented to capture the meaning of linguistic utterances. It is now widely
accepted that meanings represented in these various approaches can, in principle, be
translated into equivalent statements in FOL with relative ease. The difficulty is that
in many of these approaches the semantics of a statement are defined procedurally.
That is, the meaning arises from whatever the system that interprets it does with it.

Description logics are an effort to better specify the semantics of these earlier
structured network representations and to provide a conceptual framework that is
especially well suited to certain kinds of domain modeling. Formally, the term De-
scription Logics refers to a family of logical approaches that correspond to varying
subsets of FOL. The restrictions placed on the expressiveness of Description Logics
serve to guarantee the tractability of various critical kinds of inference. Our focus
here, however, will be on the modeling aspects of DLs rather than on computational
complexity issues.

When using Description Logics to model an application domain, the emphasis
is on the representation of knowledge about categories, individuals that belong to
those categories, and the relationships that can hold among these individuals. The
set of categories, or concepts, that make up a particular application domain is called
its terminology. The portion of a knowledge base that contains the terminology isterminology

traditionally called the TBox; this is in contrast to the ABox that contains facts aboutTBox

ABox individuals. The terminology is typically arranged into a hierarchical organization
called an ontology that captures the subset/superset relations among the categories.ontology

Returning to our earlier culinary domain, we represented domain concepts us-
ing unary predicates such as Restaurant(x); the DL equivalent omits the variable,
so the restaurant category is simply written as Restaurant.2 To capture the fact
that a particular domain element, such as Frasca, is a restaurant, we assert Restau-
rant(Frasca) in much the same way we would in FOL. The semantics of these
categories are specified in precisely the same way that was introduced earlier in
Section 15.2: a category like Restaurant simply denotes the set of domain elements
that are restaurants.

Once we’ve specified the categories of interest in a particular domain, the next
step is to arrange them into a hierarchical structure. There are two ways to cap-
ture the hierarchical relationships present in a terminology: we can directly assert
relations between categories that are related hierarchically, or we can provide com-
plete definitions for our concepts and then rely on inference to provide hierarchical

2 DL statements are conventionally typeset with a sans serif font. We’ll follow that convention here,
reverting to our standard mathematical notation when giving FOL equivalents of DL statements.
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relationships. The choice between these methods hinges on the use to which the re-
sulting categories will be put and the feasibility of formulating precise definitions for
many naturally occurring categories. We’ll discuss the first option here and return to
the notion of definitions later in this section.

To directly specify a hierarchical structure, we can assert subsumption relationssubsumption

between the appropriate concepts in a terminology. The subsumption relation is
conventionally written as C v D and is read as C is subsumed by D; that is, all
members of the category C are also members of the category D. Not surprisingly, the
formal semantics of this relation are provided by a simple set relation; any domain
element that is in the set denoted by C is also in the set denoted by D.

Adding the following statements to the TBox asserts that all restaurants are com-
mercial establishments and, moreover, that there are various subtypes of restaurants.

Restaurant v CommercialEstablishment (15.66)

ItalianRestaurant v Restaurant (15.67)

ChineseRestaurant v Restaurant (15.68)

MexicanRestaurant v Restaurant (15.69)

Ontologies such as this are conventionally illustrated with diagrams such as the one
shown in Fig. 15.6, where subsumption relations are denoted by links between the
nodes representing the categories.

Restaurant

Chinese
Restaurant 

Mexican
Restaurant

Italian
Restaurant

Commercial
Establishment

Figure 15.6 A graphical network representation of a set of subsumption relations in the
restaurant domain.

Note, that it was precisely the vague nature of semantic network diagrams like
this that motivated the development of Description Logics. For example, from this
diagram we can’t tell whether the given set of categories is exhaustive or disjoint.
That is, we can’t tell if these are all the kinds of restaurants that we’ll be dealing with
in our domain or whether there might be others. We also can’t tell if an individual
restaurant must fall into only one of these categories, or if it is possible, for example,
for a restaurant to be both Italian and Chinese. The DL statements given above are
more transparent in their meaning; they simply assert a set of subsumption relations
between categories and make no claims about coverage or mutual exclusion.

If an application requires coverage and disjointness information, then such in-
formation must be made explicitly. The simplest ways to capture this kind of in-
formation is through the use of negation and disjunction operators. For example,
the following assertion would tell us that Chinese restaurants can’t also be Italian
restaurants.

ChineseRestaurantv not ItalianRestaurant (15.70)
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Specifying that a set of subconcepts covers a category can be achieved with disjunc-
tion, as in the following:

Restaurantv (15.71)

(or ItalianRestaurant ChineseRestaurant MexicanRestaurant)

Having a hierarchy such as the one given in Fig. 15.6 tells us next to nothing
about the concepts in it. We certainly don’t know anything about what makes a
restaurant a restaurant, much less Italian, Chinese, or expensive. What is needed are
additional assertions about what it means to be a member of any of these categories.
In Description Logics such statements come in the form of relations between the
concepts being described and other concepts in the domain. In keeping with its
origins in structured network representations, relations in Description Logics are
typically binary and are often referred to as roles, or role-relations.

To see how such relations work, let’s consider some of the facts about restaurants
discussed earlier in the chapter. We’ll use the hasCuisine relation to capture infor-
mation as to what kinds of food restaurants serve and the hasPriceRange relation
to capture how pricey particular restaurants tend to be. We can use these relations
to say something more concrete about our various classes of restaurants. Let’s start
with our ItalianRestaurant concept. As a first approximation, we might say some-
thing uncontroversial like Italian restaurants serve Italian cuisine. To capture these
notions, let’s first add some new concepts to our terminology to represent various
kinds of cuisine.

MexicanCuisine v Cuisine

ItalianCuisine v Cuisine

ChineseCuisine v Cuisine

VegetarianCuisine v Cuisine

ExpensiveRestaurant v Restaurant

ModerateRestaurant v Restaurant

CheapRestaurant v Restaurant

Next, let’s revise our earlier version of ItalianRestaurant to capture cuisine infor-
mation.

ItalianRestaurant v Restaurantu∃hasCuisine.ItalianCuisine (15.72)

The correct way to read this expression is that individuals in the category Italian-
Restaurant are subsumed both by the category Restaurant and by an unnamed
class defined by the existential clause—the set of entities that serve Italian cuisine.
An equivalent statement in FOL would be

∀xItalianRestaurant(x) → Restaurant(x) (15.73)

∧(∃yServes(x,y)∧ ItalianCuisine(y))

This FOL translation should make it clear what the DL assertions given above do
and do not entail. In particular, they don’t say that domain entities classified as Ital-
ian restaurants can’t engage in other relations like being expensive or even serving
Chinese cuisine. And critically, they don’t say much about domain entities that we
know do serve Italian cuisine. In fact, inspection of the FOL translation makes it
clear that we cannot infer that any new entities belong to this category based on their
characteristics. The best we can do is infer new facts about restaurants that we’re
explicitly told are members of this category.
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Of course, inferring the category membership of individuals given certain char-
acteristics is a common and critical reasoning task that we need to support. This
brings us back to the alternative approach to creating hierarchical structures in a
terminology: actually providing a definition of the categories we’re creating in the
form of necessary and sufficient conditions for category membership. In this case,
we might explicitly provide a definition for ItalianRestaurant as being those restau-
rants that serve Italian cuisine, and ModerateRestaurant as being those whose
price range is moderate.

ItalianRestaurant ≡ Restaurantu∃hasCuisine.ItalianCuisine (15.74)

ModerateRestaurant ≡ RestaurantuhasPriceRange.ModeratePrices (15.75)

While our earlier statements provided necessary conditions for membership in these
categories, these statements provide both necessary and sufficient conditions.

Finally, let’s now consider the superficially similar case of vegetarian restaurants.
Clearly, vegetarian restaurants are those that serve vegetarian cuisine. But they don’t
merely serve vegetarian fare, that’s all they serve. We can accommodate this kind of
constraint by adding an additional restriction in the form of a universal quantifier to
our earlier description of VegetarianRestaurants, as follows:

VegetarianRestaurant ≡ Restaurant (15.76)

u∃hasCuisine.VegetarianCuisine
u∀hasCuisine.VegetarianCuisine

Inference

Paralleling the focus of Description Logics on categories, relations, and individuals
is a processing focus on a restricted subset of logical inference. Rather than employ-
ing the full range of reasoning permitted by FOL, DL reasoning systems emphasize
the closely coupled problems of subsumption and instance checking.

Subsumption, as a form of inference, is the task of determining, based on thesubsumption

facts asserted in a terminology, whether a superset/subset relationship exists between
two concepts. Correspondingly, instance checking asks if an individual can be ainstance

checking
member of a particular category given the facts we know about both the individual
and the terminology. The inference mechanisms underlying subsumption and in-
stance checking go beyond simply checking for explicitly stated subsumption rela-
tions in a terminology. They must explicitly reason using the relational information
asserted about the terminology to infer appropriate subsumption and membership
relations.

Returning to our restaurant domain, let’s add a new kind of restaurant using the
following statement:

IlFornaiovModerateRestaurantu∃hasCuisine.ItalianCuisine (15.77)

Given this assertion, we might ask whether the IlFornaio chain of restaurants might
be classified as an Italian restaurant or a vegetarian restaurant. More precisely, we
can pose the following questions to our reasoning system:

IlFornaio v ItalianRestaurant (15.78)

IlFornaio v VegetarianRestaurant (15.79)

The answer to the first question is positive since IlFornaio meets the criteria we
specified for the category ItalianRestaurant: it’s a Restaurant since we explicitly
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Figure 15.7 A graphical network representation of the complete set of subsumption rela-
tions in the restaurant domain given the current set of assertions in the TBox.

classified it as a ModerateRestaurant, which is a subtype of Restaurant, and it
meets the has.Cuisine class restriction since we’ve asserted that directly.

The answer to the second question is negative. Recall, that our criteria for veg-
etarian restaurants contains two requirements: it has to serve vegetarian fare, and
that’s all it can serve. Our current definition for IlFornaio fails on both counts since
we have not asserted any relations that state that IlFornaio serves vegetarian fare,
and the relation we have asserted, hasCuisine.ItalianCuisine, contradicts the sec-
ond criteria.

A related reasoning task, based on the basic subsumption inference, is to derive
the implied hierarchy for a terminology given facts about the categories in the ter-implied

hierarchy
minology. This task roughly corresponds to a repeated application of the subsump-
tion operator to pairs of concepts in the terminology. Given our current collection of
statements, the expanded hierarchy shown in Fig. 15.7 can be inferred. You should
convince yourself that this diagram contains all and only the subsumption links that
should be present given our current knowledge.

Instance checking is the task of determining whether a particular individual can
be classified as a member of a particular category. This process takes what is known
about a given individual, in the form of relations and explicit categorical statements,
and then compares that information with what is known about the current terminol-
ogy. It then returns a list of the most specific categories to which the individual can
belong.

As an example of a categorization problem, consider an establishment that we’re
told is a restaurant and serves Italian cuisine.

Restaurant(Gondolier)

hasCuisine(Gondolier, ItalianCuisine)

Here, we’re being told that the entity denoted by the term Gondolier is a restau-
rant and serves Italian food. Given this new information and the contents of our
current TBox, we might reasonably like to ask if this is an Italian restaurant, if it is
a vegetarian restaurant, or if it has moderate prices.

Assuming the definitional statements given earlier, we can indeed categorize
the Gondolier as an Italian restaurant. That is, the information we’ve been given
about it meets the necessary and sufficient conditions required for membership in
this category. And as with the IlFornaio category, this individual fails to match the
stated criteria for the VegetarianRestaurant. Finally, the Gondolier might also
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turn out to be a moderately priced restaurant, but we can’t tell at this point since
we don’t know anything about its prices. What this means is that given our current
knowledge the answer to the query ModerateRestaurant(Gondolier) would be false
since it lacks the required hasPriceRange relation.

The implementation of subsumption, instance checking, as well as other kinds of
inferences needed for practical applications, varies according to the expressivity of
the Description Logic being used. However, for a Description Logic of even modest
power, the primary implementation techniques are based on satisfiability methods
that in turn rely on the underlying model-based semantics introduced earlier in this
chapter.

OWL and the Semantic Web

The highest-profile role for Description Logics, to date, has been as a part of the
development of the Semantic Web. The Semantic Web is an ongoing effort to pro-
vide a way to formally specify the semantics of the contents of the Web (Fensel
et al., 2003). A key component of this effort involves the creation and deployment
of ontologies for various application areas of interest. The meaning representation
language used to represent this knowledge is the Web Ontology Language (OWL)Web Ontology

Language
(McGuiness and van Harmelen, 2004). OWL embodies a Description Logic that
corresponds roughly to the one we’ve been describing here.

15.6 Summary

This chapter has introduced the representational approach to meaning. The follow-
ing are some of the highlights of this chapter:

• A major approach to meaning in computational linguistics involves the cre-
ation of formal meaning representations that capture the meaning-related
content of linguistic inputs. These representations are intended to bridge the
gap from language to common-sense knowledge of the world.

• The frameworks that specify the syntax and semantics of these representa-
tions are called meaning representation languages. A wide variety of such
languages are used in natural language processing and artificial intelligence.

• Such representations need to be able to support the practical computational
requirements of semantic processing. Among these are the need to determine
the truth of propositions, to support unambiguous representations, to rep-
resent variables, to support inference, and to be sufficiently expressive.

• Human languages have a wide variety of features that are used to convey
meaning. Among the most important of these is the ability to convey a predicate-
argument structure.

• First-Order Logic is a well-understood, computationally tractable meaning
representation language that offers much of what is needed in a meaning rep-
resentation language.

• Important elements of semantic representation including states and events
can be captured in FOL.

• Semantic networks and frames can be captured within the FOL framework.
• Modern Description Logics consist of useful and computationally tractable

subsets of full First-Order Logic. The most prominent use of a description
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logic is the Web Ontology Language (OWL), used in the specification of the
Semantic Web.

Bibliographical and Historical Notes
The earliest computational use of declarative meaning representations in natural lan-
guage processing was in the context of question-answering systems (Green et al. 1961,
Raphael 1968, Lindsey 1963). These systems employed ad hoc representations for
the facts needed to answer questions. Questions were then translated into a form that
could be matched against facts in the knowledge base. Simmons (1965) provides an
overview of these early efforts.

Woods (1967) investigated the use of FOL-like representations in question an-
swering as a replacement for the ad hoc representations in use at the time. Woods
(1973) further developed and extended these ideas in the landmark Lunar system.
Interestingly, the representations used in Lunar had both truth-conditional and pro-
cedural semantics. Winograd (1972) employed a similar representation based on the
Micro-Planner language in his SHRDLU system.

During this same period, researchers interested in the cognitive modeling of lan-
guage and memory had been working with various forms of associative network
representations. Masterman (1957) was the first to make computational use of a
semantic network-like knowledge representation, although semantic networks are
generally credited to Quillian (1968). A considerable amount of work in the seman-
tic network framework was carried out during this era (Norman and Rumelhart 1975,
Schank 1972, Wilks 1975c, Wilks 1975b, Kintsch 1974). It was during this period
that a number of researchers began to incorporate Fillmore’s notion of case roles
(Fillmore, 1968) into their representations. Simmons (1973) was the earliest adopter
of case roles as part of representations for natural language processing.

Detailed analyses by Woods (1975) and Brachman (1979) aimed at figuring out
what semantic networks actually mean led to the development of a number of more
sophisticated network-like languages including KRL (Bobrow and Winograd, 1977)
and KL-ONE (Brachman and Schmolze, 1985). As these frameworks became more
sophisticated and well defined, it became clear that they were restricted variants of
FOL coupled with specialized indexing inference procedures. A useful collection of
papers covering much of this work can be found in Brachman and Levesque (1985).
Russell and Norvig (2002) describe a modern perspective on these representational
efforts.

Linguistic efforts to assign semantic structures to natural language sentences in
the generative era began with the work of Katz and Fodor (1963). The limitations
of their simple feature-based representations and the natural fit of logic to many
of the linguistic problems of the day quickly led to the adoption of a variety of
predicate-argument structures as preferred semantic representations (Lakoff 1972a,
McCawley 1968). The subsequent introduction by Montague (1973) of the truth-
conditional model-theoretic framework into linguistic theory led to a much tighter
integration between theories of formal syntax and a wide range of formal semantic
frameworks. Good introductions to Montague semantics and its role in linguistic
theory can be found in Dowty et al. (1981) and Partee (1976).

The representation of events as reified objects is due to Davidson (1967). The
approach presented here, which explicitly reifies event participants, is due to Parsons
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(1990).
Most current computational approaches to temporal reasoning are based on Allen’s

notion of temporal intervals (Allen, 1984); see Chapter 17. ter Meulen (1995) pro-
vides a modern treatment of tense and aspect. Davis (1990) describes the use of FOL
to represent knowledge across a wide range of common-sense domains including
quantities, space, time, and beliefs.

A recent comprehensive treatment of logic and language can be found in van
Benthem and ter Meulen (1997). A classic semantics text is Lyons (1977). McCaw-
ley (1993) is an indispensable textbook covering a wide range of topics concerning
logic and language. Chierchia and McConnell-Ginet (1991) also broadly covers
semantic issues from a linguistic perspective. Heim and Kratzer (1998) is a more
recent text written from the perspective of current generative theory.

Exercises
15.1 Peruse your daily newspaper for three examples of ambiguous sentences or

headlines. Describe the various sources of the ambiguities.

15.2 Consider a domain in which the word coffee can refer to the following con-
cepts in a knowledge-based system: a caffeinated or decaffeinated beverage,
ground coffee used to make either kind of beverage, and the beans themselves.
Give arguments as to which of the following uses of coffee are ambiguous and
which are vague.

1. I’ve had my coffee for today.
2. Buy some coffee on your way home.
3. Please grind some more coffee.

15.3 The following rule, which we gave as a translation for Example 15.25, is not
a reasonable definition of what it means to be a vegetarian restaurant.

∀xVegetarianRestaurant(x) =⇒ Serves(x,VegetarianFood)

Give a FOL rule that better defines vegetarian restaurants in terms of what they
serve.

15.4 Give FOL translations for the following sentences:
1. Vegetarians do not eat meat.
2. Not all vegetarians eat eggs.

15.5 Give a set of facts and inferences necessary to prove the following assertions:
1. McDonald’s is not a vegetarian restaurant.
2. Some vegetarians can eat at McDonald’s.

Don’t just place these facts in your knowledge base. Show that they can be
inferred from some more general facts about vegetarians and McDonald’s.

15.6 For the following sentences, give FOL translations that capture the temporal
relationships between the events.

1. When Mary’s flight departed, I ate lunch.
2. When Mary’s flight departed, I had eaten lunch.

15.7 On page 316, we gave the representation Near(Centro,Bacaro) as a transla-
tion for the sentence Centro is near Bacaro. In a truth-conditional semantics,
this formula is either true or false given some model. Critique this truth-
conditional approach with respect to the meaning of words like near.
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CHAPTER

17 Information Extraction

I am the very model of a modern Major-General,
I’ve information vegetable, animal, and mineral,

I know the kings of England, and I quote the fights historical
From Marathon to Waterloo, in order categorical...

Gilbert and Sullivan, Pirates of Penzance

Imagine that you are an analyst with an investment firm that tracks airline stocks.
You’re given the task of determining the relationship (if any) between airline an-
nouncements of fare increases and the behavior of their stocks the next day. His-
torical data about stock prices is easy to come by, but what about the airline an-
nouncements? You will need to know at least the name of the airline, the nature of
the proposed fare hike, the dates of the announcement, and possibly the response of
other airlines. Fortunately, these can be all found in news articles like this one:

Citing high fuel prices, United Airlines said Friday it has increased fares
by $6 per round trip on flights to some cities also served by lower-
cost carriers. American Airlines, a unit of AMR Corp., immediately
matched the move, spokesman Tim Wagner said. United, a unit of UAL
Corp., said the increase took effect Thursday and applies to most routes
where it competes against discount carriers, such as Chicago to Dallas
and Denver to San Francisco.

This chapter presents techniques for extracting limited kinds of semantic con-
tent from text. This process of information extraction (IE) turns the unstructuredinformation

extraction
information embedded in texts into structured data, for example for populating a
relational database to enable further processing.

We begin with the task of relation extraction: finding and classifying semanticrelation
extraction

relations among the text entities. These are often binary relations like child-of, em-
ployment, part-whole, and geospatial relations. Relation extraction has close links to
populating a relational database. Indeed, knowledge graphs, datasets of structuredknowledge

graphs
relational knowledge, are a common way that search engines present information to
users.

Next, we discuss three tasks related to events. Event extraction is finding eventsevent
extraction

in which these entities participate, like, in our sample text, the fare increases by
United and American and the reporting events said and cite. Event coreference
(Chapter 22) is needed to figure out which event mentions in a text refer to the same
event; in our running example the two instances of increase and the phrase the move
all refer to the same event.

To figure out when the events in a text happened we extract temporal expres-
sions like days of the week (Friday and Thursday), relative expressions like twotemporal

expression
days from now or next year and times such as 3:30 P.M.. These expressions must be
normalized onto specific calendar dates or times of day to situate events in time. In
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our sample task, this will allow us to link Friday to the time of United’s announce-
ment, and Thursday to the previous day’s fare increase, and produce a timeline in
which United’s announcement follows the fare increase and American’s announce-
ment follows both of those events.

Finally, many texts describe recurring stereotypical events or situations. The task
of template filling is to find such situations in documents and fill in the templatetemplate filling

slots. These slot-fillers may consist of text segments extracted directly from the text,
or concepts like times, amounts, or ontology entities that have been inferred from
text elements through additional processing.

Our airline text is an example of this kind of stereotypical situation since airlines
often raise fares and then wait to see if competitors follow along. In this situa-
tion, we can identify United as a lead airline that initially raised its fares, $6 as the
amount, Thursday as the increase date, and American as an airline that followed
along, leading to a filled template like the following.

FARE-RAISE ATTEMPT:



LEAD AIRLINE: UNITED AIRLINES

AMOUNT: $6
EFFECTIVE DATE: 2006-10-26
FOLLOWER: AMERICAN AIRLINES




17.1 Relation Extraction

Let’s assume that we have detected the named entities in our sample text (perhaps
using the techniques of Chapter 8), and would like to discern the relationships that
exist among the detected entities:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text tells us, for example, that Tim Wagner is a spokesman for American
Airlines, that United is a unit of UAL Corp., and that American is a unit of AMR.
These binary relations are instances of more generic relations such as part-of or
employs that are fairly frequent in news-style texts. Figure 17.1 lists the 17 relations
used in the ACE relation extraction evaluations and Fig. 17.2 shows some sample
relations. We might also extract more domain-specific relation such as the notion of
an airline route. For example from this text we can conclude that United has routes
to Chicago, Dallas, Denver, and San Francisco.

These relations correspond nicely to the model-theoretic notions we introduced
in Chapter 15 to ground the meanings of the logical forms. That is, a relation consists
of a set of ordered tuples over elements of a domain. In most standard information-
extraction applications, the domain elements correspond to the named entities that
occur in the text, to the underlying entities that result from coreference resolution, or
to entities selected from a domain ontology. Figure 17.3 shows a model-based view
of the set of entities and relations that can be extracted from our running example.
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Figure 17.1 The 17 relations used in the ACE relation extraction task.

Relations Types Examples
Physical-Located PER-GPE He was in Tennessee
Part-Whole-Subsidiary ORG-ORG XYZ, the parent company of ABC
Person-Social-Family PER-PER Yoko’s husband John
Org-AFF-Founder PER-ORG Steve Jobs, co-founder of Apple...
Figure 17.2 Semantic relations with examples and the named entity types they involve.

Domain D= {a,b,c,d,e, f ,g,h, i}
United, UAL, American Airlines, AMR a,b,c,d
Tim Wagner e
Chicago, Dallas, Denver, and San Francisco f ,g,h, i

Classes
United, UAL, American, and AMR are organizations Org = {a,b,c,d}
Tim Wagner is a person Pers = {e}
Chicago, Dallas, Denver, and San Francisco are places Loc = { f ,g,h, i}
Relations
United is a unit of UAL PartOf = {〈a,b〉,〈c,d〉}
American is a unit of AMR
Tim Wagner works for American Airlines OrgAff = {〈c,e〉}
United serves Chicago, Dallas, Denver, and San Francisco Serves = {〈a, f 〉,〈a,g〉,〈a,h〉,〈a, i〉}
Figure 17.3 A model-based view of the relations and entities in our sample text.

Notice how this model-theoretic view subsumes the NER task as well; named entity
recognition corresponds to the identification of a class of unary relations.

Sets of relations have been defined for many other domains as well. For example
UMLS, the Unified Medical Language System from the US National Library of
Medicine has a network that defines 134 broad subject categories, entity types, and
54 relations between the entities, such as the following:

Entity Relation Entity
Injury disrupts Physiological Function
Bodily Location location-of Biologic Function
Anatomical Structure part-of Organism
Pharmacologic Substance causes Pathological Function
Pharmacologic Substance treats Pathologic Function

Given a medical sentence like this one:
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(17.1) Doppler echocardiography can be used to diagnose left anterior descending
artery stenosis in patients with type 2 diabetes

We could thus extract the UMLS relation:

Echocardiography, Doppler Diagnoses Acquired stenosis

Wikipedia also offers a large supply of relations, drawn from infoboxes, struc-infoboxes

tured tables associated with certain Wikipedia articles. For example, the Wikipedia
infobox for Stanford includes structured facts like state = "California" or
president = "Marc Tessier-Lavigne". These facts can be turned into rela-
tions like president-of or located-in. or into relations in a metalanguage called RDFRDF

(Resource Description Framework). An RDF triple is a tuple of entity-relation-RDF triple

entity, called a subject-predicate-object expression. Here’s a sample RDF triple:

subject predicate object
Golden Gate Park location San Francisco

For example the crowdsourced DBpedia (Bizer et al., 2009) is an ontology
derived from Wikipedia containing over 2 billion RDF triples. Another dataset
from Wikipedia infoboxes, Freebase (Bollacker et al., 2008), now part of WikidataFreebase

(Vrandečić and Krötzsch, 2014), has relations between people and their nationality,
or locations, and other locations they are contained in.

WordNet or other ontologies offer useful ontological relations that express hier-
archical relations between words or concepts. For example WordNet has the is-a oris-a

hypernym relation between classes,hypernym

Giraffe is-a ruminant is-a ungulate is-a mammal is-a vertebrate ...

WordNet also has Instance-of relation between individuals and classes, so that for
example San Francisco is in the Instance-of relation with city. Extracting these
relations is an important step in extending or building ontologies.

Finally, there are large datasets that contain sentences hand-labeled with their
relations, designed for training and testing relation extractors. The TACRED dataset
(Zhang et al., 2017) contains 106,264 examples of relation triples about particular
people or organizations, labeled in sentences from news and web text drawn from the
annual TAC Knowledge Base Population (TAC KBP) challenges. TACRED contains
41 relation types (like per:city of birth, org:subsidiaries, org:member of, per:spouse),
plus a no relation tag; examples are shown in Fig. 17.4. About 80% of all examples
are annotated as no relation; having sufficient negative data is important for training
supervised classifiers.

Example Entity Types & Label
Carey will succeed Cathleen P. Black, who held the position for 15
years and will take on a new role as chairwoman of Hearst Maga-
zines, the company said.

PERSON/TITLE
Relation: per:title

Irene Morgan Kirkaldy, who was born and reared in Baltimore, lived
on Long Island and ran a child-care center in Queens with her second
husband, Stanley Kirkaldy.

PERSON/CITY
Relation: per:city of birth

Baldwin declined further comment, and said JetBlue chief executive
Dave Barger was unavailable.

Types: PERSON/TITLE
Relation: no relation

Figure 17.4 Example sentences and labels from the TACRED dataset (Zhang et al., 2017).

A standard dataset was also produced for the SemEval 2010 Task 8, detecting
relations between nominals (Hendrickx et al., 2009). The dataset has 10,717 exam-
ples, each with a pair of nominals (untyped) hand-labeled with one of 9 directed
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relations like product-producer ( a factory manufactures suits) or component-whole
(my apartment has a large kitchen).

17.2 Relation Extraction Algorithms

There are five main classes of algorithms for relation extraction: handwritten pat-
terns, supervised machine learning, semi-supervised (via bootstrapping and via
distant supervision), and unsupervised. We’ll introduce each of these in the next
sections.

17.2.1 Using Patterns to Extract Relations
The earliest and still common algorithm for relation extraction is lexico-syntactic
patterns, first developed by Hearst (1992a), and therefore often called Hearst pat-
terns. Consider the following sentence:Hearst patterns

Agar is a substance prepared from a mixture of red algae, such as Ge-
lidium, for laboratory or industrial use.

Hearst points out that most human readers will not know what Gelidium is, but that
they can readily infer that it is a kind of (a hyponym of) red algae, whatever that is.
She suggests that the following lexico-syntactic pattern

NP0 such as NP1{,NP2 . . . ,(and|or)NPi}, i≥ 1 (17.2)

implies the following semantics

∀NPi, i≥ 1,hyponym(NPi,NP0) (17.3)

allowing us to infer
hyponym(Gelidium, red algae) (17.4)

NP {, NP}* {,} (and|or) other NPH temples, treasuries, and other important civic buildings
NPH such as {NP,}* {(or|and)} NP red algae such as Gelidium
such NPH as {NP,}* {(or|and)} NP such authors as Herrick, Goldsmith, and Shakespeare
NPH {,} including {NP,}* {(or|and)} NP common-law countries, including Canada and England
NPH {,} especially {NP}* {(or|and)} NP European countries, especially France, England, and Spain

Figure 17.5 Hand-built lexico-syntactic patterns for finding hypernyms, using {} to mark optionality
(Hearst 1992a, Hearst 1998).

Figure 17.5 shows five patterns Hearst (1992a, 1998) suggested for inferring
the hyponym relation; we’ve shown NPH as the parent/hyponym. Modern versions
of the pattern-based approach extend it by adding named entity constraints. For
example if our goal is to answer questions about “Who holds what office in which
organization?”, we can use patterns like the following:

PER, POSITION of ORG:
George Marshall, Secretary of State of the United States

PER (named|appointed|chose|etc.) PER Prep? POSITION
Truman appointed Marshall Secretary of State

PER [be]? (named|appointed|etc.) Prep? ORG POSITION
George Marshall was named US Secretary of State
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Hand-built patterns have the advantage of high-precision and they can be tailored
to specific domains. On the other hand, they are often low-recall, and it’s a lot of
work to create them for all possible patterns.

17.2.2 Relation Extraction via Supervised Learning
Supervised machine learning approaches to relation extraction follow a scheme that
should be familiar by now. A fixed set of relations and entities is chosen, a training
corpus is hand-annotated with the relations and entities, and the annotated texts are
then used to train classifiers to annotate an unseen test set.

The most straightforward approach, illustrated in Fig. 17.6 is: (1) Find pairs of
named entities (usually in the same sentence). (2): Apply a relation-classification
on each pair. The classifier can use any supervised technique (logistic regression,
RNN, Transformer, random forest, etc.).

An optional intermediate filtering classifier can be used to speed up the process-
ing by making a binary decision on whether a given pair of named entities are related
(by any relation). It’s trained on positive examples extracted directly from all rela-
tions in the annotated corpus, and negative examples generated from within-sentence
entity pairs that are not annotated with a relation.

function FINDRELATIONS(words) returns relations

relations←nil
entities←FINDENTITIES(words)
forall entity pairs 〈e1, e2〉 in entities do

if RELATED?(e1, e2)
relations←relations+CLASSIFYRELATION(e1, e2)

Figure 17.6 Finding and classifying the relations among entities in a text.

Feature-based supervised relation classifiers. Let’s consider sample features for
a feature-based classifier (like logistic regression or random forests), classifying the
relationship between American Airlines (Mention 1, or M1) and Tim Wagner (Men-
tion 2, M2) from this sentence:

(17.5) American Airlines, a unit of AMR, immediately matched the move,
spokesman Tim Wagner said

These include word features (as embeddings, or 1-hot, stemmed or not):

• The headwords of M1 and M2 and their concatenation
Airlines Wagner Airlines-Wagner

• Bag-of-words and bigrams in M1 and M2
American, Airlines, Tim, Wagner, American Airlines, Tim Wagner

• Words or bigrams in particular positions
M2: -1 spokesman
M2: +1 said

• Bag of words or bigrams between M1 and M2:
a, AMR, of, immediately, matched, move, spokesman, the, unit

Named entity features:

• Named-entity types and their concatenation
(M1: ORG, M2: PER, M1M2: ORG-PER)
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ENCODER (BERT)
[CLS] [SUBJ_PERSON] was born in [OBJ_LOC] , Michigan

Linear
Classifier

p(relation|SUBJ,OBJ)

Figure 17.7 Relation extraction as a linear layer on top of an encoder (in this case BERT),
with the subject and object entities replaced in the input by their NER tags (Zhang et al. 2017,
Joshi et al. 2020).

• Entity Level of M1 and M2 (from the set NAME, NOMINAL, PRONOUN)
M1: NAME [it or he would be PRONOUN]
M2: NAME [the company would be NOMINAL]

• Number of entities between the arguments (in this case 1, for AMR)

Syntactic structure is a useful signal, often represented as the dependency or
constituency syntactic path traversed through the tree between the entities.

• Constituent paths between M1 and M2
NP ↑ NP ↑ S ↑ S ↓ NP

• Dependency-tree paths
Airlines←sub j matched←comp said→sub j Wagner

Neural supervised relation classifiers Neural models for relation extraction sim-
ilarly treat the task as supervised classification. Let’s consider a typical system ap-
plied to the TACRED relation extraction dataset and task (Zhang et al., 2017). In
TACRED we are given a sentence and two spans within it: a subject, which is a
person or organization, and an object, which is any other entity. The task is to assign
a relation from the 42 TAC relations, or no relation.

A typical Transformer-encoder algorithm, showin in Fig. 17.7, simply takes a
pretrained encoder like BERT and adds a linear layer on top of the sentence repre-
sentation (for example the BERT [CLS] token), a linear layer that is finetuned as a
1-of-N classifier to assign one of the 43 labels. The input to the BERT encoder is
partially de-lexified; the subject and object entities are replaced in the input by their
NER tags. This helps keep the system from overfitting to the individual lexical items
(Zhang et al., 2017). When using BERT-type Transformers for relation extraction, it
helps to use versions of BERT like RoBERTa (Liu et al., 2019) or SPANbert (Joshi
et al., 2020) that don’t have two sequences separated by a [SEP] token, but instead
form the input from a single long sequence of sentences.

In general, if the test set is similar enough to the training set, and if there is
enough hand-labeled data, supervised relation extraction systems can get high ac-
curacies. But labeling a large training set is extremely expensive and supervised
models are brittle: they don’t generalize well to different text genres. For this rea-
son, much research in relation extraction has focused on the semi-supervised and
unsupervised approaches we turn to next.

17.2.3 Semisupervised Relation Extraction via Bootstrapping
Supervised machine learning assumes that we have lots of labeled data. Unfortu-
nately, this is expensive. But suppose we just have a few high-precision seed pat-
terns, like those in Section 17.2.1, or perhaps a few seed tuples. That’s enoughseed patterns

seed tuples
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to bootstrap a classifier! Bootstrapping proceeds by taking the entities in the seedbootstrapping

pair, and then finding sentences (on the web, or whatever dataset we are using) that
contain both entities. From all such sentences, we extract and generalize the context
around the entities to learn new patterns. Fig. 17.8 sketches a basic algorithm.

function BOOTSTRAP(Relation R) returns new relation tuples

tuples←Gather a set of seed tuples that have relation R
iterate

sentences←find sentences that contain entities in tuples
patterns←generalize the context between and around entities in sentences
newpairs←use patterns to grep for more tuples
newpairs←newpairs with high confidence
tuples← tuples + newpairs

return tuples

Figure 17.8 Bootstrapping from seed entity pairs to learn relations.

Suppose, for example, that we need to create a list of airline/hub pairs, and we
know only that Ryanair has a hub at Charleroi. We can use this seed fact to discover
new patterns by finding other mentions of this relation in our corpus. We search
for the terms Ryanair, Charleroi and hub in some proximity. Perhaps we find the
following set of sentences:
(17.6) Budget airline Ryanair, which uses Charleroi as a hub, scrapped all

weekend flights out of the airport.
(17.7) All flights in and out of Ryanair’s hub at Charleroi airport were grounded on

Friday...
(17.8) A spokesman at Charleroi, a main hub for Ryanair, estimated that 8000

passengers had already been affected.
From these results, we can use the context of words between the entity mentions,

the words before mention one, the word after mention two, and the named entity
types of the two mentions, and perhaps other features, to extract general patterns
such as the following:

/ [ORG], which uses [LOC] as a hub /

/ [ORG]’s hub at [LOC] /

/ [LOC], a main hub for [ORG] /

These new patterns can then be used to search for additional tuples.
Bootstrapping systems also assign confidence values to new tuples to avoid se-confidence

values
mantic drift. In semantic drift, an erroneous pattern leads to the introduction ofsemantic drift

erroneous tuples, which, in turn, lead to the creation of problematic patterns and the
meaning of the extracted relations ‘drifts’. Consider the following example:
(17.9) Sydney has a ferry hub at Circular Quay.
If accepted as a positive example, this expression could lead to the incorrect in-
troduction of the tuple 〈Sydney,CircularQuay〉. Patterns based on this tuple could
propagate further errors into the database.

Confidence values for patterns are based on balancing two factors: the pattern’s
performance with respect to the current set of tuples and the pattern’s productivity
in terms of the number of matches it produces in the document collection. More
formally, given a document collection D, a current set of tuples T , and a proposed
pattern p, we need to track two factors:
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• hits(p): the set of tuples in T that p matches while looking in D

• finds(p): The total set of tuples that p finds in D

The following equation balances these considerations (Riloff and Jones, 1999).

Conf RlogF(p) =
|hits(p)|
|finds(p)| log(|finds(p)|) (17.10)

This metric is generally normalized to produce a probability.
We can assess the confidence in a proposed new tuple by combining the evidence

supporting it from all the patterns P′ that match that tuple in D (Agichtein and Gra-
vano, 2000). One way to combine such evidence is the noisy-or technique. Assumenoisy-or

that a given tuple is supported by a subset of the patterns in P, each with its own
confidence assessed as above. In the noisy-or model, we make two basic assump-
tions. First, that for a proposed tuple to be false, all of its supporting patterns must
have been in error, and second, that the sources of their individual failures are all
independent. If we loosely treat our confidence measures as probabilities, then the
probability of any individual pattern p failing is 1−Conf (p); the probability of all
of the supporting patterns for a tuple being wrong is the product of their individual
failure probabilities, leaving us with the following equation for our confidence in a
new tuple.

Conf (t) = 1−
∏

p∈P′
(1−Conf (p)) (17.11)

Setting conservative confidence thresholds for the acceptance of new patterns
and tuples during the bootstrapping process helps prevent the system from drifting
away from the targeted relation.

17.2.4 Distant Supervision for Relation Extraction
Although hand-labeling text with relation labels is expensive to produce, there are
ways to find indirect sources of training data. The distant supervision methoddistant

supervision
(Mintz et al., 2009) combines the advantages of bootstrapping with supervised learn-
ing. Instead of just a handful of seeds, distant supervision uses a large database to
acquire a huge number of seed examples, creates lots of noisy pattern features from
all these examples and then combines them in a supervised classifier.

For example suppose we are trying to learn the place-of-birth relationship be-
tween people and their birth cities. In the seed-based approach, we might have only
5 examples to start with. But Wikipedia-based databases like DBPedia or Freebase
have tens of thousands of examples of many relations; including over 100,000 ex-
amples of place-of-birth, (<Edwin Hubble, Marshfield>, <Albert Einstein,

Ulm>, etc.,). The next step is to run named entity taggers on large amounts of text—
Mintz et al. (2009) used 800,000 articles from Wikipedia—and extract all sentences
that have two named entities that match the tuple, like the following:

...Hubble was born in Marshfield...

...Einstein, born (1879), Ulm...

...Hubble’s birthplace in Marshfield...

Training instances can now be extracted from this data, one training instance
for each identical tuple <relation, entity1, entity2>. Thus there will be one
training instance for each of:
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<born-in, Edwin Hubble, Marshfield>

<born-in, Albert Einstein, Ulm>

<born-year, Albert Einstein, 1879>

and so on.
We can then apply feature-based or neural classification. For feature-based clas-

sification, standard supervised relation extraction features like the named entity la-
bels of the two mentions, the words and dependency paths in between the mentions,
and neighboring words. Each tuple will have features collected from many training
instances; the feature vector for a single training instance like (<born-in,Albert
Einstein, Ulm> will have lexical and syntactic features from many different sen-
tences that mention Einstein and Ulm.

Because distant supervision has very large training sets, it is also able to use very
rich features that are conjunctions of these individual features. So we will extract
thousands of patterns that conjoin the entity types with the intervening words or
dependency paths like these:

PER was born in LOC
PER, born (XXXX), LOC
PER’s birthplace in LOC

To return to our running example, for this sentence:

(17.12) American Airlines, a unit of AMR, immediately matched the move,
spokesman Tim Wagner said

we would learn rich conjunction features like this one:

M1 = ORG & M2 = PER & nextword=“said”& path= NP ↑ NP ↑ S ↑ S ↓ NP

The result is a supervised classifier that has a huge rich set of features to use
in detecting relations. Since not every test sentence will have one of the training
relations, the classifier will also need to be able to label an example as no-relation.
This label is trained by randomly selecting entity pairs that do not appear in any
Freebase relation, extracting features for them, and building a feature vector for
each such tuple. The final algorithm is sketched in Fig. 17.9.

function DISTANT SUPERVISION(Database D, Text T) returns relation classifier C

foreach relation R
foreach tuple (e1,e2) of entities with relation R in D

sentences←Sentences in T that contain e1 and e2
f←Frequent features in sentences
observations←observations + new training tuple (e1, e2, f, R)

C←Train supervised classifier on observations
return C

Figure 17.9 The distant supervision algorithm for relation extraction. A neural classifier
would skip the feature set f .

Distant supervision shares advantages with each of the methods we’ve exam-
ined. Like supervised classification, distant supervision uses a classifier with lots
of features, and supervised by detailed hand-created knowledge. Like pattern-based
classifiers, it can make use of high-precision evidence for the relation between en-
tities. Indeed, distance supervision systems learn patterns just like the hand-built
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patterns of early relation extractors. For example the is-a or hypernym extraction
system of Snow et al. (2005) used hypernym/hyponym NP pairs from WordNet as
distant supervision, and then learned new patterns from large amounts of text. Their
system induced exactly the original 5 template patterns of Hearst (1992a), but also
70,000 additional patterns including these four:

NPH like NP Many hormones like leptin...
NPH called NP ...using a markup language called XHTML
NP is a NPH Ruby is a programming language...
NP, a NPH IBM, a company with a long...

This ability to use a large number of features simultaneously means that, un-
like the iterative expansion of patterns in seed-based systems, there’s no semantic
drift. Like unsupervised classification, it doesn’t use a labeled training corpus of
texts, so it isn’t sensitive to genre issues in the training corpus, and relies on very
large amounts of unlabeled data. Distant supervision also has the advantage that it
can create training tuples to be used with neural classifiers, where features are not
required.

The main problem with distant supervision is that it tends to produce low-precision
results, and so current research focuses on ways to improve precision. Furthermore,
distant supervision can only help in extracting relations for which a large enough
database already exists. To extract new relations without datasets, or relations for
new domains, purely unsupervised methods must be used.

17.2.5 Unsupervised Relation Extraction
The goal of unsupervised relation extraction is to extract relations from the web
when we have no labeled training data, and not even any list of relations. This task
is often called open information extraction or Open IE. In Open IE, the relations

open
information

extraction
are simply strings of words (usually beginning with a verb).

For example, the ReVerb system (Fader et al., 2011) extracts a relation from a
sentence s in 4 steps:

1. Run a part-of-speech tagger and entity chunker over s
2. For each verb in s, find the longest sequence of words w that start with a verb

and satisfy syntactic and lexical constraints, merging adjacent matches.
3. For each phrase w, find the nearest noun phrase x to the left which is not a

relative pronoun, wh-word or existential “there”. Find the nearest noun phrase
y to the right.

4. Assign confidence c to the relation r = (x,w,y) using a confidence classifier
and return it.

A relation is only accepted if it meets syntactic and lexical constraints. The
syntactic constraints ensure that it is a verb-initial sequence that might also include
nouns (relations that begin with light verbs like make, have, or do often express the
core of the relation with a noun, like have a hub in):

V | VP | VW*P
V = verb particle? adv?
W = (noun | adj | adv | pron | det )
P = (prep | particle | inf. marker)

The lexical constraints are based on a dictionary D that is used to prune very rare,
long relation strings. The intuition is to eliminate candidate relations that don’t oc-
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cur with sufficient number of distinct argument types and so are likely to be bad
examples. The system first runs the above relation extraction algorithm offline on
500 million web sentences and extracts a list of all the relations that occur after nor-
malizing them (removing inflection, auxiliary verbs, adjectives, and adverbs). Each
relation r is added to the dictionary if it occurs with at least 20 different arguments.
Fader et al. (2011) used a dictionary of 1.7 million normalized relations.

Finally, a confidence value is computed for each relation using a logistic re-
gression classifier. The classifier is trained by taking 1000 random web sentences,
running the extractor, and hand labeling each extracted relation as correct or incor-
rect. A confidence classifier is then trained on this hand-labeled data, using features
of the relation and the surrounding words. Fig. 17.10 shows some sample features
used in the classification.

(x,r,y) covers all words in s
the last preposition in r is for
the last preposition in r is on
len(s) ≤ 10
there is a coordinating conjunction to the left of r in s
r matches a lone V in the syntactic constraints
there is preposition to the left of x in s
there is an NP to the right of y in s

Figure 17.10 Features for the classifier that assigns confidence to relations extracted by the
Open Information Extraction system REVERB (Fader et al., 2011).

For example the following sentence:

(17.13) United has a hub in Chicago, which is the headquarters of United
Continental Holdings.

has the relation phrases has a hub in and is the headquarters of (it also has has and
is, but longer phrases are preferred). Step 3 finds United to the left and Chicago to
the right of has a hub in, and skips over which to find Chicago to the left of is the
headquarters of. The final output is:

r1: <United, has a hub in, Chicago>

r2: <Chicago, is the headquarters of, United Continental Holdings>

The great advantage of unsupervised relation extraction is its ability to handle
a huge number of relations without having to specify them in advance. The disad-
vantage is the need to map these large sets of strings into some canonical form for
adding to databases or other knowledge sources. Current methods focus heavily on
relations expressed with verbs, and so will miss many relations that are expressed
nominally.

17.2.6 Evaluation of Relation Extraction
Supervised relation extraction systems are evaluated by using test sets with human-
annotated, gold-standard relations and computing precision, recall, and F-measure.
Labeled precision and recall require the system to classify the relation correctly,
whereas unlabeled methods simply measure a system’s ability to detect entities that
are related.

Semi-supervised and unsupervised methods are much more difficult to evalu-
ate, since they extract totally new relations from the web or a large text. Because
these methods use very large amounts of text, it is generally not possible to run them
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solely on a small labeled test set, and as a result it’s not possible to pre-annotate a
gold set of correct instances of relations.

For these methods it’s possible to approximate (only) precision by drawing a
random sample of relations from the output, and having a human check the accuracy
of each of these relations. Usually this approach focuses on the tuples to be extracted
from a body of text rather than on the relation mentions; systems need not detect
every mention of a relation to be scored correctly. Instead, the evaluation is based
on the set of tuples occupying the database when the system is finished. That is,
we want to know if the system can discover that Ryanair has a hub at Charleroi; we
don’t really care how many times it discovers it. The estimated precision P̂ is then

P̂ =
# of correctly extracted relation tuples in the sample

total # of extracted relation tuples in the sample.
(17.14)

Another approach that gives us a little bit of information about recall is to com-
pute precision at different levels of recall. Assuming that our system is able to
rank the relations it produces (by probability, or confidence) we can separately com-
pute precision for the top 1000 new relations, the top 10,000 new relations, the top
100,000, and so on. In each case we take a random sample of that set. This will
show us how the precision curve behaves as we extract more and more tuples. But
there is no way to directly evaluate recall.

17.3 Extracting Times

Times and dates are a particularly important kind of named entity that play a role
in question answering, in calendar and personal assistant applications. In order to
reason about times and dates, after we extract these temporal expressions they must
be normalized—converted to a standard format so we can reason about them. In this
section we consider both the extraction and normalization of temporal expressions.

17.3.1 Temporal Expression Extraction
Temporal expressions are those that refer to absolute points in time, relative times,
durations, and sets of these. Absolute temporal expressions are those that can beabsolute

mapped directly to calendar dates, times of day, or both. Relative temporal expres-relative

sions map to particular times through some other reference point (as in a week from
last Tuesday). Finally, durations denote spans of time at varying levels of granular-duration

ity (seconds, minutes, days, weeks, centuries, etc.). Figure 17.11 lists some sample
temporal expressions in each of these categories.

Absolute Relative Durations
April 24, 1916 yesterday four hours
The summer of ’77 next semester three weeks
10:15 AM two weeks from yesterday six days
The 3rd quarter of 2006 last quarter the last three quarters
Figure 17.11 Examples of absolute, relational and durational temporal expressions.

Temporal expressions are grammatical constructions that have temporal lexical
triggers as their heads. Lexical triggers might be nouns, proper nouns, adjectives,lexical triggers
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Category Examples
Noun morning, noon, night, winter, dusk, dawn
Proper Noun January, Monday, Ides, Easter, Rosh Hashana, Ramadan, Tet
Adjective recent, past, annual, former
Adverb hourly, daily, monthly, yearly

Figure 17.12 Examples of temporal lexical triggers.

and adverbs; full temporal expressions consist of their phrasal projections: noun
phrases, adjective phrases, and adverbial phrases. Figure 17.12 provides examples.

Let’s look at the TimeML annotation scheme, in which temporal expressions are
annotated with an XML tag, TIMEX3, and various attributes to that tag (Pustejovsky
et al. 2005, Ferro et al. 2005). The following example illustrates the basic use of this
scheme (we defer discussion of the attributes until Section 17.3.2).

A fare increase initiated <TIMEX3>last week</TIMEX3> by UAL
Corp’s United Airlines was matched by competitors over<TIMEX3>the
weekend</TIMEX3>, marking the second successful fare increase in
<TIMEX3>two weeks</TIMEX3>.

The temporal expression recognition task consists of finding the start and end of
all of the text spans that correspond to such temporal expressions. Rule-based ap-
proaches to temporal expression recognition use cascades of automata to recognize
patterns at increasing levels of complexity. Tokens are first part-of-speech tagged,
and then larger and larger chunks are recognized from the results from previous
stages, based on patterns containing trigger words (e.g., February) or classes (e.g.,
MONTH). Figure 17.13 gives a fragment from a rule-based system.

# yesterday/today/tomorrow
$string =˜ s/((($OT+the$CT+\s+)?$OT+day$CT+\s+$OT+(before|after)$CT+\s+)?$OT+$TERelDayExpr$CT+
(\s+$OT+(morning|afternoon|evening|night)$CT+)?)/<TIMEX$tever TYPE=\"DATE\">$1
<\/TIMEX$tever>/gio;

$string =˜ s/($OT+\w+$CT+\s+)<TIMEX$tever TYPE=\"DATE\"[ˆ>]*>($OT+(Today|Tonight)$CT+)
<\/TIMEX$tever>/$1$4/gso;

# this (morning/afternoon/evening)
$string =˜ s/(($OT+(early|late)$CT+\s+)?$OT+this$CT+\s*$OT+(morning|afternoon|evening)$CT+)/

<TIMEX$tever TYPE=\"DATE\">$1<\/TIMEX$tever>/gosi;
$string =˜ s/(($OT+(early|late)$CT+\s+)?$OT+last$CT+\s*$OT+night$CT+)/<TIMEX$tever

TYPE=\"DATE\">$1<\/TIMEX$tever>/gsio;

Figure 17.13 Perl fragment from the GUTime temporal tagging system in Tarsqi (Verhagen et al., 2005).

Sequence-labeling approaches follow the same IOB scheme used for named-
entity tags, marking words that are either inside, outside or at the beginning of a
TIMEX3-delimited temporal expression with the I, O, and B tags as follows:

A
O

fare
O

increase
O

initiated
O

last
B

week
I

by
O

UAL
O

Corp’s...
O

Features are extracted from the token and its context, and a statistical sequence
labeler is trained (any sequence model can be used). Figure 17.14 lists standard
features used in temporal tagging.

Temporal expression recognizers are evaluated with the usual recall, precision,
and F-measures. A major difficulty for all of these very lexicalized approaches is
avoiding expressions that trigger false positives:

(17.15) 1984 tells the story of Winston Smith...
(17.16) ...U2’s classic Sunday Bloody Sunday
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Feature Explanation
Token The target token to be labeled
Tokens in window Bag of tokens in the window around a target
Shape Character shape features
POS Parts of speech of target and window words
Chunk tags Base phrase chunk tag for target and words in a window
Lexical triggers Presence in a list of temporal terms

Figure 17.14 Typical features used to train IOB-style temporal expression taggers.

17.3.2 Temporal Normalization
Temporal normalization is the process of mapping a temporal expression to eithertemporal

normalization
a specific point in time or to a duration. Points in time correspond to calendar dates,
to times of day, or both. Durations primarily consist of lengths of time but may also
include information about start and end points. Normalized times are represented
with the VALUE attribute from the ISO 8601 standard for encoding temporal values
(ISO8601, 2004). Fig. 17.15 reproduces our earlier example with the value attributes
added in.

<TIMEX3 i d = ’ ’ t 1 ’ ’ t y p e =”DATE” v a l u e =” 2007 −07 −02 ” f u n c t i o n I n D o c u m e n t =”CREATION TIME”
> J u l y 2 , 2007 < / TIMEX3> A f a r e i n c r e a s e i n i t i a t e d <TIMEX3 i d =” t 2 ” t y p e =”DATE”
v a l u e =” 2007−W26” anchorTimeID=” t 1 ”> l a s t week< / TIMEX3> by Un i t ed A i r l i n e s was
matched by c o m p e t i t o r s ove r <TIMEX3 i d =” t 3 ” t y p e =”DURATION” v a l u e =”P1WE”
anchorTimeID=” t 1 ”> t h e weekend < / TIMEX3> , marking t h e second s u c c e s s f u l f a r e
i n c r e a s e i n <TIMEX3 i d =” t 4 ” t y p e =”DURATION” v a l u e =”P2W” anchorTimeID=” t 1 ”> two
weeks < / TIMEX3> .

Figure 17.15 TimeML markup including normalized values for temporal expressions.

The dateline, or document date, for this text was July 2, 2007. The ISO repre-
sentation for this kind of expression is YYYY-MM-DD, or in this case, 2007-07-02.
The encodings for the temporal expressions in our sample text all follow from this
date, and are shown here as values for the VALUE attribute.

The first temporal expression in the text proper refers to a particular week of the
year. In the ISO standard, weeks are numbered from 01 to 53, with the first week
of the year being the one that has the first Thursday of the year. These weeks are
represented with the template YYYY-Wnn. The ISO week for our document date is
week 27; thus the value for last week is represented as “2007-W26”.

The next temporal expression is the weekend. ISO weeks begin on Monday;
thus, weekends occur at the end of a week and are fully contained within a single
week. Weekends are treated as durations, so the value of the VALUE attribute has
to be a length. Durations are represented according to the pattern Pnx, where n is
an integer denoting the length and x represents the unit, as in P3Y for three years
or P2D for two days. In this example, one weekend is captured as P1WE. In this
case, there is also sufficient information to anchor this particular weekend as part of
a particular week. Such information is encoded in the ANCHORTIMEID attribute.
Finally, the phrase two weeks also denotes a duration captured as P2W. There is a
lot more to the various temporal annotation standards—far too much to cover here.
Figure 17.16 describes some of the basic ways that other times and durations are
represented. Consult ISO8601 (2004), Ferro et al. (2005), and Pustejovsky et al.
(2005) for more details.

Most current approaches to temporal normalization are rule-based (Chang and
Manning 2012, Strötgen and Gertz 2013). Patterns that match temporal expres-
sions are associated with semantic analysis procedures. As in the compositional
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Unit Pattern Sample Value
Fully specified dates YYYY-MM-DD 1991-09-28
Weeks YYYY-Wnn 2007-W27
Weekends PnWE P1WE
24-hour clock times HH:MM:SS 11:13:45
Dates and times YYYY-MM-DDTHH:MM:SS 1991-09-28T11:00:00
Financial quarters Qn 1999-Q3
Figure 17.16 Sample ISO patterns for representing various times and durations.

rule-to-rule approach introduced in Chapter 16, the meaning of a constituent is com-
puted from the meaning of its parts using a method specific to the constituent, al-
though here the semantic composition rules involve temporal arithmetic rather than
λ -calculus attachments.

Fully qualified date expressions contain a year, month, and day in some con-fully qualified

ventional form. The units in the expression must be detected and then placed in the
correct place in the corresponding ISO pattern. The following pattern normalizes
expressions like April 24, 1916.

FQTE → Month Date , Year {Year.val − Month.val − Date.val}

The non-terminals Month, Date, and Year represent constituents that have already
been recognized and assigned semantic values, accessed through the *.val notation.
The value of this FQE constituent can, in turn, be accessed as FQTE.val during
further processing.

Fully qualified temporal expressions are fairly rare in real texts. Most temporal
expressions in news articles are incomplete and are only implicitly anchored, of-
ten with respect to the dateline of the article, which we refer to as the document’s
temporal anchor. The values of temporal expressions such as today, yesterday, ortemporal

anchor
tomorrow can all be computed with respect to this temporal anchor. The semantic
procedure for today simply assigns the anchor, and the attachments for tomorrow
and yesterday add a day and subtract a day from the anchor, respectively. Of course,
given the cyclic nature of our representations for months, weeks, days, and times of
day, our temporal arithmetic procedures must use modulo arithmetic appropriate to
the time unit being used.

Unfortunately, even simple expressions such as the weekend or Wednesday in-
troduce a fair amount of complexity. In our current example, the weekend clearly
refers to the weekend of the week that immediately precedes the document date. But
this won’t always be the case, as is illustrated in the following example.

(17.17) Random security checks that began yesterday at Sky Harbor will continue
at least through the weekend.

In this case, the expression the weekend refers to the weekend of the week that the
anchoring date is part of (i.e., the coming weekend). The information that signals
this meaning comes from the tense of continue, the verb governing the weekend.

Relative temporal expressions are handled with temporal arithmetic similar to
that used for today and yesterday. The document date indicates that our example
article is ISO week 27, so the expression last week normalizes to the current week
minus 1. To resolve ambiguous next and last expressions we consider the distance
from the anchoring date to the nearest unit. Next Friday can refer either to the
immediately next Friday or to the Friday following that, but the closer the document
date is to a Friday, the more likely it is that the phrase will skip the nearest one. Such
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ambiguities are handled by encoding language and domain-specific heuristics into
the temporal attachments.

17.4 Extracting Events and their Times

The task of event extraction is to identify mentions of events in texts. For theevent
extraction

purposes of this task, an event mention is any expression denoting an event or state
that can be assigned to a particular point, or interval, in time. The following markup
of the sample text on page 345 shows all the events in this text.

[EVENT Citing] high fuel prices, United Airlines [EVENT said] Fri-
day it has [EVENT increased] fares by $6 per round trip on flights to
some cities also served by lower-cost carriers. American Airlines, a unit
of AMR Corp., immediately [EVENT matched] [EVENT the move],
spokesman Tim Wagner [EVENT said]. United, a unit of UAL Corp.,
[EVENT said] [EVENT the increase] took effect Thursday and [EVENT
applies] to most routes where it [EVENT competes] against discount
carriers, such as Chicago to Dallas and Denver to San Francisco.

In English, most event mentions correspond to verbs, and most verbs introduce
events. However, as we can see from our example, this is not always the case. Events
can be introduced by noun phrases, as in the move and the increase, and some verbs
fail to introduce events, as in the phrasal verb took effect, which refers to when the
event began rather than to the event itself. Similarly, light verbs such as make, take,
and have often fail to denote events; for light verbs the event is often expressed by
the nominal direct object (took a flight), and these light verbs just provide a syntactic
structure for the noun’s arguments.

Various versions of the event extraction task exist, depending on the goal. For
example in the TempEval shared tasks (Verhagen et al. 2009) the goal is to extract
events and aspects like their aspectual and temporal properties. Events are to be
classified as actions, states, reporting events (say, report, tell, explain), perceptionreporting

events
events, and so on. The aspect, tense, and modality of each event also needs to be
extracted. Thus for example the various said events in the sample text would be
annotated as (class=REPORTING, tense=PAST, aspect=PERFECTIVE).

Event extraction is generally modeled via supervised learning, detecting events
via sequence models with IOB tagging, and assigning event classes and attributes
with multi-class classifiers. Feature-based models use surface information like parts
of speech, lexical items, and verb tense information; see Fig. 17.17.

Feature Explanation
Character affixes Character-level prefixes and suffixes of target word
Nominalization suffix Character-level suffixes for nominalizations (e.g., -tion)
Part of speech Part of speech of the target word
Light verb Binary feature indicating that the target is governed by a light verb
Subject syntactic category Syntactic category of the subject of the sentence
Morphological stem Stemmed version of the target word
Verb root Root form of the verb basis for a nominalization
WordNet hypernyms Hypernym set for the target
Figure 17.17 Features commonly used in both rule-based and machine learning approaches to event detec-
tion.
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17.4.1 Temporal Ordering of Events
With both the events and the temporal expressions in a text having been detected, the
next logical task is to use this information to fit the events into a complete timeline.
Such a timeline would be useful for applications such as question answering and
summarization. This ambitious task is the subject of considerable current research
but is beyond the capabilities of current systems.

A somewhat simpler, but still useful, task is to impose a partial ordering on the
events and temporal expressions mentioned in a text. Such an ordering can provide
many of the same benefits as a true timeline. An example of such a partial ordering
is the determination that the fare increase by American Airlines came after the fare
increase by United in our sample text. Determining such an ordering can be viewed
as a binary relation detection and classification task similar to those described earlier
in Section 17.1. The temporal relation between events is classified into one of the
standard set of Allen relations shown in Fig. 17.18 (Allen, 1984), using feature-Allen relations

based classifiers as in Section 17.1, trained on the TimeBank corpus with features
like words/embeddings, parse paths, tense and aspect.
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Figure 17.18 The 13 temporal relations from Allen (1984).

The TimeBank corpus consists of text annotated with much of the informationTimeBank

we’ve been discussing throughout this section (Pustejovsky et al., 2003b). Time-
Bank 1.2 consists of 183 news articles selected from a variety of sources, including
the Penn TreeBank and PropBank collections.
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<TIMEX3 tid="t57" type="DATE" value="1989-10-26" functionInDocument="CREATION_TIME">
10/26/89 </TIMEX3>

Delta Air Lines earnings <EVENT eid="e1" class="OCCURRENCE"> soared </EVENT> 33% to a
record in <TIMEX3 tid="t58" type="DATE" value="1989-Q1" anchorTimeID="t57"> the
fiscal first quarter </TIMEX3>, <EVENT eid="e3" class="OCCURRENCE">bucking</EVENT>
the industry trend toward <EVENT eid="e4" class="OCCURRENCE">declining</EVENT>
profits.

Figure 17.19 Example from the TimeBank corpus.

Each article in the TimeBank corpus has had the temporal expressions and event
mentions in them explicitly annotated in the TimeML annotation (Pustejovsky et al.,
2003a). In addition to temporal expressions and events, the TimeML annotation
provides temporal links between events and temporal expressions that specify the
nature of the relation between them. Consider the following sample sentence and
its corresponding markup shown in Fig. 17.19, selected from one of the TimeBank
documents.

(17.18) Delta Air Lines earnings soared 33% to a record in the fiscal first quarter,
bucking the industry trend toward declining profits.

As annotated, this text includes three events and two temporal expressions. The
events are all in the occurrence class and are given unique identifiers for use in fur-
ther annotations. The temporal expressions include the creation time of the article,
which serves as the document time, and a single temporal expression within the text.

In addition to these annotations, TimeBank provides four links that capture the
temporal relations between the events and times in the text, using the Allen relations
from Fig. 17.18. The following are the within-sentence temporal relations annotated
for this example.

• Soaringe1 is included in the fiscal first quartert58

• Soaringe1 is before 1989-10-26t57

• Soaringe1 is simultaneous with the buckinge3

• Declininge4 includes soaringe1

17.5 Template Filling

Many texts contain reports of events, and possibly sequences of events, that often
correspond to fairly common, stereotypical situations in the world. These abstract
situations or stories, related to what have been called scripts (Schank and Abel-scripts

son, 1977), consist of prototypical sequences of sub-events, participants, and their
roles. The strong expectations provided by these scripts can facilitate the proper
classification of entities, the assignment of entities into roles and relations, and most
critically, the drawing of inferences that fill in things that have been left unsaid. In
their simplest form, such scripts can be represented as templates consisting of fixedtemplates

sets of slots that take as values slot-fillers belonging to particular classes. The task
of template filling is to find documents that invoke particular scripts and then fill thetemplate filling

slots in the associated templates with fillers extracted from the text. These slot-fillers
may consist of text segments extracted directly from the text, or they may consist of
concepts that have been inferred from text elements through some additional pro-
cessing.

A filled template from our original airline story might look like the following.
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FARE-RAISE ATTEMPT:



LEAD AIRLINE: UNITED AIRLINES

AMOUNT: $6
EFFECTIVE DATE: 2006-10-26
FOLLOWER: AMERICAN AIRLINES




This template has four slots (LEAD AIRLINE, AMOUNT, EFFECTIVE DATE, FOL-
LOWER). The next section describes a standard sequence-labeling approach to filling
slots. Section 17.5.2 then describes an older system based on the use of cascades of
finite-state transducers and designed to address a more complex template-filling task
that current learning-based systems don’t yet address.

17.5.1 Machine Learning Approaches to Template Filling
In the standard paradigm for template filling, we are given training documents with
text spans annotated with predefined templates and their slot fillers. Our goal is to
create one template for each event in the input, filling in the slots with text spans.

The task is generally modeled by training two separate supervised systems. The
first system decides whether the template is present in a particular sentence. This
task is called template recognition or sometimes, in a perhaps confusing bit oftemplate

recognition
terminology, event recognition. Template recognition can be treated as a text classi-
fication task, with features extracted from every sequence of words that was labeled
in training documents as filling any slot from the template being detected. The usual
set of features can be used: tokens, embeddings, word shapes, part-of-speech tags,
syntactic chunk tags, and named entity tags.

The second system has the job of role-filler extraction. A separate classifier isrole-filler
extraction

trained to detect each role (LEAD-AIRLINE, AMOUNT, and so on). This can be a
binary classifier that is run on every noun-phrase in the parsed input sentence, or a
sequence model run over sequences of words. Each role classifier is trained on the
labeled data in the training set. Again, the usual set of features can be used, but now
trained only on an individual noun phrase or the fillers of a single slot.

Multiple non-identical text segments might be labeled with the same slot la-
bel. For example in our sample text, the strings United or United Airlines might be
labeled as the LEAD AIRLINE. These are not incompatible choices and the corefer-
ence resolution techniques introduced in Chapter 22 can provide a path to a solution.

A variety of annotated collections have been used to evaluate this style of ap-
proach to template filling, including sets of job announcements, conference calls for
papers, restaurant guides, and biological texts. Recent work focuses on extracting
templates in cases where there is no training data or even predefined templates, by
inducing templates as sets of linked events (Chambers and Jurafsky, 2011).

17.5.2 Earlier Finite-State Template-Filling Systems
The templates above are relatively simple. But consider the task of producing a
template that contained all the information in a text like this one (Grishman and
Sundheim, 1995):

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan
with a local concern and a Japanese trading house to produce golf clubs to be
shipped to Japan. The joint venture, Bridgestone Sports Taiwan Co., capital-
ized at 20 million new Taiwan dollars, will start production in January 1990
with production of 20,000 iron and “metal wood” clubs a month.
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The MUC-5 ‘joint venture’ task (the Message Understanding Conferences were
a series of U.S. government-organized information-extraction evaluations) was to
produce hierarchically linked templates describing joint ventures. Figure 17.20
shows a structure produced by the FASTUS system (Hobbs et al., 1997). Note how
the filler of the ACTIVITY slot of the TIE-UP template is itself a template with slots.

Tie-up-1 Activity-1:
RELATIONSHIP tie-up COMPANY Bridgestone Sports Taiwan Co.
ENTITIES Bridgestone Sports Co. PRODUCT iron and “metal wood” clubs

a local concern START DATE DURING: January 1990
a Japanese trading house

JOINT VENTURE Bridgestone Sports Taiwan Co.
ACTIVITY Activity-1
AMOUNT NT$20000000

Figure 17.20 The templates produced by FASTUS given the input text on page 351.

Early systems for dealing with these complex templates were based on cascades
of transducers based on handwritten rules, as sketched in Fig. 17.21.

No. Step Description
1 Tokens Tokenize input stream of characters
2 Complex Words Multiword phrases, numbers, and proper names.
3 Basic phrases Segment sentences into noun and verb groups
4 Complex phrases Identify complex noun groups and verb groups
5 Semantic Patterns Identify entities and events, insert into templates.
6 Merging Merge references to the same entity or event

Figure 17.21 Levels of processing in FASTUS (Hobbs et al., 1997). Each level extracts a
specific type of information which is then passed on to the next higher level.

The first four stages use handwritten regular expression and grammar rules to
do basic tokenization, chunking, and parsing. Stage 5 then recognizes entities and
events with a FST-based recognizer and inserts the recognized objects into the ap-
propriate slots in templates. This FST recognizer is based on hand-built regular
expressions like the following (NG indicates Noun-Group and VG Verb-Group),
which matches the first sentence of the news story above.

NG(Company/ies) VG(Set-up) NG(Joint-Venture) with NG(Company/ies)

VG(Produce) NG(Product)

The result of processing these two sentences is the five draft templates (Fig. 17.22)
that must then be merged into the single hierarchical structure shown in Fig. 17.20.
The merging algorithm, after performing coreference resolution, merges two activi-
ties that are likely to be describing the same events.

17.6 Summary

This chapter has explored techniques for extracting limited forms of semantic con-
tent from texts.

• Relations among entities can be extracted by pattern-based approaches, su-
pervised learning methods when annotated training data is available, lightly
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# Template/Slot Value
1 RELATIONSHIP: TIE-UP

ENTITIES: Bridgestone Co., a local concern, a Japanese trading house
2 ACTIVITY: PRODUCTION

PRODUCT: “golf clubs”
3 RELATIONSHIP: TIE-UP

JOINT VENTURE: “Bridgestone Sports Taiwan Co.”
AMOUNT: NT$20000000

4 ACTIVITY: PRODUCTION
COMPANY: “Bridgestone Sports Taiwan Co.”
STARTDATE: DURING: January 1990

5 ACTIVITY: PRODUCTION
PRODUCT: “iron and “metal wood” clubs”

Figure 17.22 The five partial templates produced by stage 5 of FASTUS. These templates
are merged in stage 6 to produce the final template shown in Fig. 17.20 on page 352.

supervised bootstrapping methods when small numbers of seed tuples or
seed patterns are available, distant supervision when a database of relations
is available, and unsupervised or Open IE methods.

• Reasoning about time can be facilitated by detection and normalization of
temporal expressions through a combination of statistical learning and rule-
based methods.

• Events can be detected and ordered in time using sequence models and classi-
fiers trained on temporally- and event-labeled data like the TimeBank corpus.

• Template-filling applications can recognize stereotypical situations in texts
and assign elements from the text to roles represented as fixed sets of slots.

Bibliographical and Historical Notes
The earliest work on information extraction addressed the template-filling task in the
context of the Frump system (DeJong, 1982). Later work was stimulated by the U.S.
government-sponsored MUC conferences (Sundheim 1991, Sundheim 1992, Sund-
heim 1993, Sundheim 1995). Early MUC systems like CIRCUS system (Lehnert
et al., 1991) and SCISOR (Jacobs and Rau, 1990) were quite influential and inspired
later systems like FASTUS (Hobbs et al., 1997). Chinchor et al. (1993) describe the
MUC evaluation techniques.

Due to the difficulty of porting systems from one domain to another, attention
shifted to machine learning approaches. Early supervised learning approaches to
IE (Cardie 1993, Cardie 1994, Riloff 1993, Soderland et al. 1995, Huffman 1996)
focused on automating the knowledge acquisition process, mainly for finite-state
rule-based systems. Their success, and the earlier success of HMM-based speech
recognition, led to the use of sequence labeling (HMMs: Bikel et al. 1997; MEMMs
McCallum et al. 2000; CRFs: Lafferty et al. 2001), and a wide exploration of fea-
tures (Zhou et al., 2005). Neural approaches followed from the pioneering results of
Collobert et al. (2011), who applied a CRF on top of a convolutional net.

Progress in this area continues to be stimulated by formal evaluations with shared
benchmark datasets, including the Automatic Content Extraction (ACE) evaluations
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of 2000-2007 on named entity recognition, relation extraction, and temporal ex-
pressions1, the KBP (Knowledge Base Population) evaluations (Ji et al. 2010, Sur-KBP

deanu 2013) of relation extraction tasks like slot filling (extracting attributes (‘slots’)slot filling

like age, birthplace, and spouse for a given entity) and a series of SemEval work-
shops (Hendrickx et al., 2009).

Semisupervised relation extraction was first proposed by Hearst (1992b), and
extended by systems like AutoSlog-TS (Riloff, 1996), DIPRE (Brin, 1998), SNOW-
BALL (Agichtein and Gravano, 2000), and Jones et al. (1999). The distant supervi-
sion algorithm we describe was drawn from Mintz et al. (2009), who coined the term
‘distant supervision’, but similar ideas had occurred in earlier systems like Craven
and Kumlien (1999) and Morgan et al. (2004) under the name weakly labeled data,
as well as in Snow et al. (2005) and Wu and Weld (2007). Among the many exten-
sions are Wu and Weld (2010), Riedel et al. (2010), and Ritter et al. (2013). Open
IE systems include KNOWITALL Etzioni et al. (2005), TextRunner (Banko et al.,
2007), and REVERB (Fader et al., 2011). See Riedel et al. (2013) for a universal
schema that combines the advantages of distant supervision and Open IE.

HeidelTime (Strötgen and Gertz, 2013) and SUTime (Chang and Manning, 2012)
are downloadable temporal extraction and normalization systems. The 2013 TempE-
val challenge is described in UzZaman et al. (2013); Chambers (2013) and Bethard
(2013) give typical approaches.

Exercises
17.1 Acronym expansion, the process of associating a phrase with an acronym, can

be accomplished by a simple form of relational analysis. Develop a system
based on the relation analysis approaches described in this chapter to populate
a database of acronym expansions. If you focus on English Three Letter
Acronyms (TLAs) you can evaluate your system’s performance by comparing
it to Wikipedia’s TLA page.

17.2 A useful functionality in newer email and calendar applications is the ability
to associate temporal expressions connected with events in email (doctor’s
appointments, meeting planning, party invitations, etc.) with specific calendar
entries. Collect a corpus of email containing temporal expressions related to
event planning. How do these expressions compare to the kinds of expressions
commonly found in news text that we’ve been discussing in this chapter?

17.3 Acquire the CMU seminar corpus and develop a template-filling system by
using any of the techniques mentioned in Section 17.5. Analyze how well
your system performs as compared with state-of-the-art results on this corpus.

1 www.nist.gov/speech/tests/ace/
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18 Word Senses and WordNet

Lady Bracknell. Are your parents living?
Jack. I have lost both my parents.
Lady Bracknell. To lose one parent, Mr. Worthing, may be regarded as a
misfortune; to lose both looks like carelessness.

Oscar Wilde, The Importance of Being Earnest

Words are ambiguous: the same word can be used to mean different things. Inambiguous

Chapter 6 we saw that the word “mouse” has (at least) two meanings: (1) a small
rodent, or (2) a hand-operated device to control a cursor. The word “bank” can
mean: (1) a financial institution or (2) a sloping mound. In the quote above from
his play The Importance of Being Earnest, Oscar Wilde plays with two meanings of
“lose” (to misplace an object, and to suffer the loss of a person).

We say that the words ‘mouse’ or ‘bank’ are polysemous (from Greek ‘having
many senses’, poly- ‘many’ + sema, ‘sign, mark’).1 A sense (or word sense) isword sense

a discrete representation of one aspect of the meaning of a word. In this chapter
we discuss word senses in more detail and introduce WordNet, a large online the-WordNet

saurus —a database that represents word senses—with versions in many languages.
WordNet also represents relations between senses. For example, there is an IS-A
relation between dog and mammal (a dog is a kind of mammal) and a part-whole
relation between engine and car (an engine is a part of a car).

Knowing the relation between two senses can play an important role in language
understanding. Consider the antonymy relation. Two words are antonyms if they
have opposite meanings, like long and short, or up and down. Distinguishing these is
quite important for language understanding (if a user asks a dialogue agent to turn up
the music, it would be unfortunate to instead turn it down). But in fact in embedding
models like word2vec, antonyms are easily confused with each other, because often
one of the closest words in embedding space to a word (e.g., up) is its antonym (e.g.,
down). Thesauruses that represent this relationship can help!

We also introduce word sense disambiguation (WSD), the task of determiningword sense
disambiguation

which sense of a word is being used in a particular context. We’ll give supervised
and unsupervised algorithms for deciding which sense was intended in a particular
context. This task has a very long history in computational linguistics and many ap-
plications. In question answering, we can be more helpful to a user who asks about
“bat care” if we know which sense of bat is relevant. (Is the user is a vampire? or
just wants to play baseball.) And the different senses of a word often have different
translations; in Spanish the animal bat is a murciélago while the baseball bat is a
bate, and indeed word sense algorithms may help improve MT (Pu et al., 2018).
Finally, WSD has long been used as a tool for evaluating natural language under-
standing models, and understanding how models represent different word senses is
an important analytic direction.

1 You may also see the word polysemy used in a different way, to refer only to cases where a word’s
senses have some sort of semantic relation, with the word homonymy used when there is no relation
between the senses.
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18.1 Word Senses

A sense (or word sense) is a discrete representation of one aspect of the meaning ofword sense

a word. Loosely following lexicographic tradition, we represent each sense with a
superscript: bank1 and bank2, mouse1 and mouse2. In context, it’s easy to see the
different meanings:
mouse1 : .... a mouse controlling a computer system in 1968.
mouse2 : .... a quiet animal like a mouse
bank1 : ...a bank can hold the investments in a custodial account ...
bank2 : ...as agriculture burgeons on the east bank, the river ...

18.1.1 Defining Word Senses
How can we define the meaning of a word sense? We introduced in Chapter 6 the
standard computational approach of representing a word as an embedding, a point
in semantic space. The intuition of embedding models like word2vec or GloVe is
that the meaning of a word can be defined by its co-occurrences, the counts of words
that often occur nearby. But that doesn’t tell us how to define the meaning of a word
sense. As we saw in Chapter 10, contextual embeddings like BERT go further by
offering an embedding that represents the meaning of a word in its textual context,
and we’ll see that contextual embeddings lie at the heart of modern algorithms for
word sense disambiguation.

But first, we need to consider the alternative ways that dictionaries and the-
sauruses offer for defining senses. One is based on the fact that dictionaries or the-
sauruses give textual definitions for each sense called glosses. Here are the glossesgloss

for two senses of bank:
1. financial institution that accepts deposits and channels

the money into lending activities

2. sloping land (especially the slope beside a body of water)

Glosses are not a formal meaning representation; they are just written for people.
Consider the following fragments from the definitions of right, left, red, and blood
from the American Heritage Dictionary (Morris, 1985).

right adj. located nearer the right hand esp. being on the right when
facing the same direction as the observer.

left adj. located nearer to this side of the body than the right.
red n. the color of blood or a ruby.

blood n. the red liquid that circulates in the heart, arteries and veins of
animals.

Note the circularity in these definitions. The definition of right makes two direct
references to itself, and the entry for left contains an implicit self-reference in the
phrase this side of the body, which presumably means the left side. The entries for
red and blood reference each other in their definitions. For humans, such entries are
useful since the user of the dictionary has sufficient grasp of these other terms.

Yet despite their circularity and lack of formal representation, glosses can still
be useful for computational modeling of senses. This is because a gloss is just a sen-
tence, and from sentences we can compute sentence embeddings that tell us some-
thing about the meaning of the sense. Dictionaries often give example sentences
along with glosses, and these can again be used to help build a sense representation.
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The second way that thesauruses offer for defining a sense is—like the dictionary
definitions—defining a sense through its relationship with other senses. For exam-
ple, the above definitions make it clear that right and left are similar kinds of lemmas
that stand in some kind of alternation, or opposition, to one another. Similarly, we
can glean that red is a color and that blood is a liquid. Sense relations of this sort
(IS-A, or antonymy) are explicitly listed in on-line databases like WordNet. Given
a sufficiently large database of such relations, many applications are quite capable
of performing sophisticated semantic tasks about word senses (even if they do not
really know their right from their left).

18.1.2 How many senses do words have?

Dictionaries and thesauruses give discrete lists of senses. By contrast, embeddings
(whether static or contextual) offer a continuous high-dimensional model of meaning
that doesn’t divide up into discrete senses.

Therefore creating a thesaurus depends on criteria for deciding when the differ-
ing uses of a word should be represented with discrete senses. We might consider
two senses discrete if they have independent truth conditions, different syntactic be-
havior, and independent sense relations, or if they exhibit antagonistic meanings.

Consider the following uses of the verb serve from the WSJ corpus:

(18.1) They rarely serve red meat, preferring to prepare seafood.

(18.2) He served as U.S. ambassador to Norway in 1976 and 1977.

(18.3) He might have served his time, come out and led an upstanding life.

The serve of serving red meat and that of serving time clearly have different truth
conditions and presuppositions; the serve of serve as ambassador has the distinct
subcategorization structure serve as NP. These heuristics suggest that these are prob-
ably three distinct senses of serve. One practical technique for determining if two
senses are distinct is to conjoin two uses of a word in a single sentence; this kind
of conjunction of antagonistic readings is called zeugma. Consider the followingzeugma

examples:

(18.4) Which of those flights serve breakfast?

(18.5) Does Air France serve Philadelphia?

(18.6) ?Does Air France serve breakfast and Philadelphia?

We use (?) to mark those examples that are semantically ill-formed. The oddness of
the invented third example (a case of zeugma) indicates there is no sensible way to
make a single sense of serve work for both breakfast and Philadelphia. We can use
this as evidence that serve has two different senses in this case.

Dictionaries tend to use many fine-grained senses so as to capture subtle meaning
differences, a reasonable approach given that the traditional role of dictionaries is
aiding word learners. For computational purposes, we often don’t need these fine
distinctions, so we often group or cluster the senses; we have already done this for
some of the examples in this chapter. Indeed, clustering examples into senses, or
senses into broader-grained categories, is an important computational task that we’ll
discuss in Section 18.7.
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18.2 Relations Between Senses

This section explores the relations between word senses, especially those that have
received significant computational investigation like synonymy, antonymy, and hy-
pernymy.

Synonymy

We introduced in Chapter 6 the idea that when two senses of two different words
(lemmas) are identical, or nearly identical, we say the two senses are synonyms.synonym

Synonyms include such pairs as

couch/sofa vomit/throw up filbert/hazelnut car/automobile

And we mentioned that in practice, the word synonym is commonly used to
describe a relationship of approximate or rough synonymy. But furthermore, syn-
onymy is actually a relationship between senses rather than words. Considering the
words big and large. These may seem to be synonyms in the following sentences,
since we could swap big and large in either sentence and retain the same meaning:

(18.7) How big is that plane?
(18.8) Would I be flying on a large or small plane?

But note the following sentence in which we cannot substitute large for big:

(18.9) Miss Nelson, for instance, became a kind of big sister to Benjamin.
(18.10) ?Miss Nelson, for instance, became a kind of large sister to Benjamin.

This is because the word big has a sense that means being older or grown up, while
large lacks this sense. Thus, we say that some senses of big and large are (nearly)
synonymous while other ones are not.

Antonymy

Whereas synonyms are words with identical or similar meanings, antonyms areantonym

words with an opposite meaning, like:

long/short big/little fast/slow cold/hot dark/light
rise/fall up/down in/out

Two senses can be antonyms if they define a binary opposition or are at opposite
ends of some scale. This is the case for long/short, fast/slow, or big/little, which are
at opposite ends of the length or size scale. Another group of antonyms, reversives,reversives

describe change or movement in opposite directions, such as rise/fall or up/down.
Antonyms thus differ completely with respect to one aspect of their meaning—

their position on a scale or their direction—but are otherwise very similar, sharing
almost all other aspects of meaning. Thus, automatically distinguishing synonyms
from antonyms can be difficult.

Taxonomic Relations

Another way word senses can be related is taxonomically. A word (or sense) is a
hyponym of another word or sense if the first is more specific, denoting a subclasshyponym

of the other. For example, car is a hyponym of vehicle, dog is a hyponym of animal,
and mango is a hyponym of fruit. Conversely, we say that vehicle is a hypernym ofhypernym

car, and animal is a hypernym of dog. It is unfortunate that the two words (hypernym
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and hyponym) are very similar and hence easily confused; for this reason, the word
superordinate is often used instead of hypernym.superordinate

Superordinate vehicle fruit furniture mammal
Subordinate car mango chair dog

We can define hypernymy more formally by saying that the class denoted by the
superordinate extensionally includes the class denoted by the hyponym. Thus, the
class of animals includes as members all dogs, and the class of moving actions in-
cludes all walking actions. Hypernymy can also be defined in terms of entailment.
Under this definition, a sense A is a hyponym of a sense B if everything that is A is
also B, and hence being an A entails being a B, or ∀x A(x)⇒ B(x). Hyponymy/hy-
pernymy is usually a transitive relation; if A is a hyponym of B and B is a hyponym
of C, then A is a hyponym of C. Another name for the hypernym/hyponym structure
is the IS-A hierarchy, in which we say A IS-A B, or B subsumes A.IS-A

Hypernymy is useful for tasks like textual entailment or question answering;
knowing that leukemia is a type of cancer, for example, would certainly be useful in
answering questions about leukemia.

Meronymy

Another common relation is meronymy, the part-whole relation. A leg is part of apart-whole

chair; a wheel is part of a car. We say that wheel is a meronym of car, and car is a
holonym of wheel.

Structured Polysemy

The senses of a word can also be related semantically, in which case we call the
relationship between them structured polysemy.Consider this sense bank:structured

polysemy

(18.11) The bank is on the corner of Nassau and Witherspoon.

This sense, perhaps bank4, means something like “the building belonging to
a financial institution”. These two kinds of senses (an organization and the build-
ing associated with an organization ) occur together for many other words as well
(school, university, hospital, etc.). Thus, there is a systematic relationship between
senses that we might represent as

BUILDING↔ ORGANIZATION

This particular subtype of polysemy relation is called metonymy. Metonymy ismetonymy

the use of one aspect of a concept or entity to refer to other aspects of the entity or
to the entity itself. We are performing metonymy when we use the phrase the White
House to refer to the administration whose office is in the White House. Other
common examples of metonymy include the relation between the following pairings
of senses:

AUTHOR ↔ WORKS OF AUTHOR
(Jane Austen wrote Emma) (I really love Jane Austen)

FRUITTREE ↔ FRUIT
(Plums have beautiful blossoms) (I ate a preserved plum yesterday)
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18.3 WordNet: A Database of Lexical Relations

The most commonly used resource for sense relations in English and many other
languages is the WordNet lexical database (Fellbaum, 1998). English WordNetWordNet

consists of three separate databases, one each for nouns and verbs and a third for
adjectives and adverbs; closed class words are not included. Each database contains
a set of lemmas, each one annotated with a set of senses. The WordNet 3.0 release
has 117,798 nouns, 11,529 verbs, 22,479 adjectives, and 4,481 adverbs. The aver-
age noun has 1.23 senses, and the average verb has 2.16 senses. WordNet can be
accessed on the Web or downloaded locally. Figure 18.1 shows the lemma entry for
the noun and adjective bass.

The noun “bass” has 8 senses in WordNet.
1. bass1 - (the lowest part of the musical range)
2. bass2, bass part1 - (the lowest part in polyphonic music)
3. bass3, basso1 - (an adult male singer with the lowest voice)
4. sea bass1, bass4 - (the lean flesh of a saltwater fish of the family Serranidae)
5. freshwater bass1, bass5 - (any of various North American freshwater fish with

lean flesh (especially of the genus Micropterus))
6. bass6, bass voice1, basso2 - (the lowest adult male singing voice)
7. bass7 - (the member with the lowest range of a family of musical instruments)
8. bass8 - (nontechnical name for any of numerous edible marine and

freshwater spiny-finned fishes)

Figure 18.1 A portion of the WordNet 3.0 entry for the noun bass.

Note that there are eight senses for the noun and one for the adjective, each of
which has a gloss (a dictionary-style definition), a list of synonyms for the sense, andgloss

sometimes also usage examples (shown for the adjective sense). WordNet doesn’t
represent pronunciation, so doesn’t distinguish the pronunciation [b ae s] in bass4,
bass5, and bass8 from the other senses pronounced [b ey s].

The set of near-synonyms for a WordNet sense is called a synset (for synonymsynset

set); synsets are an important primitive in WordNet. The entry for bass includes
synsets like {bass1, deep6}, or {bass6, bass voice1, basso2}. We can think of a
synset as representing a concept of the type we discussed in Chapter 15. Thus,
instead of representing concepts in logical terms, WordNet represents them as lists
of the word senses that can be used to express the concept. Here’s another synset
example:

{chump1, fool2, gull1, mark9, patsy1, fall guy1,

sucker1, soft touch1, mug2}
The gloss of this synset describes it as:

Gloss: a person who is gullible and easy to take advantage of.

Glosses are properties of a synset, so that each sense included in the synset has the
same gloss and can express this concept. Because they share glosses, synsets like
this one are the fundamental unit associated with WordNet entries, and hence it is
synsets, not wordforms, lemmas, or individual senses, that participate in most of the
lexical sense relations in WordNet.

WordNet also labels each synset with a lexicographic category drawn from a
semantic field for example the 26 categories for nouns shown in Fig. 18.2, as well
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as 15 for verbs (plus 2 for adjectives and 1 for adverbs). These categories are often
called supersenses, because they act as coarse semantic categories or groupings ofsupersense

senses which can be useful when word senses are too fine-grained (Ciaramita and
Johnson 2003, Ciaramita and Altun 2006). Supersenses have also been defined for
adjectives (Tsvetkov et al., 2014) and prepositions (Schneider et al., 2018).

Category Example Category Example Category Example
ACT service GROUP place PLANT tree
ANIMAL dog LOCATION area POSSESSION price
ARTIFACT car MOTIVE reason PROCESS process
ATTRIBUTE quality NATURAL EVENT experience QUANTITY amount
BODY hair NATURAL OBJECT flower RELATION portion
COGNITION way OTHER stuff SHAPE square
COMMUNICATION review PERSON people STATE pain
FEELING discomfort PHENOMENON result SUBSTANCE oil
FOOD food TIME day

Figure 18.2 Supersenses: 26 lexicographic categories for nouns in WordNet.

18.3.1 Sense Relations in WordNet
WordNet represents all the kinds of sense relations discussed in the previous section,
as illustrated in Fig. 18.3 and Fig. 18.4.

Relation Also Called Definition Example
Hypernym Superordinate From concepts to superordinates breakfast1 → meal1

Hyponym Subordinate From concepts to subtypes meal1 → lunch1

Instance Hypernym Instance From instances to their concepts Austen1 → author1

Instance Hyponym Has-Instance From concepts to their instances composer1 → Bach1

Part Meronym Has-Part From wholes to parts table2 → leg3

Part Holonym Part-Of From parts to wholes course7 → meal1

Antonym Semantic opposition between lemmas leader1 ⇐⇒ follower1

Derivation Lemmas w/same morphological root destruction1 ⇐⇒ destroy1

Figure 18.3 Some of the noun relations in WordNet.

Relation Definition Example
Hypernym From events to superordinate events fly9 → travel5

Troponym From events to subordinate event walk1 → stroll1
Entails From verbs (events) to the verbs (events) they entail snore1 → sleep1

Antonym Semantic opposition between lemmas increase1 ⇐⇒ decrease1

Figure 18.4 Some verb relations in WordNet.

For example WordNet represents hyponymy (page 358) by relating each synset
to its immediately more general and more specific synsets through direct hypernym
and hyponym relations. These relations can be followed to produce longer chains
of more general or more specific synsets. Figure 18.5 shows hypernym chains for
bass3 and bass7; more general synsets are shown on successively indented lines.

WordNet has two kinds of taxonomic entities: classes and instances. An instance
is an individual, a proper noun that is a unique entity. San Francisco is an instance
of city, for example. But city is a class, a hyponym of municipality and eventually
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bass3, basso (an adult male singer with the lowest voice)

=> singer, vocalist, vocalizer, vocaliser

=> musician, instrumentalist, player

=> performer, performing artist

=> entertainer

=> person, individual, someone...

=> organism, being

=> living thing, animate thing,

=> whole, unit

=> object, physical object

=> physical entity

=> entity

bass7 (member with the lowest range of a family of instruments)

=> musical instrument, instrument

=> device

=> instrumentality, instrumentation

=> artifact, artefact

=> whole, unit

=> object, physical object

=> physical entity

=> entity

Figure 18.5 Hyponymy chains for two separate senses of the lemma bass. Note that the
chains are completely distinct, only converging at the very abstract level whole, unit.

of location. Fig. 18.6 shows a subgraph of WordNet demonstrating many of the
relations.

Figure 18.6 WordNet viewed as a graph. Figure from Navigli (2016).
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18.4 Word Sense Disambiguation

The task of selecting the correct sense for a word is called word sense disambigua-
tion, or WSD. WSD algorithms take as input a word in context and a fixed inventoryword sense

disambiguation
WSD of potential word senses and outputs the correct word sense in context.

18.4.1 WSD: The Task and Datasets
In this section we introduce the task setup for WSD, and then turn to algorithms.
The inventory of sense tags depends on the task. For sense tagging in the context
of translation from English to Spanish, the sense tag inventory for an English word
might be the set of different Spanish translations. For automatic indexing of med-
ical articles, the sense-tag inventory might be the set of MeSH (Medical Subject
Headings) thesaurus entries. Or we can use the set of senses from a resource like
WordNet, or supersenses if we want a coarser-grain set. Figure 18.4.1 shows some
such examples for the word bass.

WordNet Spanish WordNet
Sense Translation Supersense Target Word in Context
bass4 lubina FOOD . . . fish as Pacific salmon and striped bass and. . .
bass7 bajo ARTIFACT . . . play bass because he doesn’t have to solo. . .

Figure 18.7 Some possibile sense tag inventories for bass.

In some situations, we just need to disambiguate a small number of words. In
such lexical sample tasks, we have a small pre-selected set of target words and anlexical sample

inventory of senses for each word from some lexicon. Since the set of words and the
set of senses are small, simple supervised classification approaches work very well.

More commonly, however, we have a harder problem in which we have to dis-
ambiguate all the words in some text. In this all-words task, the system is given anall-words

entire texts and a lexicon with an inventory of senses for each entry and we have to
disambiguate every word in the text (or sometimes just every content word). The
all-words task is similar to part-of-speech tagging, except with a much larger set of
tags since each lemma has its own set. A consequence of this larger set of tags is
data sparseness.

Supervised all-word disambiguation tasks are generally trained from a semantic
concordance, a corpus in which each open-class word in each sentence is labeledsemantic

concordance
with its word sense from a specific dictionary or thesaurus, most often WordNet.
The SemCor corpus is a subset of the Brown Corpus consisting of over 226,036
words that were manually tagged with WordNet senses (Miller et al. 1993, Landes
et al. 1998). Other sense-tagged corpora have been built for the SENSEVAL and Se-
mEval WSD tasks, such as the SENSEVAL-3 Task 1 English all-words test data with
2282 annotations (Snyder and Palmer, 2004) or the SemEval-13 Task 12 datasets.
Large semantic concordances are also available in other languages including Dutch
(Vossen et al., 2011) and German (Henrich et al., 2012).

Here’s an example from the SemCor corpus showing the WordNet sense num-
bers of the tagged words; we’ve used the standard WSD notation in which a subscript
marks the part of speech (Navigli, 2009):

(18.12) You will find9
v that avocado1

n is1
v unlike1

j other1
j fruit1n you have ever1

r tasted2
v

Given each noun, verb, adjective, or adverb word in the hand-labeled test set (say
fruit), the SemCor-based WSD task is to choose the correct sense from the possible
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senses in WordNet. For fruit this would mean choosing between the correct answer
fruit1n (the ripened reproductive body of a seed plant), and the other two senses fruit2n
(yield; an amount of a product) and fruit3n (the consequence of some effort or action).
Fig. 18.8 sketches the task.

an electric guitar and bass player stand off to one side

electric1: 
using 

electricity
electric2:  

tense
electric3: 
thrilling guitar1 

bass1: 
low range

…
bass4: 
sea fish

… 
bass7: 

instrument
…

player1: 
in game
player2: 
musician 
player3: 

actor
…

stand1: 
upright

…
stand5: 

bear
… 

stand10: 
put 

upright
…

side1: 
relative 
region
…

side3: 
of body

… 
side11: 
slope
…

x1

y1

x2

y2

x3

y3
y4

y5 y6

x4 x5 x6

Figure 18.8 The all-words WSD task, mapping from input words (x) to WordNet senses
(y). Only nouns, verbs, adjectives, and adverbs are mapped, and note that some words (like
guitar in the example) only have one sense in WordNet. Figure inspired by Chaplot and
Salakhutdinov (2018).

WSD systems are typically evaluated intrinsically, by computing F1 against
hand-labeled sense tags in a held-out set, such as the SemCor corpus or SemEval
corpora discussed above.

A surprisingly strong baseline is simply to choose the most frequent sense formost frequent
sense

each word from the senses in a labeled corpus (Gale et al., 1992a). For WordNet, this
corresponds to the first sense, since senses in WordNet are generally ordered from
most frequent to least frequent based on their counts in the SemCor sense-tagged
corpus. The most frequent sense baseline can be quite accurate, and is therefore
often used as a default, to supply a word sense when a supervised algorithm has
insufficient training data.

A second heuristic, called one sense per discourse is based on the work ofone sense per
discourse

Gale et al. (1992b), who noticed that a word appearing multiple times in a text or
discourse often appears with the same sense. This heuristic seems to hold better for
coarse-grained senses and particularly for cases of homonymy rather than polysemy,
so isn’t generally used as a baseline. Nonetheless various kinds of disambiguation
tasks often include some such bias toward resolving an ambiguity the same way
inside a discourse segment.

18.4.2 The WSD Algorithm: Contextual Embeddings

The best performing WSD algorithm is a simple 1-nearest-neighbor algorithm using
contextual word embeddings, due to Melamud et al. (2016) and Peters et al. (2018).
At training time we pass each sentence in the SemCore labeled dataset through any
contextual embedding (e.g., BERT) resulting in a contextual embedding for each
labeled token in SemCore. For each token ci of each sense c of each word, we
average the contextual representations to produce a contextual sense embedding vs
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for c:

vs =
1
n

∑

i

ci (18.13)

At test time we similarly compute a contextual embedding t for the target word, and
choose its nearest neighbor sense (the sense with the highest cosine with t) from the
training set. Fig. 18.9 illustrates the model.

I  found  the  jar  empty

cI cfound

find1v

cthe cjar cempty

find9v

find5vfind4v

ENCODER

Figure 18.9 The nearest-neighbor algorithm for WSD. In green are the contextual embed-
dings precomputed for each sense of each word; here we just show a few of the senses for
find. A contextual embedding is computed for the target word found, and then the nearest
neighbor sense (in this case find9

v) would be chosen. Figure inspired by Loureiro and Jorge
(2019).

What do we do for words we haven’t seen in the sense-labeled training data?
After all, the number of senses that appear in SemCor is only a small fraction of the
words in WordNet. The simplest algorithm is to fall back to the Most Frequent Sense
baseline, i.e. taking the first sense in WordNet. But that’s not very satisfactory.

A more powerful approach, due to Loureiro and Jorge (2019), is to impute the
missing sense embeddings, bottom-up, by using the WordNet taxonomy and super-
senses. We get a sense embedding for any higher-level node in the WordNet taxon-
omy by averaging the embeddings of its children, thus computing the embedding for
each synset as the average of its sense embeddings, the embedding for a hypernym
as the average of its synset embeddings, and the lexicographic category (supersense)
embedding as the average of the large set of synset embeddings with that category.
More formally, for each missing sense in WordNet ŝ ∈W , let the sense embeddings
for the other members of its synset be Sŝ, the hypernym-specific synset embeddings
be Hŝ, and the lexicographic (supersense-specific) synset embeddings be Lŝ. We can
then compute the sense embedding for ŝ as follows:

if |Sŝ|> 0, vŝ =
1
|Sŝ|

∑
vs,∀vs ∈ Sŝ (18.14)

else if |Hŝ|> 0, vŝ =
1
|Hŝ|

∑
vsyn,∀vsyn ∈ Hŝ (18.15)

else if |Lŝ|> 0, vŝ =
1
|Lŝ|

∑
vsyn,∀vsyn ∈ Lŝ (18.16)

Since all of the supersenses have some labeled data in SemCor, the algorithm is
guaranteed to have some representation for all possible senses by the time the al-
gorithm backs off to the most general (supersense) information, although of course
with a very coarse model.
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18.5 Alternate WSD algorithms and Tasks

18.5.1 Feature-Based WSD
Feature-based algorithms for WSD are extremely simple and function almost as
well as contextual language model algorithms. The best performing IMS algorithm
(Zhong and Ng, 2010), augmented by embeddings (Iacobacci et al. 2016, Raganato
et al. 2017b), uses an SVM classifier to choose the sense for each input word with
the following simple features of the surrounding words:

• part-of-speech tags (for a window of 3 words on each side, stopping at sen-
tence boundaries)

• collocation features of words or n-grams of lengths 1, 2, 3) at a particularcollocation

location in a window of 3 word on each side (i.e., exactly one word to the
right, or the two words starting 3 words to the left, and so on).

• weighted average of embeddings (of all words in a window of 10 words on
each side, weighted exponentially by distance)

Consider the ambiguous word bass in the following WSJ sentence:

(18.17) An electric guitar and bass player stand off to one side,

If we used a small 2-word window, a standard feature vector might include parts-of-
speech, unigram and bigram collocation features, and a weighted sum g of embed-
dings, that is:

[wi−2,POSi−2,wi−1,POSi−1,wi+1,POSi+1,wi+2,POSi+2,wi−1
i−2,

wi+2
i+1,g(E(wi−2),E(wi−1),E(wi+1),E(wi+2)] (18.18)

would yield the following vector:

[guitar, NN, and, CC, player, NN, stand, VB, and guitar,

player stand, g(E(guitar),E(and),E(player),E(stand))]

18.5.2 The Lesk Algorithm as WSD Baseline
Generating sense labeled corpora like SemCor is quite difficult and expensive. An
alternative class of WSD algorithms, knowledge-based algorithms, rely solely onknowledge-

based
WordNet or other such resources and don’t require labeled data. While supervised
algorithms generally work better, knowledge-based methods can be used in lan-
guages or domains where thesauruses or dictionaries but not sense labeled corpora
are available.

The Lesk algorithm is the oldest and most powerful knowledge-based WSDLesk algorithm

method, and is a useful baseline. Lesk is really a family of algorithms that choose
the sense whose dictionary gloss or definition shares the most words with the target
word’s neighborhood. Figure 18.10 shows the simplest version of the algorithm,
often called the Simplified Lesk algorithm (Kilgarriff and Rosenzweig, 2000).Simplified Lesk

As an example of the Lesk algorithm at work, consider disambiguating the word
bank in the following context:

(18.19) The bank can guarantee deposits will eventually cover future tuition costs
because it invests in adjustable-rate mortgage securities.

given the following two WordNet senses:
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function SIMPLIFIED LESK(word, sentence) returns best sense of word

best-sense←most frequent sense for word
max-overlap←0
context←set of words in sentence
for each sense in senses of word do
signature←set of words in the gloss and examples of sense
overlap←COMPUTEOVERLAP(signature, context)
if overlap > max-overlap then

max-overlap←overlap
best-sense←sense

end
return(best-sense)

Figure 18.10 The Simplified Lesk algorithm. The COMPUTEOVERLAP function returns
the number of words in common between two sets, ignoring function words or other words
on a stop list. The original Lesk algorithm defines the context in a more complex way.

bank1 Gloss: a financial institution that accepts deposits and channels the
money into lending activities

Examples: “he cashed a check at the bank”, “that bank holds the mortgage
on my home”

bank2 Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of

the river and watched the currents”

Sense bank1 has two non-stopwords overlapping with the context in (18.19):
deposits and mortgage, while sense bank2 has zero words, so sense bank1 is chosen.

There are many obvious extensions to Simplified Lesk, such as weighing the
overlapping words by IDF (inverse document frequency) Chapter 6 to downweight
frequent words like function words; best performing is to use word embedding co-
sine instead of word overlap to compute the similarity between the definition and the
context (Basile et al., 2014). Modern neural extensions of Lesk use the definitions
to compute sense embeddings that can be directly used instead of SemCor-training
embeddings (Kumar et al. 2019, Luo et al. 2018a, Luo et al. 2018b).

18.5.3 Word-in-Context Evaluation
Word Sense Disambiguation is a much more fine-grained evaluation of word mean-
ing than the context-free word similarity tasks we described in Chapter 6. Recall that
tasks like LexSim-999 require systems to match human judgments on the context-
free similarity between two words (how similar is cup to mug?). We can think of
WSD as a kind of contextualized similarity task, since our goal is to be able to dis-
tinguish the meaning of a word lke bass in one context (playing music) from another
context (fishing).

Somewhere in between lies the word-in-context task. Here the system is givenword-in-context
two sentences, each with the same target word but in a different sentential context.
The system must decide whether the target words are used in the same sense in the
two sentences or in a different sense. Fig. 18.11 shows sample pairs from the WiCWiC

dataset of Pilehvar and Camacho-Collados (2019).
The WiC sentences are mainly taken from the example usages for senses in

WordNet. But WordNet senses are very fine-grained. For this reason tasks like
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F There’s a lot of trash on the bed of the river —
I keep a glass of water next to my bed when I sleep

F Justify the margins — The end justifies the means
T Air pollution — Open a window and let in some air
T The expanded window will give us time to catch the thieves —

You have a two-hour window of clear weather to finish working on the lawn
Figure 18.11 Positive (T) and negative (F) pairs from the WiC dataset (Pilehvar and
Camacho-Collados, 2019).

word-in-context first cluster the word senses into coarser clusters, so that the two
sentential contexts for the target word are marked as T if the two senses are in the
same cluster. WiC clusters all pairs of senses if they are first degree connections in
the WordNet semantic graph, including sister senses, or if they belong to the same
supersense; we point to other sense clustering algorithms at the end of the chapter.

The baseline algorithm to solve the WIC task uses contextual embeddings like
BERT with a simple thesholded cosine. We first compute the contextual embed-
dings for the target word in each of the two sentences, and then compute the cosine
between them. If it’s above a threshold tuned on a devset we respond true (the two
senses are the same) else we respond false.

18.5.4 Wikipedia as a source of training data

Datasets other than SemCor have been used for all-words WSD. One important di-
rection is to use Wikipedia as a source of sense-labeled data. When a concept is
mentioned in a Wikipedia article, the article text may contain an explicit link to the
concept’s Wikipedia page, which is named by a unique identifier. This link can be
used as a sense annotation. For example, the ambiguous word bar is linked to a
different Wikipedia article depending on its meaning in context, including the page
BAR (LAW), the page BAR (MUSIC), and so on, as in the following Wikipedia
examples (Mihalcea, 2007).

In 1834, Sumner was admitted to the [[bar (law)|bar]] at the age of
twenty-three, and entered private practice in Boston.

It is danced in 3/4 time (like most waltzes), with the couple turning
approx. 180 degrees every [[bar (music)|bar]].

Jenga is a popular beer in the [[bar (establishment)|bar]]s of Thailand.

These sentences can then be added to the training data for a supervised system.
In order to use Wikipedia in this way, however, it is necessary to map from Wiki-
pedia concepts to whatever inventory of senses is relevant for the WSD application.
Automatic algorithms that map from Wikipedia to WordNet, for example, involve
finding the WordNet sense that has the greatest lexical overlap with the Wikipedia
sense, by comparing the vector of words in the WordNet synset, gloss, and related
senses with the vector of words in the Wikipedia page title, outgoing links, and page
category (Ponzetto and Navigli, 2010). The resulting mapping has been used to
create BabelNet, a large sense-annotated resource (Navigli and Ponzetto, 2012).
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18.6 Using Thesauruses to Improve Embeddings

Thesauruses have also been used to improve both static and contextual word em-
beddings. For example, static word embeddings have a problem with antonyms.
A word like expensive is often very similar in embedding cosine to its antonym
like cheap. Antonymy information from thesauruses can help solve this problem;
Fig. 18.12 shows nearest neighbors to some target words in GloVe, and the improve-
ment after one such method.

Before counterfitting After counterfitting
east west north south eastward eastern easterly
expensive pricey cheaper costly costly pricy overpriced
British American Australian Britain Brits London BBC

Figure 18.12 The nearest neighbors in GloVe to east, expensive, and British include
antonyms like west. The right side showing the improvement in GloVe nearest neighbors
after the counterfitting method (Mrkšić et al., 2016).

There are two families of solutions. The first requires retraining: we modify the
embedding training to incorporate thesaurus relations like synonymy, antonym, or
supersenses. This can be done by modifying the static embedding loss function for
word2vec (Yu and Dredze 2014, Nguyen et al. 2016) or by modifying contextual
embedding training (Levine et al. 2020, Lauscher et al. 2019).

The second, for static embeddings, is more light-weight; after the embeddings
have been trained we learn a second mapping based on a thesaurus that shifts the
embeddings of words in such a way that synonyms (according to the thesaurus) are
pushed closer and antonyms further apart. Such methods are called retrofittingretrofitting

(Faruqui et al. 2015, Lengerich et al. 2018) or counterfitting (Mrkšić et al., 2016).

18.7 Word Sense Induction

It is expensive and difficult to build large corpora in which each word is labeled for
its word sense. For this reason, an unsupervised approach to sense disambiguation,
often called word sense induction or WSI, is an important direction. In unsu-word sense

induction
pervised approaches, we don’t use human-defined word senses. Instead, the set of
“senses” of each word is created automatically from the instances of each word in
the training set.

Most algorithms for word sense induction follow the early work of Schütze
(Schütze 1992b, Schütze 1998) in using some sort of clustering over word embed-
dings. In training, we use three steps:

1. For each token wi of word w in a corpus, compute a context vector c.
2. Use a clustering algorithm to cluster these word-token context vectors c into

a predefined number of groups or clusters. Each cluster defines a sense of w.
3. Compute the vector centroid of each cluster. Each vector centroid sj is a

sense vector representing that sense of w.

Since this is an unsupervised algorithm, we don’t have names for each of these
“senses” of w; we just refer to the jth sense of w.

To disambiguate a particular token t of w we again have three steps:
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1. Compute a context vector c for t.
2. Retrieve all sense vectors s j for w.
3. Assign t to the sense represented by the sense vector s j that is closest to t.

All we need is a clustering algorithm and a distance metric between vectors.
Clustering is a well-studied problem with a wide number of standard algorithms that
can be applied to inputs structured as vectors of numerical values (Duda and Hart,
1973). A frequently used technique in language applications is known as agglom-
erative clustering. In this technique, each of the N training instances is initiallyagglomerative

clustering
assigned to its own cluster. New clusters are then formed in a bottom-up fashion by
the successive merging of the two clusters that are most similar. This process con-
tinues until either a specified number of clusters is reached, or some global goodness
measure among the clusters is achieved. In cases in which the number of training
instances makes this method too expensive, random sampling can be used on the
original training set to achieve similar results.

How can we evaluate unsupervised sense disambiguation approaches? As usual,
the best way is to do extrinsic evaluation embedded in some end-to-end system; one
example used in a SemEval bakeoff is to improve search result clustering and di-
versification (Navigli and Vannella, 2013). Intrinsic evaluation requires a way to
map the automatically derived sense classes into a hand-labeled gold-standard set so
that we can compare a hand-labeled test set with a set labeled by our unsupervised
classifier. Various such metrics have been tested, for example in the SemEval tasks
(Manandhar et al. 2010, Navigli and Vannella 2013, Jurgens and Klapaftis 2013),
including cluster overlap metrics, or methods that map each sense cluster to a pre-
defined sense by choosing the sense that (in some training set) has the most overlap
with the cluster. However it is fair to say that no evaluation metric for this task has
yet become standard.

18.8 Summary

This chapter has covered a wide range of issues concerning the meanings associated
with lexical items. The following are among the highlights:

• A word sense is the locus of word meaning; definitions and meaning relations
are defined at the level of the word sense rather than wordforms.

• Many words are polysemous, having many senses.
• Relations between senses include synonymy, antonymy, meronymy, and

taxonomic relations hyponymy and hypernymy.
• WordNet is a large database of lexical relations for English, and WordNets

exist for a variety of languages.
• Word-sense disambiguation (WSD) is the task of determining the correct

sense of a word in context. Supervised approaches make use of a corpus
of sentences in which individual words (lexical sample task) or all words
(all-words task) are hand-labeled with senses from a resource like WordNet.
SemCor is the largest corpus with WordNet-labeled senses.

• The standard supervised algorithm for WSD is nearest neighbors with contex-
tual embeddings.

• Feature-based algorithms using parts of speech and embeddings of words in
the context of the target word also work well.
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• An important baseline for WSD is the most frequent sense, equivalent, in
WordNet, to take the first sense.

• Another baseline is a knowledge-based WSD algorithm called the Lesk al-
gorithm which chooses the sense whose dictionary definition shares the most
words with the target word’s neighborhood.

• Word sense induction is the task of learning word senses unsupervised.

Bibliographical and Historical Notes
Word sense disambiguation traces its roots to some of the earliest applications of
digital computers. The insight that underlies modern algorithms for word sense
disambiguation was first articulated by Weaver (1955) in the context of machine
translation:

If one examines the words in a book, one at a time as through an opaque
mask with a hole in it one word wide, then it is obviously impossible
to determine, one at a time, the meaning of the words. [. . . ] But if
one lengthens the slit in the opaque mask, until one can see not only
the central word in question but also say N words on either side, then
if N is large enough one can unambiguously decide the meaning of the
central word. [. . . ] The practical question is : “What minimum value of
N will, at least in a tolerable fraction of cases, lead to the correct choice
of meaning for the central word?”

Other notions first proposed in this early period include the use of a thesaurus for dis-
ambiguation (Masterman, 1957), supervised training of Bayesian models for disam-
biguation (Madhu and Lytel, 1965), and the use of clustering in word sense analysis
(Sparck Jones, 1986).

Much disambiguation work was conducted within the context of early AI-oriented
natural language processing systems. Quillian (1968) and Quillian (1969) proposed
a graph-based approach to language understanding, in which the definition of a word
was represented by a network of word nodes connected by syntactic and semantic
relations, and sense disambiguation by finding the shortest path between senses in
the graph. Simmons (1973) is another influential early semantic network approach.
Wilks proposed one of the earliest non-discrete models with his Preference Seman-
tics (Wilks 1975c, Wilks 1975b, Wilks 1975a), and Small and Rieger (1982) and
Riesbeck (1975) proposed understanding systems based on modeling rich procedu-
ral information for each word. Hirst’s ABSITY system (Hirst and Charniak 1982,
Hirst 1987, Hirst 1988), which used a technique called marker passing based on se-
mantic networks, represents the most advanced system of this type. As with these
largely symbolic approaches, early neural network (at the time called ‘connection-
ist’) approaches to word sense disambiguation relied on small lexicons with hand-
coded representations (Cottrell 1985, Kawamoto 1988).

The earliest implementation of a robust empirical approach to sense disambigua-
tion is due to Kelly and Stone (1975), who directed a team that hand-crafted a set
of disambiguation rules for 1790 ambiguous English words. Lesk (1986) was the
first to use a machine-readable dictionary for word sense disambiguation. Fellbaum
(1998) collects early work on WordNet. Early work using dictionaries as lexical re-
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sources include Amsler’s (1981) use of the Merriam Webster dictionary and Long-
man’s Dictionary of Contemporary English (Boguraev and Briscoe, 1989).

Supervised approaches to disambiguation began with the use of decision trees
by Black (1988). In addition to the IMS and contextual-embedding based methods
for supervised WSD, recent supervised algorithms includes encoder-decoder models
(Raganato et al., 2017a).

The need for large amounts of annotated text in supervised methods led early
on to investigations into the use of bootstrapping methods (Hearst 1991, Yarow-
sky 1995). For example the semi-supervised algorithm of Diab and Resnik (2002)
is based on aligned parallel corpora in two languages. For example, the fact that
the French word catastrophe might be translated as English disaster in one instance
and tragedy in another instance can be used to disambiguate the senses of the two
English words (i.e., to choose senses of disaster and tragedy that are similar).

The earliest use of clustering in the study of word senses was by Sparck Jones
(1986); Pedersen and Bruce (1997), Schütze (1997b), and Schütze (1998) applied
distributional methods. Clustering word senses into coarse senses has also beencoarse senses

used to address the problem of dictionary senses being too fine-grained (Section 18.5.3)
(Dolan 1994, Chen and Chang 1998, Mihalcea and Moldovan 2001, Agirre and
de Lacalle 2003, Palmer et al. 2004, Navigli 2006, Snow et al. 2007, Pilehvar
et al. 2013). Corpora with clustered word senses for training supervised clustering
algorithms include Palmer et al. (2006) and OntoNotes (Hovy et al., 2006).OntoNotes

See Pustejovsky (1995), Pustejovsky and Boguraev (1996), Martin (1986), and
Copestake and Briscoe (1995), inter alia, for computational approaches to the rep-
resentation of polysemy. Pustejovsky’s theory of the generative lexicon, and ingenerative

lexicon
particular his theory of the qualia structure of words, is a way of accounting for thequalia

structure
dynamic systematic polysemy of words in context.

Historical overviews of WSD include Agirre and Edmonds (2006) and Navigli
(2009).

Exercises
18.1 Collect a small corpus of example sentences of varying lengths from any

newspaper or magazine. Using WordNet or any standard dictionary, deter-
mine how many senses there are for each of the open-class words in each sen-
tence. How many distinct combinations of senses are there for each sentence?
How does this number seem to vary with sentence length?

18.2 Using WordNet or a standard reference dictionary, tag each open-class word
in your corpus with its correct tag. Was choosing the correct sense always a
straightforward task? Report on any difficulties you encountered.

18.3 Using your favorite dictionary, simulate the original Lesk word overlap dis-
ambiguation algorithm described on page 367 on the phrase Time flies like an
arrow. Assume that the words are to be disambiguated one at a time, from
left to right, and that the results from earlier decisions are used later in the
process.

18.4 Build an implementation of your solution to the previous exercise. Using
WordNet, implement the original Lesk word overlap disambiguation algo-
rithm described on page 367 on the phrase Time flies like an arrow.
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19 Semantic Role Labeling

Sometime between the 7th and 4th centuries BCE, the Indian grammarian Pān. ini1

wrote a famous treatise on Sanskrit grammar, the As.t.ādhyāyı̄ (‘8 books’), a treatise
that has been called “one of the greatest monuments of
human intelligence” (Bloomfield, 1933, 11). The work
describes the linguistics of the Sanskrit language in the
form of 3959 sutras, each very efficiently (since it had to
be memorized!) expressing part of a formal rule system
that brilliantly prefigured modern mechanisms of formal
language theory (Penn and Kiparsky, 2012). One set of
rules, relevant to our discussion in this chapter, describes
the kārakas, semantic relationships between a verb and
noun arguments, roles like agent, instrument, or destina-
tion. Pān. ini’s work was the earliest we know of that tried
to understand the linguistic realization of events and their participants. This task
of understanding how participants relate to events—being able to answer the ques-
tion “Who did what to whom” (and perhaps also “when and where”)—is a central
question of natural language understanding.

Let’s move forward 2.5 millennia to the present and consider the very mundane
goal of understanding text about a purchase of stock by XYZ Corporation. This
purchasing event and its participants can be described by a wide variety of surface
forms. The event can be described by a verb (sold, bought) or a noun (purchase),
and XYZ Corp can be the syntactic subject (of bought), the indirect object (of sold),
or in a genitive or noun compound relation (with the noun purchase) despite having
notionally the same role in all of them:

• XYZ corporation bought the stock.
• They sold the stock to XYZ corporation.
• The stock was bought by XYZ corporation.
• The purchase of the stock by XYZ corporation...
• The stock purchase by XYZ corporation...

In this chapter we introduce a level of representation that captures the common-
ality between these sentences: there was a purchase event, the participants were
XYZ Corp and some stock, and XYZ Corp was the buyer. These shallow semantic
representations , semantic roles, express the role that arguments of a predicate take
in the event, codified in databases like PropBank and FrameNet. We’ll introduce
semantic role labeling, the task of assigning roles to spans in sentences, and selec-
tional restrictions, the preferences that predicates express about their arguments,
such as the fact that the theme of eat is generally something edible.

1 Figure shows a birch bark manuscript from Kashmir of the Rupavatra, a grammatical textbook based
on the Sanskrit grammar of Panini. Image from the Wellcome Collection.
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19.1 Semantic Roles

Consider how in Chapter 15 we represented the meaning of arguments for sentences
like these:

(19.1) Sasha broke the window.
(19.2) Pat opened the door.

A neo-Davidsonian event representation of these two sentences would be

∃e,x,y Breaking(e)∧Breaker(e,Sasha)
∧BrokenT hing(e,y)∧Window(y)

∃e,x,y Opening(e)∧Opener(e,Pat)
∧OpenedT hing(e,y)∧Door(y)

In this representation, the roles of the subjects of the verbs break and open are
Breaker and Opener respectively. These deep roles are specific to each event; Break-deep roles

ing events have Breakers, Opening events have Openers, and so on.
If we are going to be able to answer questions, perform inferences, or do any

further kinds of natural language understanding of these events, we’ll need to know
a little more about the semantics of these arguments. Breakers and Openers have
something in common. They are both volitional actors, often animate, and they have
direct causal responsibility for their events.

Thematic roles are a way to capture this semantic commonality between Break-thematic roles

ers and Openers. We say that the subjects of both these verbs are agents. Thus,agents

AGENT is the thematic role that represents an abstract idea such as volitional causa-
tion. Similarly, the direct objects of both these verbs, the BrokenThing and OpenedThing,
are both prototypically inanimate objects that are affected in some way by the action.
The semantic role for these participants is theme.theme

Thematic Role Definition
AGENT The volitional causer of an event
EXPERIENCER The experiencer of an event
FORCE The non-volitional causer of the event
THEME The participant most directly affected by an event
RESULT The end product of an event
CONTENT The proposition or content of a propositional event
INSTRUMENT An instrument used in an event
BENEFICIARY The beneficiary of an event
SOURCE The origin of the object of a transfer event
GOAL The destination of an object of a transfer event
Figure 19.1 Some commonly used thematic roles with their definitions.

Although thematic roles are one of the oldest linguistic models, as we saw above,
their modern formulation is due to Fillmore (1968) and Gruber (1965). Although
there is no universally agreed-upon set of roles, Figs. 19.1 and 19.2 list some the-
matic roles that have been used in various computational papers, together with rough
definitions and examples. Most thematic role sets have about a dozen roles, but we’ll
see sets with smaller numbers of roles with even more abstract meanings, and sets
with very large numbers of roles that are specific to situations. We’ll use the general
term semantic roles for all sets of roles, whether small or large.semantic roles
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Thematic Role Example
AGENT The waiter spilled the soup.
EXPERIENCER John has a headache.
FORCE The wind blows debris from the mall into our yards.
THEME Only after Benjamin Franklin broke the ice...
RESULT The city built a regulation-size baseball diamond...
CONTENT Mona asked “You met Mary Ann at a supermarket?”
INSTRUMENT He poached catfish, stunning them with a shocking device...
BENEFICIARY Whenever Ann Callahan makes hotel reservations for her boss...
SOURCE I flew in from Boston.
GOAL I drove to Portland.
Figure 19.2 Some prototypical examples of various thematic roles.

19.2 Diathesis Alternations

The main reason computational systems use semantic roles is to act as a shallow
meaning representation that can let us make simple inferences that aren’t possible
from the pure surface string of words, or even from the parse tree. To extend the
earlier examples, if a document says that Company A acquired Company B, we’d
like to know that this answers the query Was Company B acquired? despite the fact
that the two sentences have very different surface syntax. Similarly, this shallow
semantics might act as a useful intermediate language in machine translation.

Semantic roles thus help generalize over different surface realizations of pred-
icate arguments. For example, while the AGENT is often realized as the subject of
the sentence, in other cases the THEME can be the subject. Consider these possible
realizations of the thematic arguments of the verb break:

(19.3) John
AGENT

broke the window.
THEME

(19.4) John
AGENT

broke the window
THEME

with a rock.
INSTRUMENT

(19.5) The rock
INSTRUMENT

broke the window.
THEME

(19.6) The window
THEME

broke.

(19.7) The window
THEME

was broken by John.
AGENT

These examples suggest that break has (at least) the possible arguments AGENT,
THEME, and INSTRUMENT. The set of thematic role arguments taken by a verb is
often called the thematic grid, θ -grid, or case frame. We can see that there arethematic grid

case frame (among others) the following possibilities for the realization of these arguments of
break:

AGENT/Subject, THEME/Object
AGENT/Subject, THEME/Object, INSTRUMENT/PPwith
INSTRUMENT/Subject, THEME/Object
THEME/Subject

It turns out that many verbs allow their thematic roles to be realized in various
syntactic positions. For example, verbs like give can realize the THEME and GOAL
arguments in two different ways:



376 CHAPTER 19 • SEMANTIC ROLE LABELING

(19.8) a. Doris
AGENT

gave the book
THEME

to Cary.
GOAL

b. Doris
AGENT

gave Cary
GOAL

the book.
THEME

These multiple argument structure realizations (the fact that break can take AGENT,
INSTRUMENT, or THEME as subject, and give can realize its THEME and GOAL in
either order) are called verb alternations or diathesis alternations. The alternationverb

alternation
we showed above for give, the dative alternation, seems to occur with particular se-dative

alternation
mantic classes of verbs, including “verbs of future having” (advance, allocate, offer,
owe), “send verbs” (forward, hand, mail), “verbs of throwing” (kick, pass, throw),
and so on. Levin (1993) lists for 3100 English verbs the semantic classes to which
they belong (47 high-level classes, divided into 193 more specific classes) and the
various alternations in which they participate. These lists of verb classes have been
incorporated into the online resource VerbNet (Kipper et al., 2000), which links each
verb to both WordNet and FrameNet entries.

19.3 Semantic Roles: Problems with Thematic Roles

Representing meaning at the thematic role level seems like it should be useful in
dealing with complications like diathesis alternations. Yet it has proved quite diffi-
cult to come up with a standard set of roles, and equally difficult to produce a formal
definition of roles like AGENT, THEME, or INSTRUMENT.

For example, researchers attempting to define role sets often find they need to
fragment a role like AGENT or THEME into many specific roles. Levin and Rappa-
port Hovav (2005) summarize a number of such cases, such as the fact there seem
to be at least two kinds of INSTRUMENTS, intermediary instruments that can appear
as subjects and enabling instruments that cannot:

(19.9) a. The cook opened the jar with the new gadget.
b. The new gadget opened the jar.

(19.10) a. Shelly ate the sliced banana with a fork.
b. *The fork ate the sliced banana.

In addition to the fragmentation problem, there are cases in which we’d like to
reason about and generalize across semantic roles, but the finite discrete lists of roles
don’t let us do this.

Finally, it has proved difficult to formally define the thematic roles. Consider the
AGENT role; most cases of AGENTS are animate, volitional, sentient, causal, but any
individual noun phrase might not exhibit all of these properties.

These problems have led to alternative semantic role models that use eithersemantic role

many fewer or many more roles.
The first of these options is to define generalized semantic roles that abstract

over the specific thematic roles. For example, PROTO-AGENT and PROTO-PATIENTproto-agent

proto-patient are generalized roles that express roughly agent-like and roughly patient-like mean-
ings. These roles are defined, not by necessary and sufficient conditions, but rather
by a set of heuristic features that accompany more agent-like or more patient-like
meanings. Thus, the more an argument displays agent-like properties (being voli-
tionally involved in the event, causing an event or a change of state in another par-
ticipant, being sentient or intentionally involved, moving) the greater the likelihood
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that the argument can be labeled a PROTO-AGENT. The more patient-like the proper-
ties (undergoing change of state, causally affected by another participant, stationary
relative to other participants, etc.), the greater the likelihood that the argument can
be labeled a PROTO-PATIENT.

The second direction is instead to define semantic roles that are specific to a
particular verb or a particular group of semantically related verbs or nouns.

In the next two sections we describe two commonly used lexical resources that
make use of these alternative versions of semantic roles. PropBank uses both proto-
roles and verb-specific semantic roles. FrameNet uses semantic roles that are spe-
cific to a general semantic idea called a frame.

19.4 The Proposition Bank

The Proposition Bank, generally referred to as PropBank, is a resource of sen-PropBank

tences annotated with semantic roles. The English PropBank labels all the sentences
in the Penn TreeBank; the Chinese PropBank labels sentences in the Penn Chinese
TreeBank. Because of the difficulty of defining a universal set of thematic roles,
the semantic roles in PropBank are defined with respect to an individual verb sense.
Each sense of each verb thus has a specific set of roles, which are given only numbers
rather than names: Arg0, Arg1, Arg2, and so on. In general, Arg0 represents the
PROTO-AGENT, and Arg1, the PROTO-PATIENT. The semantics of the other roles
are less consistent, often being defined specifically for each verb. Nonetheless there
are some generalization; the Arg2 is often the benefactive, instrument, attribute, or
end state, the Arg3 the start point, benefactive, instrument, or attribute, and the Arg4
the end point.

Here are some slightly simplified PropBank entries for one sense each of the
verbs agree and fall. Such PropBank entries are called frame files; note that the
definitions in the frame file for each role (“Other entity agreeing”, “Extent, amount
fallen”) are informal glosses intended to be read by humans, rather than being formal
definitions.

(19.11) agree.01
Arg0: Agreer
Arg1: Proposition
Arg2: Other entity agreeing

Ex1: [Arg0 The group] agreed [Arg1 it wouldn’t make an offer].
Ex2: [ArgM-TMP Usually] [Arg0 John] agrees [Arg2 with Mary]

[Arg1 on everything].

(19.12) fall.01
Arg1: Logical subject, patient, thing falling
Arg2: Extent, amount fallen
Arg3: start point
Arg4: end point, end state of arg1
Ex1: [Arg1 Sales] fell [Arg4 to $25 million] [Arg3 from $27 million].
Ex2: [Arg1 The average junk bond] fell [Arg2 by 4.2%].

Note that there is no Arg0 role for fall, because the normal subject of fall is a
PROTO-PATIENT.
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The PropBank semantic roles can be useful in recovering shallow semantic in-
formation about verbal arguments. Consider the verb increase:

(19.13) increase.01 “go up incrementally”
Arg0: causer of increase
Arg1: thing increasing
Arg2: amount increased by, EXT, or MNR
Arg3: start point
Arg4: end point

A PropBank semantic role labeling would allow us to infer the commonality in
the event structures of the following three examples, that is, that in each case Big
Fruit Co. is the AGENT and the price of bananas is the THEME, despite the differing
surface forms.

(19.14) [Arg0 Big Fruit Co. ] increased [Arg1 the price of bananas].
(19.15) [Arg1 The price of bananas] was increased again [Arg0 by Big Fruit Co. ]
(19.16) [Arg1 The price of bananas] increased [Arg2 5%].

PropBank also has a number of non-numbered arguments called ArgMs, (ArgM-
TMP, ArgM-LOC, etc.) which represent modification or adjunct meanings. These
are relatively stable across predicates, so aren’t listed with each frame file. Data
labeled with these modifiers can be helpful in training systems to detect temporal,
location, or directional modification across predicates. Some of the ArgM’s include:

TMP when? yesterday evening, now
LOC where? at the museum, in San Francisco
DIR where to/from? down, to Bangkok
MNR how? clearly, with much enthusiasm
PRP/CAU why? because ... , in response to the ruling
REC themselves, each other
ADV miscellaneous
PRD secondary predication ...ate the meat raw

While PropBank focuses on verbs, a related project, NomBank (Meyers et al.,NomBank

2004) adds annotations to noun predicates. For example the noun agreement in
Apple’s agreement with IBM would be labeled with Apple as the Arg0 and IBM as
the Arg2. This allows semantic role labelers to assign labels to arguments of both
verbal and nominal predicates.

19.5 FrameNet

While making inferences about the semantic commonalities across different sen-
tences with increase is useful, it would be even more useful if we could make such
inferences in many more situations, across different verbs, and also between verbs
and nouns. For example, we’d like to extract the similarity among these three sen-
tences:

(19.17) [Arg1 The price of bananas] increased [Arg2 5%].
(19.18) [Arg1 The price of bananas] rose [Arg2 5%].
(19.19) There has been a [Arg2 5%] rise [Arg1 in the price of bananas].

Note that the second example uses the different verb rise, and the third example
uses the noun rather than the verb rise. We’d like a system to recognize that the
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price of bananas is what went up, and that 5% is the amount it went up, no matter
whether the 5% appears as the object of the verb increased or as a nominal modifier
of the noun rise.

The FrameNet project is another semantic-role-labeling project that attemptsFrameNet

to address just these kinds of problems (Baker et al. 1998, Fillmore et al. 2003,
Fillmore and Baker 2009, Ruppenhofer et al. 2016). Whereas roles in the PropBank
project are specific to an individual verb, roles in the FrameNet project are specific
to a frame.

What is a frame? Consider the following set of words:

reservation, flight, travel, buy, price, cost, fare, rates, meal, plane

There are many individual lexical relations of hyponymy, synonymy, and so on
between many of the words in this list. The resulting set of relations does not,
however, add up to a complete account of how these words are related. They are
clearly all defined with respect to a coherent chunk of common-sense background
information concerning air travel.

We call the holistic background knowledge that unites these words a frame (Fill-frame

more, 1985). The idea that groups of words are defined with respect to some back-
ground information is widespread in artificial intelligence and cognitive science,
where besides frame we see related works like a model (Johnson-Laird, 1983), ormodel

even script (Schank and Abelson, 1977).script

A frame in FrameNet is a background knowledge structure that defines a set of
frame-specific semantic roles, called frame elements, and includes a set of predi-frame elements

cates that use these roles. Each word evokes a frame and profiles some aspect of the
frame and its elements. The FrameNet dataset includes a set of frames and frame
elements, the lexical units associated with each frame, and a set of labeled exam-
ple sentences. For example, the change position on a scale frame is defined as
follows:

This frame consists of words that indicate the change of an Item’s posi-
tion on a scale (the Attribute) from a starting point (Initial value) to an
end point (Final value).

Some of the semantic roles (frame elements) in the frame are defined as in
Fig. 19.3. Note that these are separated into core roles, which are frame specific, andcore roles

non-core roles, which are more like the Arg-M arguments in PropBank, expressingnon-core roles

more general properties of time, location, and so on.
Here are some example sentences:

(19.20) [ITEM Oil] rose [ATTRIBUTE in price] [DIFFERENCE by 2%].

(19.21) [ITEM It] has increased [FINAL STATE to having them 1 day a month].

(19.22) [ITEM Microsoft shares] fell [FINAL VALUE to 7 5/8].

(19.23) [ITEM Colon cancer incidence] fell [DIFFERENCE by 50%] [GROUP among
men].

(19.24) a steady increase [INITIAL VALUE from 9.5] [FINAL VALUE to 14.3] [ITEM
in dividends]

(19.25) a [DIFFERENCE 5%] [ITEM dividend] increase...

Note from these example sentences that the frame includes target words like rise,
fall, and increase. In fact, the complete frame consists of the following words:
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Core Roles
ATTRIBUTE The ATTRIBUTE is a scalar property that the ITEM possesses.
DIFFERENCE The distance by which an ITEM changes its position on the scale.
FINAL STATE A description that presents the ITEM’s state after the change in the ATTRIBUTE’s

value as an independent predication.
FINAL VALUE The position on the scale where the ITEM ends up.
INITIAL STATE A description that presents the ITEM’s state before the change in the AT-

TRIBUTE’s value as an independent predication.
INITIAL VALUE The initial position on the scale from which the ITEM moves away.
ITEM The entity that has a position on the scale.
VALUE RANGE A portion of the scale, typically identified by its end points, along which the

values of the ATTRIBUTE fluctuate.
Some Non-Core Roles

DURATION The length of time over which the change takes place.
SPEED The rate of change of the VALUE.
GROUP The GROUP in which an ITEM changes the value of an

ATTRIBUTE in a specified way.
Figure 19.3 The frame elements in the change position on a scale frame from the FrameNet Labelers
Guide (Ruppenhofer et al., 2016).

VERBS: dwindle move soar escalation shift
advance edge mushroom swell explosion tumble
climb explode plummet swing fall
decline fall reach triple fluctuation ADVERBS:
decrease fluctuate rise tumble gain increasingly
diminish gain rocket growth
dip grow shift NOUNS: hike
double increase skyrocket decline increase
drop jump slide decrease rise

FrameNet also codes relationships between frames, allowing frames to inherit
from each other, or representing relations between frames like causation (and gen-
eralizations among frame elements in different frames can be representing by inher-
itance as well). Thus, there is a Cause change of position on a scale frame that is
linked to the Change of position on a scale frame by the cause relation, but that
adds an AGENT role and is used for causative examples such as the following:

(19.26) [AGENT They] raised [ITEM the price of their soda] [DIFFERENCE by 2%].

Together, these two frames would allow an understanding system to extract the
common event semantics of all the verbal and nominal causative and non-causative
usages.

FrameNets have also been developed for many other languages including Span-
ish, German, Japanese, Portuguese, Italian, and Chinese.

19.6 Semantic Role Labeling

Semantic role labeling (sometimes shortened as SRL) is the task of automaticallysemantic role
labeling

finding the semantic roles of each argument of each predicate in a sentence. Cur-
rent approaches to semantic role labeling are based on supervised machine learning,
often using the FrameNet and PropBank resources to specify what counts as a pred-
icate, define the set of roles used in the task, and provide training and test sets.
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Recall that the difference between these two models of semantic roles is that
FrameNet (19.27) employs many frame-specific frame elements as roles, while Prop-
Bank (19.28) uses a smaller number of numbered argument labels that can be inter-
preted as verb-specific labels, along with the more general ARGM labels. Some
examples:

(19.27)
[You] can’t [blame] [the program] [for being unable to identify it]
COGNIZER TARGET EVALUEE REASON

(19.28)
[The San Francisco Examiner] issued [a special edition] [yesterday]
ARG0 TARGET ARG1 ARGM-TMP

19.6.1 A Feature-based Algorithm for Semantic Role Labeling
A simplified feature-based semantic role labeling algorithm is sketched in Fig. 19.4.
Feature-based algorithms—from the very earliest systems like (Simmons, 1973)—
begin by parsing, using broad-coverage parsers to assign a parse to the input string.
Figure 19.5 shows a parse of (19.28) above. The parse is then traversed to find all
words that are predicates.

For each of these predicates, the algorithm examines each node in the parse
tree and uses supervised classification to decide the semantic role (if any) it plays
for this predicate. Given a labeled training set such as PropBank or FrameNet, a
feature vector is extracted for each node, using feature templates described in the
next subsection. A 1-of-N classifier is then trained to predict a semantic role for
each constituent given these features, where N is the number of potential semantic
roles plus an extra NONE role for non-role constituents. Any standard classification
algorithms can be used. Finally, for each test sentence to be labeled, the classifier is
run on each relevant constituent.

function SEMANTICROLELABEL(words) returns labeled tree

parse←PARSE(words)
for each predicate in parse do

for each node in parse do
featurevector←EXTRACTFEATURES(node, predicate, parse)
CLASSIFYNODE(node, featurevector, parse)

Figure 19.4 A generic semantic-role-labeling algorithm. CLASSIFYNODE is a 1-of-N clas-
sifier that assigns a semantic role (or NONE for non-role constituents), trained on labeled data
such as FrameNet or PropBank.

Instead of training a single-stage classifier as in Fig. 19.5, the node-level classi-
fication task can be broken down into multiple steps:

1. Pruning: Since only a small number of the constituents in a sentence are
arguments of any given predicate, many systems use simple heuristics to prune
unlikely constituents.

2. Identification: a binary classification of each node as an argument to be la-
beled or a NONE.

3. Classification: a 1-of-N classification of all the constituents that were labeled
as arguments by the previous stage

The separation of identification and classification may lead to better use of fea-
tures (different features may be useful for the two tasks) or to computational effi-
ciency.
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S

NP-SBJ = ARG0 VP

DT NNP NNP NNP

The San Francisco Examiner

VBD = TARGET NP = ARG1 PP-TMP = ARGM-TMP

issued DT JJ NN IN NP

a special edition around NN NP-TMP

noon yesterday

Figure 19.5 Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line
shows the path feature NP↑S↓VP↓VBD for ARG0, the NP-SBJ constituent The San Francisco Examiner.

Global Optimization

The classification algorithm of Fig. 19.5 classifies each argument separately (‘lo-
cally’), making the simplifying assumption that each argument of a predicate can be
labeled independently. This assumption is false; there are interactions between argu-
ments that require a more ‘global’ assignment of labels to constituents. For example,
constituents in FrameNet and PropBank are required to be non-overlapping. More
significantly, the semantic roles of constituents are not independent. For example
PropBank does not allow multiple identical arguments; two constituents of the same
verb cannot both be labeled ARG0 .

Role labeling systems thus often add a fourth step to deal with global consistency
across the labels in a sentence. For example, the local classifiers can return a list of
possible labels associated with probabilities for each constituent, and a second-pass
Viterbi decoding or re-ranking approach can be used to choose the best consensus
label. Integer linear programming (ILP) is another common way to choose a solution
that conforms best to multiple constraints.

Features for Semantic Role Labeling

Most systems use some generalization of the core set of features introduced by
Gildea and Jurafsky (2000). Common basic features templates (demonstrated on
the NP-SBJ constituent The San Francisco Examiner in Fig. 19.5) include:

• The governing predicate, in this case the verb issued. The predicate is a cru-
cial feature since labels are defined only with respect to a particular predicate.

• The phrase type of the constituent, in this case, NP (or NP-SBJ). Some se-
mantic roles tend to appear as NPs, others as S or PP, and so on.

• The headword of the constituent, Examiner. The headword of a constituent
can be computed with standard head rules, such as those given in Chapter 12
in Fig. 12.12. Certain headwords (e.g., pronouns) place strong constraints on
the possible semantic roles they are likely to fill.

• The headword part of speech of the constituent, NNP.
• The path in the parse tree from the constituent to the predicate. This path is

marked by the dotted line in Fig. 19.5. Following Gildea and Jurafsky (2000),
we can use a simple linear representation of the path, NP↑S↓VP↓VBD. ↑ and
↓ represent upward and downward movement in the tree, respectively. The
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path is very useful as a compact representation of many kinds of grammatical
function relationships between the constituent and the predicate.

• The voice of the clause in which the constituent appears, in this case, active
(as contrasted with passive). Passive sentences tend to have strongly different
linkings of semantic roles to surface form than do active ones.

• The binary linear position of the constituent with respect to the predicate,
either before or after.

• The subcategorization of the predicate, the set of expected arguments that
appear in the verb phrase. We can extract this information by using the phrase-
structure rule that expands the immediate parent of the predicate; VP→ VBD
NP PP for the predicate in Fig. 19.5.

• The named entity type of the constituent.
• The first words and the last word of the constituent.

The following feature vector thus represents the first NP in our example (recall
that most observations will have the value NONE rather than, for example, ARG0,
since most constituents in the parse tree will not bear a semantic role):

ARG0: [issued, NP, Examiner, NNP, NP↑S↓VP↓VBD, active, before, VP → NP PP,
ORG, The, Examiner]

Other features are often used in addition, such as sets of n-grams inside the
constituent, or more complex versions of the path features (the upward or downward
halves, or whether particular nodes occur in the path).

It’s also possible to use dependency parses instead of constituency parses as the
basis of features, for example using dependency parse paths instead of constituency
paths.

19.6.2 A Neural Algorithm for Semantic Role Labeling
A simple neural approach to SRL is to treat it as a sequence labeling task like named-
entity recognition, using the BIO approach. Let’s assume that we are given the
predicate and the task is just detecting and labeling spans. Recall that with BIO
tagging, we have a begin and end tag for each possible role (B-ARG0, I-ARG0; B-
ARG1, I-ARG1, and so on), plus an outside tag O.

As with all the taggers, the goal is to compute the highest probability tag se-
quence ŷ, given the input sequence of words w:

ŷ = argmax
y∈T

P(y|w)

Fig. 19.6 shows a sketch of a standard algorithm from Shi and Lin (2019) and He
et al. (2017). Here each input word is mapped to pretrained embeddings, and also
associated with an embedding for a flag (0/1) variable indicating whether that input
word is the predicate. These concatenated embeddings are passed through a biL-
STM. The output embedding for each token are concatenated with the output em-
bedding for the predicate, and then passed to an MLP with a softmax which outputs
a distribution over each SRL label.

For decoding, a CRF layer can be used instead of the MLP layer on top of the
biLSTM output (or we can even leave off the biLSTM and pass the concatenated
BERT output directly to the CRF). The Viterbi decoding algorithm (Chapter 8) can
be used to decode from the CRF, which may help exploit global constraints between
tags, such as the fact that a tag I-ARG0 must follow another I-ARG0 or B-ARG0.



384 CHAPTER 19 • SEMANTIC ROLE LABELING

BERT

[CLS] the cats love hats [SEP] love [SEP]

LSTM1 LSTM1 LSTM1 LSTM1

LSTM2 LSTM2 LSTM2 LSTM2biLSTM

MLP MLP MLP
MLP/Softmax

B-ARG0 I-ARG0 B-PRED

0 0 0 1
concatenate
 is-predicate

LSTM1

LSTM2

MLP

B-ARG1

0

LSTM1

LSTM2

0

0

concatenate
with predicate

Figure 19.6 A BERT + biLSTM approach to semantic role labeling. The input sentence is
followed by [SEP] and an extra input for the predicate, in this case love. The BERT outputs
are concatenated to an indicator variable which is 1 for the predicate and 0 for all other
words , passed through a biLSTM, and then the output embedding at each token position is
concatenated with the embedding for the predicate, and passed through a single-layer MLP.
After Shi and Lin (2019) and He et al. (2017).

19.6.3 Evaluation of Semantic Role Labeling
The standard evaluation for semantic role labeling is to require that each argument
label must be assigned to the exactly correct word sequence or parse constituent, and
then compute precision, recall, and F-measure. Identification and classification can
also be evaluated separately. Two common datasets used for evaluation are CoNLL-
2005 (Carreras and Màrquez, 2005) and CoNLL-2012 (Pradhan et al., 2013).

19.7 Selectional Restrictions

We turn in this section to another way to represent facts about the relationship be-
tween predicates and arguments. A selectional restriction is a semantic type con-selectional

restriction
straint that a verb imposes on the kind of concepts that are allowed to fill its argument
roles. Consider the two meanings associated with the following example:

(19.29) I want to eat someplace nearby.

There are two possible parses and semantic interpretations for this sentence. In
the sensible interpretation, eat is intransitive and the phrase someplace nearby is
an adjunct that gives the location of the eating event. In the nonsensical speaker-as-
Godzilla interpretation, eat is transitive and the phrase someplace nearby is the direct
object and the THEME of the eating, like the NP Malaysian food in the following
sentences:

(19.30) I want to eat Malaysian food.

How do we know that someplace nearby isn’t the direct object in this sentence?
One useful cue is the semantic fact that the THEME of EATING events tends to be
something that is edible. This restriction placed by the verb eat on the filler of its
THEME argument is a selectional restriction.

Selectional restrictions are associated with senses, not entire lexemes. We can
see this in the following examples of the lexeme serve:
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(19.31) The restaurant serves green-lipped mussels.
(19.32) Which airlines serve Denver?

Example (19.31) illustrates the offering-food sense of serve, which ordinarily re-
stricts its THEME to be some kind of food Example (19.32) illustrates the provides a
commercial service to sense of serve, which constrains its THEME to be some type
of appropriate location.

Selectional restrictions vary widely in their specificity. The verb imagine, for
example, imposes strict requirements on its AGENT role (restricting it to humans
and other animate entities) but places very few semantic requirements on its THEME
role. A verb like diagonalize, on the other hand, places a very specific constraint
on the filler of its THEME role: it has to be a matrix, while the arguments of the
adjectives odorless are restricted to concepts that could possess an odor:

(19.33) In rehearsal, I often ask the musicians to imagine a tennis game.
(19.34) Radon is an odorless gas that can’t be detected by human senses.

(19.35) To diagonalize a matrix is to find its eigenvalues.

These examples illustrate that the set of concepts we need to represent selectional
restrictions (being a matrix, being able to possess an odor, etc) is quite open ended.
This distinguishes selectional restrictions from other features for representing lexical
knowledge, like parts-of-speech, which are quite limited in number.

19.7.1 Representing Selectional Restrictions
One way to capture the semantics of selectional restrictions is to use and extend the
event representation of Chapter 15. Recall that the neo-Davidsonian representation
of an event consists of a single variable that stands for the event, a predicate denoting
the kind of event, and variables and relations for the event roles. Ignoring the issue of
the λ -structures and using thematic roles rather than deep event roles, the semantic
contribution of a verb like eat might look like the following:

∃e,x,y Eating(e)∧Agent(e,x)∧T heme(e,y)

With this representation, all we know about y, the filler of the THEME role, is that
it is associated with an Eating event through the Theme relation. To stipulate the
selectional restriction that y must be something edible, we simply add a new term to
that effect:

∃e,x,y Eating(e)∧Agent(e,x)∧T heme(e,y)∧EdibleT hing(y)

When a phrase like ate a hamburger is encountered, a semantic analyzer can form
the following kind of representation:

∃e,x,y Eating(e)∧Eater(e,x)∧T heme(e,y)∧EdibleT hing(y)∧Hamburger(y)

This representation is perfectly reasonable since the membership of y in the category
Hamburger is consistent with its membership in the category EdibleThing, assuming
a reasonable set of facts in the knowledge base. Correspondingly, the representation
for a phrase such as ate a takeoff would be ill-formed because membership in an
event-like category such as Takeoff would be inconsistent with membership in the
category EdibleThing.

While this approach adequately captures the semantics of selectional restrictions,
there are two problems with its direct use. First, using FOL to perform the simple
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Sense 1

hamburger, beefburger --

(a fried cake of minced beef served on a bun)

=> sandwich

=> snack food

=> dish

=> nutriment, nourishment, nutrition...

=> food, nutrient

=> substance

=> matter

=> physical entity

=> entity

Figure 19.7 Evidence from WordNet that hamburgers are edible.

task of enforcing selectional restrictions is overkill. Other, far simpler, formalisms
can do the job with far less computational cost. The second problem is that this
approach presupposes a large, logical knowledge base of facts about the concepts
that make up selectional restrictions. Unfortunately, although such common-sense
knowledge bases are being developed, none currently have the kind of coverage
necessary to the task.

A more practical approach is to state selectional restrictions in terms of WordNet
synsets rather than as logical concepts. Each predicate simply specifies a WordNet
synset as the selectional restriction on each of its arguments. A meaning representa-
tion is well-formed if the role filler word is a hyponym (subordinate) of this synset.

For our ate a hamburger example, for instance, we could set the selectional
restriction on the THEME role of the verb eat to the synset {food, nutrient}, glossed
as any substance that can be metabolized by an animal to give energy and build
tissue. Luckily, the chain of hypernyms for hamburger shown in Fig. 19.7 reveals
that hamburgers are indeed food. Again, the filler of a role need not match the
restriction synset exactly; it just needs to have the synset as one of its superordinates.

We can apply this approach to the THEME roles of the verbs imagine, lift, and di-
agonalize, discussed earlier. Let us restrict imagine’s THEME to the synset {entity},
lift’s THEME to {physical entity}, and diagonalize to {matrix}. This arrangement
correctly permits imagine a hamburger and lift a hamburger, while also correctly
ruling out diagonalize a hamburger.

19.7.2 Selectional Preferences
In the earliest implementations, selectional restrictions were considered strict con-
straints on the kind of arguments a predicate could take (Katz and Fodor 1963,
Hirst 1987). For example, the verb eat might require that its THEME argument be
[+FOOD]. Early word sense disambiguation systems used this idea to rule out senses
that violated the selectional restrictions of their governing predicates.

Very quickly, however, it became clear that these selectional restrictions were
better represented as preferences rather than strict constraints (Wilks 1975c, Wilks 1975b).
For example, selectional restriction violations (like inedible arguments of eat) often
occur in well-formed sentences, for example because they are negated (19.36), or
because selectional restrictions are overstated (19.37):

(19.36) But it fell apart in 1931, perhaps because people realized you can’t eat
gold for lunch if you’re hungry.
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(19.37) In his two championship trials, Mr. Kulkarni ate glass on an empty
stomach, accompanied only by water and tea.

Modern systems for selectional preferences therefore specify the relation be-
tween a predicate and its possible arguments with soft constraints of some kind.

Selectional Association

One of the most influential has been the selectional association model of Resnik
(1993). Resnik defines the idea of selectional preference strength as the general

selectional
preference

strength
amount of information that a predicate tells us about the semantic class of its argu-
ments. For example, the verb eat tells us a lot about the semantic class of its direct
objects, since they tend to be edible. The verb be, by contrast, tells us less about
its direct objects. The selectional preference strength can be defined by the differ-
ence in information between two distributions: the distribution of expected semantic
classes P(c) (how likely is it that a direct object will fall into class c) and the dis-
tribution of expected semantic classes for the particular verb P(c|v) (how likely is
it that the direct object of the specific verb v will fall into semantic class c). The
greater the difference between these distributions, the more information the verb
is giving us about possible objects. The difference between these two distributions
can be quantified by relative entropy, or the Kullback-Leibler divergence (Kullbackrelative entropy

and Leibler, 1951). The Kullback-Leibler or KL divergence D(P||Q) expresses theKL divergence

difference between two probability distributions P and Q

D(P||Q) =
∑

x

P(x) log
P(x)
Q(x)

(19.38)

The selectional preference SR(v) uses the KL divergence to express how much in-
formation, in bits, the verb v expresses about the possible semantic class of its argu-
ment.

SR(v) = D(P(c|v)||P(c))

=
∑

c

P(c|v) log
P(c|v)
P(c)

(19.39)

Resnik then defines the selectional association of a particular class and verb as theselectional
association

relative contribution of that class to the general selectional preference of the verb:

AR(v,c) =
1

SR(v)
P(c|v) log

P(c|v)
P(c)

(19.40)

The selectional association is thus a probabilistic measure of the strength of asso-
ciation between a predicate and a class dominating the argument to the predicate.
Resnik estimates the probabilities for these associations by parsing a corpus, count-
ing all the times each predicate occurs with each argument word, and assuming
that each word is a partial observation of all the WordNet concepts containing the
word. The following table from Resnik (1996) shows some sample high and low
selectional associations for verbs and some WordNet semantic classes of their direct
objects.

Direct Object Direct Object
Verb Semantic Class Assoc Semantic Class Assoc
read WRITING 6.80 ACTIVITY -.20
write WRITING 7.26 COMMERCE 0
see ENTITY 5.79 METHOD -0.01
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Selectional Preference via Conditional Probability

An alternative to using selectional association between a verb and the WordNet class
of its arguments is to use the conditional probability of an argument word given a
predicate verb, directly modeling the strength of association of one verb (predicate)
with one noun (argument).

The conditional probability model can be computed by parsing a very large cor-
pus (billions of words), and computing co-occurrence counts: how often a given
verb occurs with a given noun in a given relation. The conditional probability of an
argument noun given a verb for a particular relation P(n|v,r) can then be used as a
selectional preference metric for that pair of words (Brockmann and Lapata 2003,
Keller and Lapata 2003):

P(n|v,r) =
{

C(n,v,r)
C(v,r) if C(n,v,r)> 0

0 otherwise

The inverse probability P(v|n,r) was found to have better performance in some cases
(Brockmann and Lapata, 2003):

P(v|n,r) =
{

C(n,v,r)
C(n,r) if C(n,v,r)> 0

0 otherwise

An even simpler approach is to use the simple log co-occurrence frequency of
the predicate with the argument logcount(v,n,r) instead of conditional probability;
this seems to do better for extracting preferences for syntactic subjects rather than
objects (Brockmann and Lapata, 2003).

Evaluating Selectional Preferences

One way to evaluate models of selectional preferences is to use pseudowords (Galepseudowords

et al. 1992c, Schütze 1992a). A pseudoword is an artificial word created by concate-
nating a test word in some context (say banana) with a confounder word (say door)
to create banana-door). The task of the system is to identify which of the two words
is the original word. To evaluate a selectional preference model (for example on the
relationship between a verb and a direct object) we take a test corpus and select all
verb tokens. For each verb token (say drive) we select the direct object (e.g., car),
concatenated with a confounder word that is its nearest neighbor, the noun with the
frequency closest to the original (say house), to make car/house). We then use the
selectional preference model to choose which of car and house are more preferred
objects of drive, and compute how often the model chooses the correct original ob-
ject (e.g., car) (Chambers and Jurafsky, 2010).

Another evaluation metric is to get human preferences for a test set of verb-
argument pairs, and have them rate their degree of plausibility. This is usually done
by using magnitude estimation, a technique from psychophysics, in which subjects
rate the plausibility of an argument proportional to a modulus item. A selectional
preference model can then be evaluated by its correlation with the human prefer-
ences (Keller and Lapata, 2003).
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19.8 Primitive Decomposition of Predicates

One way of thinking about the semantic roles we have discussed through the chapter
is that they help us define the roles that arguments play in a decompositional way,
based on finite lists of thematic roles (agent, patient, instrument, proto-agent, proto-
patient, etc.). This idea of decomposing meaning into sets of primitive semantics
elements or features, called primitive decomposition or componential analysis,componential

analysis
has been taken even further, and focused particularly on predicates.

Consider these examples of the verb kill:

(19.41) Jim killed his philodendron.

(19.42) Jim did something to cause his philodendron to become not alive.

There is a truth-conditional (‘propositional semantics’) perspective from which these
two sentences have the same meaning. Assuming this equivalence, we could repre-
sent the meaning of kill as:

(19.43) KILL(x,y)⇔ CAUSE(x, BECOME(NOT(ALIVE(y))))

thus using semantic primitives like do, cause, become not, and alive.
Indeed, one such set of potential semantic primitives has been used to account for

some of the verbal alternations discussed in Section 19.2 (Lakoff 1965, Dowty 1979).
Consider the following examples.

(19.44) John opened the door. ⇒ CAUSE(John, BECOME(OPEN(door)))
(19.45) The door opened. ⇒ BECOME(OPEN(door))
(19.46) The door is open. ⇒ OPEN(door)

The decompositional approach asserts that a single state-like predicate associ-
ated with open underlies all of these examples. The differences among the meanings
of these examples arises from the combination of this single predicate with the prim-
itives CAUSE and BECOME.

While this approach to primitive decomposition can explain the similarity be-
tween states and actions or causative and non-causative predicates, it still relies on
having a large number of predicates like open. More radical approaches choose to
break down these predicates as well. One such approach to verbal predicate de-
composition that played a role in early natural language understanding systems is
conceptual dependency (CD), a set of ten primitive predicates, shown in Fig. 19.8.conceptual

dependency
Below is an example sentence along with its CD representation. The verb brought

is translated into the two primitives ATRANS and PTRANS to indicate that the waiter
both physically conveyed the check to Mary and passed control of it to her. Note
that CD also associates a fixed set of thematic roles with each primitive to represent
the various participants in the action.

(19.47) The waiter brought Mary the check.

∃x,y Atrans(x)∧Actor(x,Waiter)∧Ob ject(x,Check)∧To(x,Mary)
∧Ptrans(y)∧Actor(y,Waiter)∧Ob ject(y,Check)∧To(y,Mary)
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Primitive Definition
ATRANS The abstract transfer of possession or control from one entity to

another
PTRANS The physical transfer of an object from one location to another
MTRANS The transfer of mental concepts between entities or within an

entity
MBUILD The creation of new information within an entity
PROPEL The application of physical force to move an object
MOVE The integral movement of a body part by an animal
INGEST The taking in of a substance by an animal
EXPEL The expulsion of something from an animal
SPEAK The action of producing a sound
ATTEND The action of focusing a sense organ

Figure 19.8 A set of conceptual dependency primitives.

19.9 Summary

• Semantic roles are abstract models of the role an argument plays in the event
described by the predicate.

• Thematic roles are a model of semantic roles based on a single finite list of
roles. Other semantic role models include per-verb semantic role lists and
proto-agent/proto-patient, both of which are implemented in PropBank,
and per-frame role lists, implemented in FrameNet.

• Semantic role labeling is the task of assigning semantic role labels to the
constituents of a sentence. The task is generally treated as a supervised ma-
chine learning task, with models trained on PropBank or FrameNet. Algo-
rithms generally start by parsing a sentence and then automatically tag each
parse tree node with a semantic role. Neural models map straight from words
end-to-end.

• Semantic selectional restrictions allow words (particularly predicates) to post
constraints on the semantic properties of their argument words. Selectional
preference models (like selectional association or simple conditional proba-
bility) allow a weight or probability to be assigned to the association between
a predicate and an argument word or class.

Bibliographical and Historical Notes
Although the idea of semantic roles dates back to Pān. ini, they were re-introduced
into modern linguistics by Gruber (1965), Fillmore (1966) and Fillmore (1968). Fill-
more had become interested in argument structure by studying Lucien Tesnière’s
groundbreaking Éléments de Syntaxe Structurale (Tesnière, 1959) in which the term
‘dependency’ was introduced and the foundations were laid for dependency gram-
mar. Following Tesnière’s terminology, Fillmore first referred to argument roles as
actants (Fillmore, 1966) but quickly switched to the term case, (see Fillmore (2003))
and proposed a universal list of semantic roles or cases (Agent, Patient, Instrument,
etc.), that could be taken on by the arguments of predicates. Verbs would be listed in
the lexicon with their case frame, the list of obligatory (or optional) case arguments.
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The idea that semantic roles could provide an intermediate level of semantic
representation that could help map from syntactic parse structures to deeper, more
fully-specified representations of meaning was quickly adopted in natural language
processing, and systems for extracting case frames were created for machine trans-
lation (Wilks, 1973), question-answering (Hendrix et al., 1973), spoken-language
understanding (Nash-Webber, 1975), and dialogue systems (Bobrow et al., 1977).
General-purpose semantic role labelers were developed. The earliest ones (Sim-
mons, 1973) first parsed a sentence by means of an ATN (Augmented Transition
Network) parser. Each verb then had a set of rules specifying how the parse should
be mapped to semantic roles. These rules mainly made reference to grammatical
functions (subject, object, complement of specific prepositions) but also checked
constituent internal features such as the animacy of head nouns. Later systems as-
signed roles from pre-built parse trees, again by using dictionaries with verb-specific
case frames (Levin 1977, Marcus 1980).

By 1977 case representation was widely used and taught in AI and NLP courses,
and was described as a standard of natural language understanding in the first edition
of Winston’s (1977) textbook Artificial Intelligence.

In the 1980s Fillmore proposed his model of frame semantics, later describing
the intuition as follows:

“The idea behind frame semantics is that speakers are aware of possi-
bly quite complex situation types, packages of connected expectations,
that go by various names—frames, schemas, scenarios, scripts, cultural
narratives, memes—and the words in our language are understood with
such frames as their presupposed background.” (Fillmore, 2012, p. 712)

The word frame seemed to be in the air for a suite of related notions proposed at
about the same time by Minsky (1974), Hymes (1974), and Goffman (1974), as
well as related notions with other names like scripts (Schank and Abelson, 1975)
and schemata (Bobrow and Norman, 1975) (see Tannen (1979) for a comparison).
Fillmore was also influenced by the semantic field theorists and by a visit to the Yale
AI lab where he took notice of the lists of slots and fillers used by early information
extraction systems like DeJong (1982) and Schank and Abelson (1977). In the 1990s
Fillmore drew on these insights to begin the FrameNet corpus annotation project.

At the same time, Beth Levin drew on her early case frame dictionaries (Levin,
1977) to develop her book which summarized sets of verb classes defined by shared
argument realizations (Levin, 1993). The VerbNet project built on this work (Kipper
et al., 2000), leading soon afterwards to the PropBank semantic-role-labeled corpus
created by Martha Palmer and colleagues (Palmer et al., 2005).

The combination of rich linguistic annotation and corpus-based approach in-
stantiated in FrameNet and PropBank led to a revival of automatic approaches to
semantic role labeling, first on FrameNet (Gildea and Jurafsky, 2000) and then on
PropBank data (Gildea and Palmer, 2002, inter alia). The problem first addressed in
the 1970s by handwritten rules was thus now generally recast as one of supervised
machine learning enabled by large and consistent databases. Many popular features
used for role labeling are defined in Gildea and Jurafsky (2002), Surdeanu et al.
(2003), Xue and Palmer (2004), Pradhan et al. (2005), Che et al. (2009), and Zhao
et al. (2009). The use of dependency rather than constituency parses was introduced
in the CoNLL-2008 shared task (Surdeanu et al., 2008). For surveys see Palmer
et al. (2010) and Màrquez et al. (2008).

The use of neural approaches to semantic role labeling was pioneered by Col-
lobert et al. (2011), who applied a CRF on top of a convolutional net. Early work
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like Foland, Jr. and Martin (2015) focused on using dependency features. Later work
eschewed syntactic features altogether; Zhou and Xu (2015b) introduced the use of
a stacked (6-8 layer) biLSTM architecture, and (He et al., 2017) showed how to
augment the biLSTM architecture with highway networks and also replace the CRF
with A* decoding that make it possible to apply a wide variety of global constraints
in SRL decoding.

Most semantic role labeling schemes only work within a single sentence, fo-
cusing on the object of the verbal (or nominal, in the case of NomBank) predicate.
However, in many cases, a verbal or nominal predicate may have an implicit argu-
ment: one that appears only in a contextual sentence, or perhaps not at all and mustimplicit

argument
be inferred. In the two sentences This house has a new owner. The sale was finalized
10 days ago. the sale in the second sentence has no ARG1, but a reasonable reader
would infer that the Arg1 should be the house mentioned in the prior sentence. Find-
ing these arguments, implicit argument detection (sometimes shortened as iSRL)iSRL

was introduced by Gerber and Chai (2010) and Ruppenhofer et al. (2010). See Do
et al. (2017) for more recent neural models.

To avoid the need for huge labeled training sets, unsupervised approaches for
semantic role labeling attempt to induce the set of semantic roles by clustering over
arguments. The task was pioneered by Riloff and Schmelzenbach (1998) and Swier
and Stevenson (2004); see Grenager and Manning (2006), Titov and Klementiev
(2012), Lang and Lapata (2014), Woodsend and Lapata (2015), and Titov and Khod-
dam (2014).

Recent innovations in frame labeling include connotation frames, which mark
richer information about the argument of predicates. Connotation frames mark the
sentiment of the writer or reader toward the arguments (for example using the verb
survive in he survived a bombing expresses the writer’s sympathy toward the subject
he and negative sentiment toward the bombing. See Chapter 20 for more details.

Selectional preference has been widely studied beyond the selectional associa-
tion models of Resnik (1993) and Resnik (1996). Methods have included cluster-
ing (Rooth et al., 1999), discriminative learning (Bergsma et al., 2008a), and topic
models (Séaghdha 2010, Ritter et al. 2010), and constraints can be expressed at the
level of words or classes (Agirre and Martinez, 2001). Selectional preferences have
also been successfully integrated into semantic role labeling (Erk 2007, Zapirain
et al. 2013, Do et al. 2017).

Exercises



CHAPTER

20 Lexicons for Sentiment, Affect,
and Connotation

Some day we’ll be able to measure the power of words
Maya Angelou

In this chapter we turn to tools for interpreting affective meaning, extending ouraffective

study of sentiment analysis in Chapter 4. We use the word ‘affective’, following the
tradition in affective computing (Picard, 1995) to mean emotion, sentiment, per-
sonality, mood, and attitudes. Affective meaning is closely related to subjectivity,subjectivity

the study of a speaker or writer’s evaluations, opinions, emotions, and speculations
(Wiebe et al., 1999).

How should affective meaning be defined? One influential typology of affec-
tive states comes from Scherer (2000), who defines each class of affective states by
factors like its cognitive realization and time course (Fig. 20.1).

Emotion: Relatively brief episode of response to the evaluation of an external
or internal event as being of major significance.
(angry, sad, joyful, fearful, ashamed, proud, elated, desperate)

Mood: Diffuse affect state, most pronounced as change in subjective feeling, of
low intensity but relatively long duration, often without apparent cause.
(cheerful, gloomy, irritable, listless, depressed, buoyant)

Interpersonal stance: Affective stance taken toward another person in a spe-
cific interaction, coloring the interpersonal exchange in that situation.
(distant, cold, warm, supportive, contemptuous, friendly)

Attitude: Relatively enduring, affectively colored beliefs, preferences, and pre-
dispositions towards objects or persons.
(liking, loving, hating, valuing, desiring)

Personality traits: Emotionally laden, stable personality dispositions and be-
havior tendencies, typical for a person.
(nervous, anxious, reckless, morose, hostile, jealous)

Figure 20.1 The Scherer typology of affective states (Scherer, 2000).

We can design extractors for each of these kinds of affective states. Chapter 4
already introduced sentiment analysis, the task of extracting the positive or negative
orientation that a writer expresses in a text. This corresponds in Scherer’s typology
to the extraction of attitudes: figuring out what people like or dislike, from affect-
rich texts like consumer reviews of books or movies, newspaper editorials, or public
sentiment in blogs or tweets.

Detecting emotion and moods is useful for detecting whether a student is con-
fused, engaged, or certain when interacting with a tutorial system, whether a caller
to a help line is frustrated, whether someone’s blog posts or tweets indicated depres-
sion. Detecting emotions like fear in novels, for example, could help us trace what
groups or situations are feared and how that changes over time.
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Detecting different interpersonal stances can be useful when extracting infor-
mation from human-human conversations. The goal here is to detect stances like
friendliness or awkwardness in interviews or friendly conversations, for example for
summarizing meetings or finding parts of a conversation where people are especially
excited or engaged, conversational hot spots that can help in meeting summariza-
tion. Detecting the personality of a user—such as whether the user is an extrovert
or the extent to which they are open to experience— can help improve conversa-
tional agents, which seem to work better if they match users’ personality expecta-
tions (Mairesse and Walker, 2008). And affect is important for generation as well
as recognition; synthesizing affect is important for conversational agents in various
domains, including literacy tutors such as children’s storybooks, or computer games.

In Chapter 4 we introduced the use of naive Bayes classification to classify a
document’s sentiment. Various classifiers have been successfully applied to many of
these tasks, using all the words in the training set as input to a classifier which then
determines the affect status of the text.

In this chapter we focus on an alternative model, in which instead of using every
word as a feature, we focus only on certain words, ones that carry particularly strong
cues to affect or sentiment. We call these lists of words affective lexicons or senti-
ment lexicons. These lexicons presuppose a fact about semantics: that words have
affective meanings or connotations. The word connotation has different meaningsconnotations

in different fields, but here we use it to mean the aspects of a word’s meaning that
are related to a writer or reader’s emotions, sentiment, opinions, or evaluations. In
addition to their ability to help determine the affective status of a text, connotation
lexicons can be useful features for other kinds of affective tasks, and for computa-
tional social science analysis.

In the next sections we introduce basic theories of emotion, show how sentiment
lexicons are a special case of emotion lexicons, and mention some useful lexicons.
We then survey three ways for building lexicons: human labeling, semi-supervised,
and supervised. Finally, we turn to other kinds of affective meaning like personality,
stance, and entity-centric affect, and introduce connotation frames.

20.1 Defining Emotion

One of the most important affective classes is emotion, which Scherer (2000) definesemotion

as a “relatively brief episode of response to the evaluation of an external or internal
event as being of major significance”.

Detecting emotion has the potential to improve a number of language processing
tasks. Automatically detecting emotions in reviews or customer responses (anger,
dissatisfaction, trust) could help businesses recognize specific problem areas or ones
that are going well. Emotion recognition could help dialog systems like tutoring
systems detect that a student was unhappy, bored, hesitant, confident, and so on.
Emotion can play a role in medical informatics tasks like detecting depression or
suicidal intent. Detecting emotions expressed toward characters in novels might
play a role in understanding how different social groups were viewed by society at
different times.

There are two widely-held families of theories of emotion; we’ll introduce lexi-
cons for both kinds of theories. In one family, emotions are viewed as fixed atomic
units, limited in number, and from which others are generated, often called basic
emotions (Tomkins 1962, Plutchik 1962). Perhaps most well-known of this familybasic emotions
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of theories are the 6 emotions proposed by Ekman (see for example Ekman 1999) as
a set of emotions that is likely to be universally present in all cultures: surprise,
happiness, anger, fear, disgust, sadness. Another atomic theory is the Plutchik
(1980) wheel of emotion, consisting of 8 basic emotions in four opposing pairs:
joy–sadness, anger–fear, trust–disgust, and anticipation–surprise, together with the
emotions derived from them, shown in Fig. 20.2.

Figure 20.2 Plutchik wheel of emotion.

The second class of emotion theories views emotion as a space in 2 or 3 di-
mensions (Russell, 1980). Most models include the two dimensions valence and
arousal, and many add a third, dominance. These can be defined as:

valence: the pleasantness of the stimulus
arousal: the intensity of emotion provoked by the stimulus
dominance: the degree of control exerted by the stimulus

Sentiment can be viewed as a special case of this second view of emotions as points
in space. In particular, the valence dimension, measuring how pleasant or unpleasant
a word is, is often used directly as a measure of sentiment.

20.2 Available Sentiment and Affect Lexicons

A wide variety of affect lexicons have been created and released. The most basic
lexicons label words along one dimension of semantic variability, generally called
“sentiment” or “valence”.

In the simplest lexicons this dimension is represented in a binary fashion, with
a wordlist for positive words and a wordlist for negative words. The oldest is the
General Inquirer (Stone et al., 1966), which drew on content analysis and on earlyGeneral

Inquirer
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work in the cognitive psychology of word meaning (Osgood et al., 1957). The Gen-
eral Inquirer has a lexicon of 1915 positive words and a lexicon of 2291 negative
words (as well as other lexicons discussed below). The MPQA Subjectivity lexicon
(Wilson et al., 2005) has 2718 positive and 4912 negative words drawn from prior
lexicons plus a bootstrapped list of subjective words and phrases (Riloff and Wiebe,
2003). Each entry in the lexicon is hand-labeled for sentiment and also labeled for
reliability (strongly subjective or weakly subjective). The polarity lexicon of Hu
and Liu (2004b) gives 2006 positive and 4783 negative words, drawn from product
reviews, labeled using a bootstrapping method from WordNet.

Positive admire, amazing, assure, celebration, charm, eager, enthusiastic, excellent, fancy, fan-
tastic, frolic, graceful, happy, joy, luck, majesty, mercy, nice, patience, perfect, proud,
rejoice, relief, respect, satisfactorily, sensational, super, terrific, thank, vivid, wise, won-
derful, zest

Negative abominable, anger, anxious, bad, catastrophe, cheap, complaint, condescending, deceit,
defective, disappointment, embarrass, fake, fear, filthy, fool, guilt, hate, idiot, inflict, lazy,
miserable, mourn, nervous, objection, pest, plot, reject, scream, silly, terrible, unfriendly,
vile, wicked

Figure 20.3 Some words with consistent sentiment across the General Inquirer (Stone et al., 1966), the
MPQA Subjectivity lexicon (Wilson et al., 2005), and the polarity lexicon of Hu and Liu (2004b).

Slightly more general than these sentiment lexicons are lexicons that assign each
word a value on all three affective dimensions. The NRC Valence, Arousal, and
Dominance (VAD) lexicon (Mohammad, 2018a) assigns valence, arousal, and dom-
inance scores to 20,000 words. Some examples are shown in Fig. 20.4.

Valence Arousal Dominance
vacation .840 enraged .962 powerful .991
delightful .918 party .840 authority .935
whistle .653 organized .337 saxophone .482
consolation .408 effortless .120 discouraged .0090
torture .115 napping .046 weak .045
Figure 20.4 Values of sample words on the emotional dimensions of Mohammad (2018a).

The NRC Word-Emotion Association Lexicon, also called EmoLex (Moham-EmoLex

mad and Turney, 2013), uses the Plutchik (1980) 8 basic emotions defined above.
The lexicon includes around 14,000 words including words from prior lexicons as
well as frequent nouns, verbs, adverbs and adjectives. Values from the lexicon for
some sample words:
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reward 0 1 0 0 1 0 1 1 1 0
worry 0 1 0 1 0 1 0 0 0 1
tenderness 0 0 0 0 1 0 0 0 1 0
sweetheart 0 1 0 0 1 1 0 1 1 0
suddenly 0 0 0 0 0 0 1 0 0 0
thirst 0 1 0 0 0 1 1 0 0 0
garbage 0 0 1 0 0 0 0 0 0 1
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For a smaller set of 5,814 words, the NRC Emotion/Affect Intensity Lexicon
(Mohammad, 2018b) contains real-valued scores of association for anger, fear, joy,
and sadness; Fig. 20.5 shows examples.

Anger Fear Joy Sadness
outraged 0.964 horror 0.923 superb 0.864 sad 0.844
violence 0.742 anguish 0.703 cheered 0.773 guilt 0.750
coup 0.578 pestilence 0.625 rainbow 0.531 unkind 0.547
oust 0.484 stressed 0.531 gesture 0.387 difficulties 0.421
suspicious 0.484 failing 0.531 warms 0.391 beggar 0.422
nurture 0.059 confident 0.094 hardship .031 sing 0.017
Figure 20.5 Sample emotional intensities for words for anger, fear, joy, and sadness from
Mohammad (2018b).

LIWC, Linguistic Inquiry and Word Count, is a widely used set of 73 lex-LIWC

icons containing over 2300 words (Pennebaker et al., 2007), designed to capture
aspects of lexical meaning relevant for social psychological tasks. In addition to
sentiment-related lexicons like ones for negative emotion (bad, weird, hate, prob-
lem, tough) and positive emotion (love, nice, sweet), LIWC includes lexicons for
categories like anger, sadness, cognitive mechanisms, perception, tentative, and in-
hibition, shown in Fig. 20.6.

Positive Negative
Emotion Emotion Insight Inhibition Family Negate
appreciat* anger* aware* avoid* brother* aren’t
comfort* bore* believe careful* cousin* cannot
great cry decid* hesitat* daughter* didn’t
happy despair* feel limit* family neither
interest fail* figur* oppos* father* never
joy* fear know prevent* grandf* no
perfect* griev* knew reluctan* grandm* nobod*
please* hate* means safe* husband none
safe* panic* notice* stop mom nor
terrific suffers recogni* stubborn* mother nothing
value terrify sense wait niece* nowhere
wow* violent* think wary wife without
Figure 20.6 Samples from 5 of the 73 lexical categories in LIWC (Pennebaker et al., 2007).
The * means the previous letters are a word prefix and all words with that prefix are included
in the category.

There are various other hand-built affective lexicons. The General Inquirer in-
cludes additional lexicons for dimensions like strong vs. weak, active vs. passive,
overstated vs. understated, as well as lexicons for categories like pleasure, pain,
virtue, vice, motivation, and cognitive orientation.

Another useful feature for various tasks is the distinction between concreteconcrete

words like banana or bathrobe and abstract words like belief and although. Theabstract

lexicon in Brysbaert et al. (2014) used crowdsourcing to assign a rating from 1 to 5
of the concreteness of 40,000 words, thus assigning banana, bathrobe, and bagel 5,
belief 1.19, although 1.07, and in between words like brisk a 2.5.
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20.3 Creating Affect Lexicons by Human Labeling

The earliest method used to build affect lexicons, and still in common use, is to have
humans label each word. This is now most commonly done via crowdsourcing:crowdsourcing

breaking the task into small pieces and distributing them to a large number of anno-
tators. Let’s take a look at some of the methodological choices for two crowdsourced
emotion lexicons.

The NRC Emotion Lexicon (EmoLex) (Mohammad and Turney, 2013), labeled
emotions in two steps. To ensure that the annotators were judging the correct sense
of the word, they first answered a multiple-choice synonym question that primed
the correct sense of the word (without requiring the annotator to read a potentially
confusing sense definition). These were created automatically using the headwords
associated with the thesaurus category of the sense in question in the Macquarie
dictionary and the headwords of 3 random distractor categories. An example:

Which word is closest in meaning (most related) to startle?

• automobile
• shake
• honesty
• entertain

For each word (e.g. startle), the annotator was then asked to rate how associated
that word is with each of the 8 emotions (joy, fear, anger, etc.). The associations
were rated on a scale of not, weakly, moderately, and strongly associated. Outlier
ratings were removed, and then each term was assigned the class chosen by the ma-
jority of the annotators, with ties broken by choosing the stronger intensity, and then
the 4 levels were mapped into a binary label for each word (no and weak mapped to
0, moderate and strong mapped to 1).

The NRC VAD Lexicon (Mohammad, 2018a) was built by selecting words and
emoticons from prior lexicons and annotating them with crowd-sourcing using best-
worst scaling (Louviere et al. 2015, Kiritchenko and Mohammad 2017). In best-best-worst

scaling
worst scaling, annotators are given N items (usually 4) and are asked which item is
the best (highest) and which is the worst (lowest) in terms of some property. The
set of words used to describe the ends of the scales are taken from prior literature.
For valence, for example, the raters were asked:

Q1. Which of the four words below is associated with the MOST happi-
ness / pleasure / positiveness / satisfaction / contentedness / hopefulness
OR LEAST unhappiness / annoyance / negativeness / dissatisfaction /
melancholy / despair? (Four words listed as options.)
Q2. Which of the four words below is associated with the LEAST hap-
piness / pleasure / positiveness / satisfaction / contentedness / hopeful-
ness OR MOST unhappiness / annoyance / negativeness / dissatisfaction
/ melancholy / despair? (Four words listed as options.)

The score for each word in the lexicon is the proportion of times the item was chosen
as the best (highest V/A/D) minus the proportion of times the item was chosen as the
worst (lowest V/A/D). The agreement between annotations are evaluated by split-
half reliability: split the corpus in half and compute the correlations between thesplit-half

reliability
annotations in the two halves.
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20.4 Semi-supervised Induction of Affect Lexicons

Another common way to learn sentiment lexicons is to start from a set of seed words
that define two poles of a semantic axis (words like good or bad), and then find ways
to label each word w by its similarity to the two seed sets. Here we summarize two
families of seed-based semi-supervised lexicon induction algorithms, axis-based and
graph-based.

20.4.1 Semantic Axis Methods

One of the most well-known lexicon induction methods, the Turney and Littman
(2003) algorithm, is given seed words like good or bad, and then for each word w to
be labeled, measures both how similar it is to good and how different it is from bad.
Here we describe a slight extension of the algorithm due to An et al. (2018), which
is based on computing a semantic axis.

In the first step, we choose seed words by hand. There are two methods for
dealing with the fact that the affect of a word is different in different contexts: (1)
start with a single large seed lexicon and rely on the induction algorithm to fine-tune
it to the domain, or (2) choose different seed words for different genres. Hellrich
et al. (2019) suggests that for modeling affect across different historical time periods,
starting with a large modern affect dictionary is better than small seedsets tuned to be
stable across time. As an example of the second approach, Hamilton et al. (2016a)
define one set of seed words for general sentiment analysis, a different set for Twitter,
and yet another set for sentiment in financial text:

Domain Positive seeds Negative seeds

General good, lovely, excellent, fortunate, pleas-
ant, delightful, perfect, loved, love,
happy

bad, horrible, poor, unfortunate, un-
pleasant, disgusting, evil, hated, hate,
unhappy

Twitter love, loved, loves, awesome, nice,
amazing, best, fantastic, correct, happy

hate, hated, hates, terrible, nasty, awful,
worst, horrible, wrong, sad

Finance successful, excellent, profit, beneficial,
improving, improved, success, gains,
positive

negligent, loss, volatile, wrong, losses,
damages, bad, litigation, failure, down,
negative

In the second step, we compute embeddings for each of the pole words. These
embeddings can be off-the-shelf word2vec embeddings, or can be computed directly
on a specific corpus (for example using a financial corpus if a finance lexicon is the
goal), or we can fine-tune off-the-shelf embeddings to a corpus. Fine-tuning is espe-
cially important if we have a very specific genre of text but don’t have enough data
to train good embeddings. In fine-tuning, we begin with off-the-shelf embeddings
like word2vec, and continue training them on the small target corpus.

Once we have embeddings for each pole word, we create an embedding that
represents each pole by taking the centroid of the embeddings of each of the seed
words; recall that the centroid is the multidimensional version of the mean. Given
a set of embeddings for the positive seed words S+ = {E(w+

1 ),E(w
+
2 ), ...,E(w

+
n )},

and embeddings for the negative seed words S− = {E(w−1 ),E(w−2 ), ...,E(w−m)}, the
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pole centroids are:

V+ =
1
n

n∑

1

E(w+
i )

V− =
1
m

m∑

1

E(w−i ) (20.1)

The semantic axis defined by the poles is computed just by subtracting the two vec-
tors:

Vaxis = V+−V− (20.2)

Vaxis, the semantic axis, is a vector in the direction of positive sentiment. Finally,
we compute (via cosine similarity) the angle between the vector in the direction of
positive sentiment and the direction of w’s embedding. A higher cosine means that
w is more aligned with S+ than S−.

score(w) =
(
cos(E(w),Vaxis

)

=
E(w) ·Vaxis
‖E(w)‖‖Vaxis‖

(20.3)

If a dictionary of words with sentiment scores is sufficient, we’re done! Or if we
need to group words into a positive and a negative lexicon, we can use a threshold
or other method to give us discrete lexicons.

20.4.2 Label Propagation
An alternative family of methods defines lexicons by propagating sentiment labels
on graphs, an idea suggested in early work by Hatzivassiloglou and McKeown
(1997). We’ll describe the simple SentProp (Sentiment Propagation) algorithm of
Hamilton et al. (2016a), which has four steps:

1. Define a graph: Given word embeddings, build a weighted lexical graph by
connecting each word with its k nearest neighbors (according to cosine simi-
larity). The weights of the edge between words wi and w j are set as:

Ei, j = arccos
(
− wi

>wj

‖wi‖‖wj‖

)
. (20.4)

2. Define a seed set: Choose positive and negative seed words.
3. Propagate polarities from the seed set: Now we perform a random walk on

this graph, starting at the seed set. In a random walk, we start at a node and
then choose a node to move to with probability proportional to the edge prob-
ability. A word’s polarity score for a seed set is proportional to the probability
of a random walk from the seed set landing on that word (Fig. 20.7).

4. Create word scores: We walk from both positive and negative seed sets,
resulting in positive (rawscore+(wi)) and negative (rawscore−(wi)) raw label
scores. We then combine these values into a positive-polarity score as:

score+(wi) =
rawscore+(wi)

rawscore+(wi)+ rawscore−(wi)
(20.5)

It’s often helpful to standardize the scores to have zero mean and unit variance
within a corpus.
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5. Assign confidence to each score: Because sentiment scores are influenced by
the seed set, we’d like to know how much the score of a word would change if
a different seed set is used. We can use bootstrap sampling to get confidence
regions, by computing the propagation B times over random subsets of the
positive and negative seed sets (for example using B = 50 and choosing 7 of
the 10 seed words each time). The standard deviation of the bootstrap sampled
polarity scores gives a confidence measure.
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Figure 20.7 Intuition of the SENTPROP algorithm. (a) Run random walks from the seed words. (b) Assign
polarity scores (shown here as colors green or red) based on the frequency of random walk visits.

20.4.3 Other Methods
The core of semisupervised algorithms is the metric for measuring similarity with
the seed words. The Turney and Littman (2003) and Hamilton et al. (2016a) ap-
proaches above used embedding cosine as the distance metric: words were labeled
as positive basically if their embeddings had high cosines with positive seeds and
low cosines with negative seeds. Other methods have chosen other kinds of distance
metrics besides embedding cosine.

For example the Hatzivassiloglou and McKeown (1997) algorithm uses syntactic
cues; two adjectives are considered similar if they were frequently conjoined by and
and rarely conjoined by but. This is based on the intuition that adjectives conjoined
by the words and tend to have the same polarity; positive adjectives are generally
coordinated with positive, negative with negative:

fair and legitimate, corrupt and brutal

but less often positive adjectives coordinated with negative:

*fair and brutal, *corrupt and legitimate

By contrast, adjectives conjoined by but are likely to be of opposite polarity:

fair but brutal

Another cue to opposite polarity comes from morphological negation (un-, im-,
-less). Adjectives with the same root but differing in a morphological negative (ad-
equate/inadequate, thoughtful/thoughtless) tend to be of opposite polarity.

Yet another method for finding words that have a similar polarity to seed words is
to make use of a thesaurus like WordNet (Kim and Hovy 2004, Hu and Liu 2004b).
A word’s synonyms presumably share its polarity while a word’s antonyms probably
have the opposite polarity. After a seed lexicon is built, each lexicon is updated as
follows, possibly iterated.

Lex+: Add synonyms of positive words (well) and antonyms (like fine) of negative
words
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Lex−: Add synonyms of negative words (awful) and antonyms (like evil) of positive
words

An extension of this algorithm assigns polarity to WordNet senses, called Senti-
WordNet (Baccianella et al., 2010). Fig. 20.8 shows some examples.SentiWordNet

Synset Pos Neg Obj
good#6 ‘agreeable or pleasing’ 1 0 0
respectable#2 honorable#4 good#4 estimable#2 ‘deserving of esteem’ 0.75 0 0.25
estimable#3 computable#1 ‘may be computed or estimated’ 0 0 1
sting#1 burn#4 bite#2 ‘cause a sharp or stinging pain’ 0 0.875 .125
acute#6 ‘of critical importance and consequence’ 0.625 0.125 .250
acute#4 ‘of an angle; less than 90 degrees’ 0 0 1
acute#1 ‘having or experiencing a rapid onset and short but severe course’ 0 0.5 0.5
Figure 20.8 Examples from SentiWordNet 3.0 (Baccianella et al., 2010). Note the differences between senses
of homonymous words: estimable#3 is purely objective, while estimable#2 is positive; acute can be positive
(acute#6), negative (acute#1), or neutral (acute #4).

In this algorithm, polarity is assigned to entire synsets rather than words. A
positive lexicon is built from all the synsets associated with 7 positive words, and a
negative lexicon from synsets associated with 7 negative words. A classifier is then
trained from this data to take a WordNet gloss and decide if the sense being defined
is positive, negative or neutral. A further step (involving a random-walk algorithm)
assigns a score to each WordNet synset for its degree of positivity, negativity, and
neutrality.

In summary, semisupervised algorithms use a human-defined set of seed words
for the two poles of a dimension, and use similarity metrics like embedding cosine,
coordination, morphology, or thesaurus structure to score words by how similar they
are to the positive seeds and how dissimilar to the negative seeds.

20.5 Supervised Learning of Word Sentiment

Semi-supervised methods require only minimal human supervision (in the form of
seed sets). But sometimes a supervision signal exists in the world and can be made
use of. One such signal is the scores associated with online reviews.

The web contains an enormous number of online reviews for restaurants, movies,
books, or other products, each of which have the text of the review along with an
associated review score: a value that may range from 1 star to 5 stars, or scoring 1
to 10. Fig. 20.9 shows samples extracted from restaurant, book, and movie reviews.

We can use this review score as supervision: positive words are more likely to
appear in 5-star reviews; negative words in 1-star reviews. And instead of just a
binary polarity, this kind of supervision allows us to assign a word a more complex
representation of its polarity: its distribution over stars (or other scores).

Thus in a ten-star system we could represent the sentiment of each word as a
10-tuple, each number a score representing the word’s association with that polarity
level. This association can be a raw count, or a likelihood P(w|c), or some other
function of the count, for each class c from 1 to 10.

For example, we could compute the IMDb likelihood of a word like disap-
point(ed/ing) occurring in a 1 star review by dividing the number of times disap-
point(ed/ing) occurs in 1-star reviews in the IMDb dataset (8,557) by the total num-
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Movie review excerpts (IMDb)
10 A great movie. This film is just a wonderful experience. It’s surreal, zany, witty and slapstick

all at the same time. And terrific performances too.
1 This was probably the worst movie I have ever seen. The story went nowhere even though they

could have done some interesting stuff with it.
Restaurant review excerpts (Yelp)

5 The service was impeccable. The food was cooked and seasoned perfectly... The watermelon
was perfectly square ... The grilled octopus was ... mouthwatering...

2 ...it took a while to get our waters, we got our entree before our starter, and we never received
silverware or napkins until we requested them...

Book review excerpts (GoodReads)
1 I am going to try and stop being deceived by eye-catching titles. I so wanted to like this book

and was so disappointed by it.
5 This book is hilarious. I would recommend it to anyone looking for a satirical read with a

romantic twist and a narrator that keeps butting in
Product review excerpts (Amazon)

5 The lid on this blender though is probably what I like the best about it... enables you to pour
into something without even taking the lid off! ... the perfect pitcher! ... works fantastic.

1 I hate this blender... It is nearly impossible to get frozen fruit and ice to turn into a smoothie...
You have to add a TON of liquid. I also wish it had a spout ...

Figure 20.9 Excerpts from some reviews from various review websites, all on a scale of 1 to 5 stars except
IMDb, which is on a scale of 1 to 10 stars.

ber of words occurring in 1-star reviews (25,395,214), so the IMDb estimate of
P(disappointing|1) is .0003.

A slight modification of this weighting, the normalized likelihood, can be used
as an illuminating visualization (Potts, 2011)1:

P(w|c) =
count(w,c)∑

w∈C count(w,c)

PottsScore(w) =
P(w|c)∑
c P(w|c) (20.6)

Dividing the IMDb estimate P(disappointing|1) of .0003 by the sum of the likeli-
hood P(w|c) over all categories gives a Potts score of 0.10. The word disappointing
thus is associated with the vector [.10, .12, .14, .14, .13, .11, .08, .06, .06, .05]. The
Potts diagram (Potts, 2011) is a visualization of these word scores, representing thePotts diagram

prior sentiment of a word as a distribution over the rating categories.
Fig. 20.10 shows the Potts diagrams for 3 positive and 3 negative scalar adjec-

tives. Note that the curve for strongly positive scalars have the shape of the letter
J, while strongly negative scalars look like a reverse J. By contrast, weakly posi-
tive and negative scalars have a hump-shape, with the maximum either below the
mean (weakly negative words like disappointing) or above the mean (weakly pos-
itive words like good). These shapes offer an illuminating typology of affective
meaning.

Fig. 20.11 shows the Potts diagrams for emphasizing and attenuating adverbs.
Note that emphatics tend to have a J-shape (most likely to occur in the most posi-
tive reviews) or a U-shape (most likely to occur in the strongly positive and nega-
tive). Attenuators all have the hump-shape, emphasizing the middle of the scale and

1 Potts shows that the normalized likelihood is an estimate of the posterior P(c|w) if we make the
incorrect but simplifying assumption that all categories c have equal probability.
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Overview Data Methods Categorization Scale induction Looking ahead

Example: attenuators
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OpenTable – 3,890 tokens
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.2
5

0.
00
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0.38

Cat = 0.11 (p = 0.707)
Cat^2 = -6.2 (p = 0.014)

Goodreads – 3,424 tokens
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Cat^2 = -5.04 (p = 0.016)

Amazon/Tripadvisor – 2,060 tokens
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Goodreads – 1,806 tokens
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Amazon/Tripadvisor – 2,158 tokens
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Cat = 0.54 (p = 0.183)
Cat^2 = -3.32 (p = 0.045)

fairly/r

IMDB – 176,264 tokens
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OpenTable – 8,982 tokens
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0.14
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Cat = -0.64 (p = 0.035)
Cat^2 = -4.47 (p = 0.007)

Goodreads – 11,895 tokens
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Cat = -0.71 (p = 0.072)
Cat^2 = -4.59 (p = 0.018)

Amazon/Tripadvisor – 5,980 tokens
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-0
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0

-0
.2
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0.
00
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25

0.
50

0.15

0.28

Cat = 0.26 (p = 0.496)
Cat^2 = -2.23 (p = 0.131)

pretty/r

“Potts&diagrams” Potts,&Christopher.& 2011.&NSF&workshop&on&
restructuring&adjectives.

good
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excellent

disappointing

bad

terrible

totally

absolutely

utterly

somewhat

fairly

pretty

Positive scalars Negative scalars Emphatics Attenuators

1  2  3  4  5  6  7  8  9  10
rating
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1  2  3  4  5  6  7  8  9  10
rating

Figure 20.10 Potts diagrams (Potts, 2011) for positive and negative scalar adjectives, show-
ing the J-shape and reverse J-shape for strongly positive and negative adjectives, and the
hump-shape for more weakly polarized adjectives.

downplaying both extremes. The diagrams can be used both as a typology of lexical
sentiment, and also play a role in modeling sentiment compositionality.
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Figure 20.11 Potts diagrams (Potts, 2011) for emphatic and attenuating adverbs.

In addition to functions like posterior P(c|w), likelihood P(w|c), or normalized
likelihood (Eq. 20.6) many other functions of the count of a word occurring with a
sentiment label have been used. We’ll introduce some of these on page 409, includ-
ing ideas like normalizing the counts per writer in Eq. 20.14.
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20.5.1 Log Odds Ratio Informative Dirichlet Prior
One thing we often want to do with word polarity is to distinguish between words
that are more likely to be used in one category of texts than in another. We may, for
example, want to know the words most associated with 1 star reviews versus those
associated with 5 star reviews. These differences may not be just related to senti-
ment. We might want to find words used more often by Democratic than Republican
members of Congress, or words used more often in menus of expensive restaurants
than cheap restaurants.

Given two classes of documents, to find words more associated with one cate-
gory than another, we could measure the difference in frequencies (is a word w more
frequent in class A or class B?). Or instead of the difference in frequencies we could
compute the ratio of frequencies, or compute the log odds ratio (the log of the ratio
between the odds of the two words). We could then sort words by whichever associ-
ation measure we pick, ranging from words overrepresented in category A to words
overrepresented in category B.

The problem with simple log-likelihood or log odds methods is that they don’t
work well for very rare words or very frequent words; for words that are very fre-
quent, all differences seem large, and for words that are very rare, no differences
seem large.

In this section we walk through the details of one solution to this problem: the
“log odds ratio informative Dirichlet prior” method of Monroe et al. (2008) that is a
particularly useful method for finding words that are statistically overrepresented in
one particular category of texts compared to another. It’s based on the idea of using
another large corpus to get a prior estimate of what we expect the frequency of each
word to be.

Let’s start with the goal: assume we want to know whether the word horrible
occurs more in corpus i or corpus j. We could compute the log likelihood ratio,log likelihood

ratio
using f i(w) to mean the frequency of word w in corpus i, and ni to mean the total
number of words in corpus i:

llr(horrible) = log
Pi(horrible)
P j(horrible)

= logPi(horrible)− logP j(horrible)

= log
fi(horrible)

ni − log
f j(horrible)

n j (20.7)

Instead, let’s compute the log odds ratio: does horrible have higher odds in i or inlog odds ratio

j:

lor(horrible) = log
(

Pi(horrible)
1−Pi(horrible)

)
− log

(
P j(horrible)

1−P j(horrible)

)

= log




fi(horrible)
ni

1− fi(horrible)
ni


− log




f j(horrible)
n j

1− f j(horrible)
n j




= log
(

fi(horrible)
ni− fi(horrible)

)
− log

(
f j(horrible)

n j− f j(horrible)

)
(20.8)

The Dirichlet intuition is to use a large background corpus to get a prior estimate of
what we expect the frequency of each word w to be. We’ll do this very simply by
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adding the counts from that corpus to the numerator and denominator, so that we’re
essentially shrinking the counts toward that prior. It’s like asking how large are the
differences between i and j given what we would expect given their frequencies in
a well-estimated large background corpus.

The method estimates the difference between the frequency of word w in two
corpora i and j via the prior-modified log odds ratio for w, δ

(i− j)
w , which is estimated

as:

δ
(i− j)
w = log

(
f i
w +αw

ni +α0− ( f i
w +αw)

)
− log

(
f j
w +αw

n j +α0− ( f j
w +αw)

)
(20.9)

(where ni is the size of corpus i, n j is the size of corpus j, f i
w is the count of word w

in corpus i, f j
w is the count of word w in corpus j, α0 is the size of the background

corpus, and αw is the count of word w in the background corpus.)
In addition, Monroe et al. (2008) make use of an estimate for the variance of the

log–odds–ratio:

σ
2
(

δ̂
(i− j)
w

)
≈ 1

f i
w +αw

+
1

f j
w +αw

(20.10)

The final statistic for a word is then the z–score of its log–odds–ratio:

δ̂
(i− j)
w√

σ2
(

δ̂
(i− j)
w

) (20.11)

The Monroe et al. (2008) method thus modifies the commonly used log odds ratio
in two ways: it uses the z-scores of the log odds ratio, which controls for the amount
of variance in a word’s frequency, and it uses counts from a background corpus to
provide a prior count for words.

Fig. 20.12 shows the method applied to a dataset of restaurant reviews from
Yelp, comparing the words used in 1-star reviews to the words used in 5-star reviews
(Jurafsky et al., 2014). The largest difference is in obvious sentiment words, with the
1-star reviews using negative sentiment words like worse, bad, awful and the 5-star
reviews using positive sentiment words like great, best, amazing. But there are other
illuminating differences. 1-star reviews use logical negation (no, not), while 5-star
reviews use emphatics and emphasize universality (very, highly, every, always). 1-
star reviews use first person plurals (we, us, our) while 5 star reviews use the second
person. 1-star reviews talk about people (manager, waiter, customer) while 5-star
reviews talk about dessert and properties of expensive restaurants like courses and
atmosphere. See Jurafsky et al. (2014) for more details.

20.6 Using Lexicons for Sentiment Recognition

In Chapter 4 we introduced the naive Bayes algorithm for sentiment analysis. The
lexicons we have focused on throughout the chapter so far can be used in a number
of ways to improve sentiment detection.

In the simplest case, lexicons can be used when we don’t have sufficient training
data to build a supervised sentiment analyzer; it can often be expensive to have a
human assign sentiment to each document to train the supervised classifier.
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Class Words in 1-star reviews Class Words in 5-star reviews
Negative worst, rude, terrible, horrible, bad,

awful, disgusting, bland, tasteless,
gross, mediocre, overpriced, worse,
poor

Positive great, best, love(d), delicious, amazing,
favorite, perfect, excellent, awesome,
friendly, fantastic, fresh, wonderful, in-
credible, sweet, yum(my)

Negation no, not Emphatics/
universals

very, highly, perfectly, definitely, abso-
lutely, everything, every, always

1Pl pro we, us, our 2 pro you
3 pro she, he, her, him Articles a, the
Past verb was, were, asked, told, said, did,

charged, waited, left, took
Advice try, recommend

Sequencers after, then Conjunct also, as, well, with, and
Nouns manager, waitress, waiter, customer,

customers, attitude, waste, poisoning,
money, bill, minutes

Nouns atmosphere, dessert, chocolate, wine,
course, menu

Irrealis
modals

would, should Auxiliaries is/’s, can, ’ve, are

Comp to, that Prep, other in, of, die, city, mouth
Figure 20.12 The top 50 words associated with one–star and five-star restaurant reviews in a Yelp dataset of
900,000 reviews, using the Monroe et al. (2008) method (Jurafsky et al., 2014).

In such situations, lexicons can be used in a rule-based algorithm for classifica-
tion. The simplest version is just to use the ratio of positive to negative words: if a
document has more positive than negative words (using the lexicon to decide the po-
larity of each word in the document), it is classified as positive. Often a threshold λ

is used, in which a document is classified as positive only if the ratio is greater than
λ . If the sentiment lexicon includes positive and negative weights for each word,
θ+

w and θ−w , these can be used as well. Here’s a simple such sentiment algorithm:

f+ =
∑

w s.t. w∈positivelexicon

θ
+
w count(w)

f− =
∑

w s.t. w∈negativelexicon

θ
−
w count(w)

sentiment =





+ if f+

f− > λ

− if f−
f+ > λ

0 otherwise.

(20.12)

If supervised training data is available, these counts computed from sentiment lex-
icons, sometimes weighted or normalized in various ways, can also be used as fea-
tures in a classifier along with other lexical or non-lexical features. We return to
such algorithms in Section 20.8.

20.7 Other tasks: Personality

Many other kinds of affective meaning can be extracted from text and speech. For
example detecting a person’s personality from their language can be useful for di-personality

alog systems (users tend to prefer agents that match their personality), and can play
a useful role in computational social science questions like understanding how per-
sonality is related to other kinds of behavior.
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Many theories of human personality are based around a small number of dimen-
sions, such as various versions of the “Big Five” dimensions (Digman, 1990):

Extroversion vs. Introversion: sociable, assertive, playful vs. aloof, reserved,
shy

Emotional stability vs. Neuroticism: calm, unemotional vs. insecure, anxious
Agreeableness vs. Disagreeableness: friendly, cooperative vs. antagonistic, fault-

finding
Conscientiousness vs. Unconscientiousness: self-disciplined, organized vs. in-

efficient, careless
Openness to experience: intellectual, insightful vs. shallow, unimaginative

A few corpora of text and speech have been labeled for the personality of their
author by having the authors take a standard personality test. The essay corpus of
Pennebaker and King (1999) consists of 2,479 essays (1.9 million words) from psy-
chology students who were asked to “write whatever comes into your mind” for 20
minutes. The EAR (Electronically Activated Recorder) corpus of Mehl et al. (2006)
was created by having volunteers wear a recorder throughout the day, which ran-
domly recorded short snippets of conversation throughout the day, which were then
transcribed. The Facebook corpus of (Schwartz et al., 2013) includes 309 million
words of Facebook posts from 75,000 volunteers.

For example, here are samples from Pennebaker and King (1999) from an essay
written by someone on the neurotic end of the neurotic/emotionally stable scale,

One of my friends just barged in, and I jumped in my seat. This is crazy.
I should tell him not to do that again. I’m not that fastidious actually.
But certain things annoy me. The things that would annoy me would
actually annoy any normal human being, so I know I’m not a freak.

and someone on the emotionally stable end of the scale:

I should excel in this sport because I know how to push my body harder
than anyone I know, no matter what the test I always push my body
harder than everyone else. I want to be the best no matter what the sport
or event. I should also be good at this because I love to ride my bike.

Another kind of affective meaning is what Scherer (2000) calls interpersonal
stance, the ‘affective stance taken toward another person in a specific interactioninterpersonal

stance
coloring the interpersonal exchange’. Extracting this kind of meaning means au-
tomatically labeling participants for whether they are friendly, supportive, distant.
For example Ranganath et al. (2013) studied a corpus of speed-dates, in which par-
ticipants went on a series of 4-minute romantic dates, wearing microphones. Each
participant labeled each other for how flirtatious, friendly, awkward, or assertive
they were. Ranganath et al. (2013) then used a combination of lexicons and other
features to detect these interpersonal stances from text.

20.8 Affect Recognition

Detection of emotion, personality, interactional stance, and the other kinds of af-
fective meaning described by Scherer (2000) can be done by generalizing the algo-
rithms described above for detecting sentiment.

The most common algorithms involve supervised classification: a training set is
labeled for the affective meaning to be detected, and a classifier is built using features
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extracted from the training set. As with sentiment analysis, if the training set is large
enough, and the test set is sufficiently similar to the training set, simply using all
the words or all the bigrams as features in a powerful classifier like SVM or logistic
regression, as described in Fig. 4.2 in Chapter 4, is an excellent algorithm whose
performance is hard to beat. Thus we can treat affective meaning classification of a
text sample as simple document classification.

Some modifications are nonetheless often necessary for very large datasets. For
example, the Schwartz et al. (2013) study of personality, gender, and age using 700
million words of Facebook posts used only a subset of the n-grams of lengths 1-
3. Only words and phrases used by at least 1% of the subjects were included as
features, and 2-grams and 3-grams were only kept if they had sufficiently high PMI
(PMI greater than 2∗ length, where length is the number of words):

pmi(phrase) = log
p(phrase)∏

w∈phrase
p(w)

(20.13)

Various weights can be used for the features, including the raw count in the training
set, or some normalized probability or log probability. Schwartz et al. (2013), for
example, turn feature counts into phrase likelihoods by normalizing them by each
subject’s total word use.

p(phrase|subject) =
freq(phrase,subject)∑

phrase′∈vocab(subject)

freq(phrase′,subject)
(20.14)

If the training data is sparser, or not as similar to the test set, any of the lexicons
we’ve discussed can play a helpful role, either alone or in combination with all the
words and n-grams.

Many possible values can be used for lexicon features. The simplest is just an
indicator function, in which the value of a feature fL takes the value 1 if a particular
text has any word from the relevant lexicon L. Using the notation of Chapter 4, in
which a feature value is defined for a particular output class c and document x.

fL(c,x) =

{
1 if ∃w : w ∈ L & w ∈ x & class = c
0 otherwise

Alternatively the value of a feature fL for a particular lexicon L can be the total
number of word tokens in the document that occur in L:

fL =
∑

w∈L

count(w)

For lexica in which each word is associated with a score or weight, the count can be
multiplied by a weight θ L

w :

fL =
∑

w∈L

θ
L
wcount(w)

Counts can alternatively be logged or normalized per writer as in Eq. 20.14.
However they are defined, these lexicon features are then used in a supervised

classifier to predict the desired affective category for the text or document. Once
a classifier is trained, we can examine which lexicon features are associated with
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which classes. For a classifier like logistic regression the feature weight gives an
indication of how associated the feature is with the class.

Thus, for example, Mairesse and Walker (2008) found that for classifying per-
sonality, for the dimension Agreeable, the LIWC lexicons Family and Home were
positively associated while the LIWC lexicons anger and swear were negatively
associated. By contrast, Extroversion was positively associated with the Friend,
Religion and Self lexicons, and Emotional Stability was positively associated with
Sports and negatively associated with Negative Emotion.

Figure 6. Words, phrases, and topics most distinguishing extraversion from introversion and neuroticism from emotional stability. A.
Language of extraversion (left, e.g., ‘party’) and introversion (right, e.g., ‘computer’); N~72,709. B. Language distinguishing neuroticism (left, e.g.
‘hate’) from emotional stability (right, e.g., ‘blessed’); N~71,968 (adjusted for age and gender, Bonferroni-corrected pv0:001). Figure S8 contains
results for openness, conscientiousness, and agreeableness.
doi:10.1371/journal.pone.0073791.g006
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Figure 20.13 Word clouds from Schwartz et al. (2013), showing words highly associated
with introversion (left) or extroversion (right). The size of the word represents the association
strength (the regression coefficient), while the color (ranging from cold to hot) represents the
relative frequency of the word/phrase (from low to high).

In the situation in which we use all the words and phrases in the document as
potential features, we can use the resulting weights from the learned regression clas-
sifier as the basis of an affective lexicon. In the Extroversion/Introversion classifier
of Schwartz et al. (2013), ordinary least-squares regression is used to predict the
value of a personality dimension from all the words and phrases. The resulting re-
gression coefficient for each word or phrase can be used as an association value with
the predicted dimension. The word clouds in Fig. 20.13 show an example of words
associated with introversion (a) and extroversion (b). Note that regression weights
are not guaranteed to represent the correct association when word counts are corre-
lated, and so it is often necessary to first prune the list of words if exact values are
needed.

20.9 Lexicon-based methods for Entity-Centric Affect

What if we want to get an affect score not for an entire document, but for a particular
entity in the text? The entity-centric method of Field and Tsvetkov (2019) combines
affect lexicons with contextual embeddings to assign an affect score to an entity in
text. In the context of affect about people, they relabel the Valence/Arousal/Domi-
nance dimension as Sentiment/Agency/Power. The algorithm first trains classifiers
to map embeddings to scores:

1. For each word w in the training corpus:

(a) Use off-the-shelf pretrained encoders (like BERT) to extract a contextual
embedding e for each instance of the word. No additional fine-tuning is
done.
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(b) Average over the e embeddings of each instance of w to obtain a single
embedding vector for one training point w.

(c) Use the NRC VAD Lexicon to get S, A, and P scores for w.
2. Train (three) regression models on all words w to predict V, A, D scores from

a word’s average embedding.

Now given an entity mention m in a text, we assign affect scores as follows:

1. Use the same pretrained LM to get contextual embeddings for m in context.
2. Feed this embedding through the 3 regression models to get S, A, P scores for

the entity.

This results in a (S,A,P) tuple for a given entity mention; To get scores for the rep-
resentation of an entity in a complete document, we can run coreference resolution
and average the (S,A,P) scores for all the mentions. Fig. 20.14 shows the scores
from their algorithm for characters from the movie The Dark Knight when run on
Wikpedia plot summary texts with gold coreference.

Power Score

weakly Rachel Dent Gordan Batman Joker powerfully

Sentiment Score

negative Joker Dent Gordan Rachel Batman positive

Agency Score

dull Dent Gordan Rachel Batman Joker scary

Figure 1: Power, sentiment, and agency scores for char-
acters in The Dark Night as learned through the regres-
sion model with ELMo embeddings. Scores generally
align with character archetypes, i.e. the antagonist has
the lowest sentiment score.

ment have resulted in his effective removal from
the industry. While articles about the #MeToo
movement portray men like Weinstein as unpow-
erful, we can speculate that the corpora used to
train ELMo and BERT portray them as powerful.

Thus, in a corpus where traditional power roles
have been inverted, the embeddings extracted
from ELMo and BERT perform worse than ran-
dom, as they are biased towards the power struc-
tures in the data they are trained on. Further ev-
idence of this exists in the performance of the
BERT-masked embeddings - whereas these em-
beddings generally capture power poorly as com-
pared to the unmasked embeddings (Table 2),
they outperform the unmasked embeddings on this
task, and even outperform the frequency baseline
in one setting. Nevertheless, they do not outper-
form Field et al. (2019), likely because they do not
capture affect information as well as the unmasked
embeddings (Table 2).

4.3 Qualitative Document-level Analysis

Finally, we qualitatively analyze how well our
method captures affect dimensions by analyzing
single documents in detail. We conduct this anal-
ysis in a domain where we expect entities to fulfill
traditional power roles and where entity portray-
als are known. Following Bamman et al. (2013),
we analyze the Wikipedia plot summary of the
movie The Dark Knight,7 focusing on Batman
(protagonist),8 the Joker (antagonist), Jim Gordan
(law enforcement officer, ally to Batman), Har-

7http://bit.ly/2XmhRDR
8We consider Batman/Bruce Wayne to be the same entity.

Power Score

weakly Rachel Joker Dent Gordan Batmanpowerfully

Sentiment Score

negative Joker Gordan Batman Dent Rachel positive

Agency Score

dull Rachel Dent GordanBatman Joker scary

Figure 2: Power, sentiment, and agency scores for char-
acters in The Dark Night as learned through ASP with
ELMo embeddings. These scores reflect the same pat-
terns as the regression model with greater separation
between characters.

vey Dent (ally to Batman who turns evil) and
Rachel Dawes (primary love interest). To facil-
itate extracting example sentences, we score each
instance of these entities in the narrative separately
and average across instances to obtain an entity
score for the document.9 To maximize our data
by capturing every mention of an entity, we per-
form co-reference resolution by hand. Addition-
ally, based on our results from Table 3 as well as
the use of Wikipedia data in training the ELMo
model (Peters et al., 2018), we use ELMo embed-
dings for our analysis.

Figures 1 and 2 show results. For refer-
ence, we show the entity scores as compared to
one polar opposite pair identified by ASP. Both
the regression model and ASP show similar pat-
terns. Batman has high power, while Rachel has
low power. Additionally, the Joker is associated
with the most negative sentiment, but the high-
est agency. Throughout the plot summary, the
movie progresses by the Joker taking an aggres-
sive action and the other characters responding.
We can see this dynamic reflected in the Joker’s
profile score, as a high-powered, high-agency,
low-sentiment character, who is the primary plot-
driver. In general, ASP shows a greater separation
between characters than the regression model. We
hypothesize that this occurs because ASP isolates
the dimensions of interest, while the regression ap-
proach captures other confounds, such as that hu-

9When we used this averaging metric in other evaluations,
we found no significant change in results. Thus, in other sce-
narios, we compute scores over averaged embeddings, rather
than averaging scores separately computed for each embed-
ding to reduce computationally complexity.

Figure 20.14 Power (dominance), sentiment (valence) and agency (arousal) for characters
in the movie The Dark Knight computed from embeddings trained on the NRC VAD Lexicon.
Note the protagonist (Batman) and the antagonist (the Joker) have high power and agency
scores but differ in sentiment, while the love interest Rachel has low power and agency but
high sentiment.

20.10 Connotation Frames

The lexicons we’ve described so far define a word as a point in affective space. A
connotation frame, by contrast, is a lexicon that incorporates a richer kind of gram-connotation

frame
matical structure, by combining affective lexicons with the frame semantic lexicons
of Chapter 10. The basic insight of connotation frame lexicons is that a predicate
like a verb expresses connotations about the verb’s arguments (Rashkin et al. 2016,
Rashkin et al. 2017).

Consider sentences like:

(20.15) Country A violated the sovereignty of Country B
(20.16) the teenager ... survived the Boston Marathon bombing”

By using the verb violate in (20.15), the author is expressing their sympathies with
Country B, portraying Country B as a victim, and expressing antagonism toward
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the agent Country A. By contrast, in using the verb survive, the author of (20.16) is
expressing that the bombing is a negative experience, and the subject of the sentence,
the teenager, is a sympathetic character. These aspects of connotation are inherent
in the meaning of the verbs violate and survive, as shown in Fig. 20.15.

Writer

Role1 Role2
Role1 is a

sympathetic 
victim

There is
some type
of hardship

Reader

+ _

+ _

_

S(
writ

er→
ro

le1
) S(writer→

role2)

Connotation Frame for “Role1 survives Role2” 

S(role1→role2)

Writer

Role1 Role2
Role1 is the
 antagonist

Role2 is a
sympathetic

 victim

Reader

+_

+_

_

S(
writ

er→
ro

le1
) S(writer→

role2)
Connotation Frame for “Role1 violates Role2” 

S(role1→role2)

(a) (b)

Figure 20.15 Connotation frames for survive and violate. (a) For survive, the writer and reader have positive
sentiment toward Role1, the subject, and negative sentiment toward Role2, the direct object. (b) For violate, the
writer and reader have positive sentiment instead toward Role2, the direct object.

The connotation frame lexicons of Rashkin et al. (2016) and Rashkin et al.
(2017) also express other connotative aspects of the predicate toward each argu-
ment, including the effect (something bad happened to x) value: (x is valuable), and
mental state: (x is distressed by the event). Connotation frames can also mark the
power differential between the arguments (using the verb implore means that the
theme argument has greater power than the agent), and the agency of each argument
(waited is low agency). Fig. 20.16 shows a visualization from Sap et al. (2017).

AGENT THEME

power(AG < TH)

VERB
implore

He implored the tribunal to show mercy.

The princess waited for her prince.

AGENT THEME

agency(AG) = -

VERB
wait

Figure 2: The formal notation of the connotation
frames of power and agency. The first example
shows the relative power differential implied by
the verb “implored”, i.e., the agent (“he”) is in
a position of less power than the theme (“the tri-
bunal”). In contrast, “He demanded the tribunal
show mercy” implies that the agent has authority
over the theme. The second example shows the
low level of agency implied by the verb “waited”.

interactive demo website of our findings (see Fig-
ure 5 in the appendix for a screenshot).2 Further-
more, as will be seen in Section 4.1, connotation
frames offer new insights that complement and de-
viate from the well-known Bechdel test (Bechdel,
1986). In particular, we find that high-agency
women through the lens of connotation frames are
rare in modern films. It is, in part, because some
movies (e.g., Snow White) accidentally pass the
Bechdel test and also because even movies with
strong female characters are not entirely free from
the deeply ingrained biases in social norms.

2 Connotation Frames of Power and
Agency

We create two new connotation relations, power
and agency (examples in Figure 3), as an expan-
sion of the existing connotation frame lexicons.3

Three AMT crowdworkers annotated the verbs
with placeholders to avoid gender bias in the con-
text (e.g., X rescued Y; an example task is shown
in the appendix in Figure 7). We define the anno-
tated constructs as follows:

Power Differentials Many verbs imply the au-
thority levels of the agent and theme relative to

2http://homes.cs.washington.edu/˜msap/
movie-bias/.

3The lexicons and a demo are available at http://
homes.cs.washington.edu/˜msap/movie-bias/.

power(AG<TH) power(AG>TH)

agency(AG)=� agency(AG)=+

Figure 3: Sample verbs in the connotation frames
with high annotator agreement. Size is indicative
of verb frequency in our corpus (bigger = more
frequent), color differences are only for legibility.

one another. For example, if the agent “dom-
inates” the theme (denoted as power(AG>TH)),
then the agent is implied to have a level of control
over the theme. Alternatively, if the agent “hon-
ors” the theme (denoted as power(AG<TH)), the
writer implies that the theme is more important or
authoritative. We used AMT crowdsourcing to la-
bel 1700 transitive verbs for power differentials.
With three annotators per verb, the inter-annotator
agreement is 0.34 (Krippendorff’s ↵).

Agency The agency attributed to the agent of the
verb denotes whether the action being described
implies that the agent is powerful, decisive, and
capable of pushing forward their own storyline.
For example, a person who is described as “ex-
periencing” things does not seem as active and de-
cisive as someone who is described as “determin-
ing” things. AMT workers labeled 2000 transi-
tive verbs for implying high/moderate/low agency
(inter-annotator agreement of 0.27). We denote
high agency as agency(AG)=+, and low agency
as agency(AG)=�.

Pairwise agreements on a hard constraint are
56% and 51% for power and agency, respec-
tively. Despite this, agreements reach 96% and
94% when moderate labels are counted as agree-
ing with either high or low labels, showing that an-
notators rarely strongly disagree with one another.
Some contributing factors in the lower KA scores
include the subtlety of choosing between neutral

Figure 20.16 The connotation frames of Sap et al. (2017), showing that the verb implore
implies the agent has lower power than the theme (in contrast, say, with a verb like demanded),
and showing the low level of agency of the subject of waited. Figure from Sap et al. (2017).

Connotation frames can be built by hand (Sap et al., 2017), or they can be learned
by supervised learning (Rashkin et al., 2016), for example using hand-labeled train-
ing data to supervise classifiers for each of the individual relations, e.g., whether
S(writer → Role1) is + or -, and then improving accuracy via global constraints
across all relations.
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20.11 Summary

• Many kinds of affective states can be distinguished, including emotions, moods,
attitudes (which include sentiment), interpersonal stance, and personality.

• Emotion can be represented by fixed atomic units often called basic emo-
tions, or as points in space defined by dimensions like valence and arousal.

• Words have connotational aspects related to these affective states, and this
connotational aspect of word meaning can be represented in lexicons.

• Affective lexicons can be built by hand, using crowd sourcing to label the
affective content of each word.

• Lexicons can be built with semi-supervised, bootstrapping from seed words
using similarity metrics like embedding cosine.

• Lexicons can be learned in a fully supervised manner, when a convenient
training signal can be found in the world, such as ratings assigned by users on
a review site.

• Words can be assigned weights in a lexicon by using various functions of word
counts in training texts, and ratio metrics like log odds ratio informative
Dirichlet prior.

• Personality is often represented as a point in 5-dimensional space.
• Affect can be detected, just like sentiment, by using standard supervised text

classification techniques, using all the words or bigrams in a text as features.
Additional features can be drawn from counts of words in lexicons.

• Lexicons can also be used to detect affect in a rule-based classifier by picking
the simple majority sentiment based on counts of words in each lexicon.

• Connotation frames express richer relations of affective meaning that a pred-
icate encodes about its arguments.

Bibliographical and Historical Notes
The idea of formally representing the subjective meaning of words began with Os-
good et al. (1957), the same pioneering study that first proposed the vector space
model of meaning described in Chapter 6. Osgood et al. (1957) had participants rate
words on various scales, and ran factor analysis on the ratings. The most significant
factor they uncovered was the evaluative dimension, which distinguished between
pairs like good/bad, valuable/worthless, pleasant/unpleasant. This work influenced
the development of early dictionaries of sentiment and affective meaning in the field
of content analysis (Stone et al., 1966).

Wiebe (1994) began an influential line of work on detecting subjectivity in text,subjectivity

beginning with the task of identifying subjective sentences and the subjective char-
acters who are described in the text as holding private states, beliefs or attitudes.
Learned sentiment lexicons such as the polarity lexicons of Hatzivassiloglou and
McKeown (1997) were shown to be a useful feature in subjectivity detection (Hatzi-
vassiloglou and Wiebe 2000, Wiebe 2000).

The term sentiment seems to have been introduced in 2001 by Das and Chen
(2001), to describe the task of measuring market sentiment by looking at the words in
stock trading message boards. In the same paper Das and Chen (2001) also proposed
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the use of a sentiment lexicon. The list of words in the lexicon was created by
hand, but each word was assigned weights according to how much it discriminated
a particular class (say buy versus sell) by maximizing across-class variation and
minimizing within-class variation. The term sentiment, and the use of lexicons,
caught on quite quickly (e.g., inter alia, Turney 2002). Pang et al. (2002) first showed
the power of using all the words without a sentiment lexicon; see also Wang and
Manning (2012).

Most of the semi-supervised methods we describe for extending sentiment dic-
tionaries drew on the early idea that synonyms and antonyms tend to co-occur in the
same sentence (Miller and Charles 1991, Justeson and Katz 1991, Riloff and Shep-
herd 1997). Other semi-supervised methods for learning cues to affective mean-
ing rely on information extraction techniques, like the AutoSlog pattern extractors
(Riloff and Wiebe, 2003). Graph based algorithms for sentiment were first sug-
gested by Hatzivassiloglou and McKeown (1997), and graph propagation became
a standard method (Zhu and Ghahramani 2002, Zhu et al. 2003, Zhou et al. 2004,
Velikovich et al. 2010). Crowdsourcing can also be used to improve precision by
filtering the result of semi-supervised lexicon learning (Riloff and Shepherd 1997,
Fast et al. 2016).

Much recent work focuses on ways to learn embeddings that directly encode sen-
timent or other properties, such as the DENSIFIER algorithm of Rothe et al. (2016)
that learns to transform the embedding space to focus on sentiment (or other) infor-
mation.



CHAPTER

21 Coreference Resolution

and even Stigand, the patriotic archbishop of Canterbury, found it advisable–”’

‘Found WHAT?’ said the Duck.

‘Found IT,’ the Mouse replied rather crossly: ‘of course you know what “it”means.’

‘I know what “it”means well enough, when I find a thing,’ said the Duck: ‘it’s gener-
ally a frog or a worm. The question is, what did the archbishop find?’

Lewis Carroll, Alice in Wonderland

An important component of language understanding is knowing who is being talked
about in a text. Consider the following passage:

(21.1) Victoria Chen, CFO of Megabucks Banking, saw her pay jump to $2.3
million, as the 38-year-old became the company’s president. It is widely
known that she came to Megabucks from rival Lotsabucks.

Each of the underlined phrases in this passage is used by the writer to refer to
a person named Victoria Chen. We call linguistic expressions like her or Victoria
Chen mentions or referring expressions, and the discourse entity that is referredmention

to (Victoria Chen) the referent. (To distinguish between referring expressions andreferent

their referents, we italicize the former.)1 Two or more referring expressions that are
used to refer to the same discourse entity are said to corefer; thus, Victoria Chencorefer

and she corefer in (21.1).
Coreference is an important component of natural language understanding. A

dialogue system that has just told the user “There is a 2pm flight on United and a
4pm one on Cathay Pacific” must know which flight the user means by “I’ll take
the second one”. A question answering system that uses Wikipedia to answer a
question about Marie Curie must know who she was in the sentence “She was born
in Warsaw”. And a machine translation system translating from a language like
Spanish, in which pronouns can be dropped, must use coreference from the previous
sentence to decide whether the Spanish sentence ‘“Me encanta el conocimiento”,
dice.’ should be translated as ‘“I love knowledge”, he says’, or ‘“I love knowledge”,
she says’. Indeed, this example comes from an actual news article in El Paı́s about
a female professor and was mistranslated as “he” in machine translation because of
inaccurate coreference resolution (Schiebinger, 2013).

Natural language understanding systems (and humans) interpret linguistic ex-
pressions with respect to a discourse model (Karttunen, 1969). A discourse modeldiscourse

model
(Fig. 21.1) is a mental model that the understander builds incrementally when inter-
preting a text, containing representations of the entities referred to in the text, as well
as properties of the entities and relations among them. When a referent is first men-
tioned in a discourse, we say that a representation for it is evoked into the model.evoked

Upon subsequent mention, this representation is accessed from the model.accessed

1 As a convenient shorthand, we sometimes speak of a referring expression referring to a referent, e.g.,
saying that she refers to Victoria Chen. However, the reader should keep in mind that what we really
mean is that the speaker is performing the act of referring to Victoria Chen by uttering she.
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V

Discourse Model

“Victoria” “she”corefer

refer (evoke)
refer (access)$

Lotsabucks

Megabucks

pay

Figure 21.1 How mentions evoke and access discourse entities in a discourse model.

Reference in a text to an entity that has been previously introduced into the
discourse is called anaphora, and the referring expression used is said to be ananaphora

anaphor, or anaphoric.2 In passage (21.1), the pronouns she and her and the defi-anaphor

nite NP the 38-year-old are therefore anaphoric. The anaphor corefers with a prior
mention (in this case Victoria Chen) that is called the antecedent. Not every refer-antecedent

ring expression is an antecedent. An entity that has only a single mention in a text
(like Lotsabucks in (21.1)) is called a singleton.singleton

In this chapter we focus on the task of coreference resolution. Coreferencecoreference
resolution

resolution is the task of determining whether two mentions corefer, by which we
mean they refer to the same entity in the discourse model (the same discourse entity).
The set of coreferring expressions is often called a coreference chain or a cluster.coreference

chain
cluster For example, in processing (21.1), a coreference resolution algorithm would need

to find at least four coreference chains, corresponding to the four entities in the
discourse model in Fig. 21.1.

1. {Victoria Chen, her, the 38-year-old, She}
2. {Megabucks Banking, the company, Megabucks}
3. {her pay}
4. {Lotsabucks}
Note that mentions can be nested; for example the mention her is syntactically

part of another mention, her pay, referring to a completely different discourse entity.
Coreference resolution thus comprises two tasks (although they are often per-

formed jointly): (1) identifying the mentions, and (2) clustering them into corefer-
ence chains/discourse entities.

We said that two mentions corefered if they are associated with the same dis-
course entity. But often we’d like to go further, deciding which real world entity is
associated with this discourse entity. For example, the mention Washington might
refer to the US state, or the capital city, or the person George Washington; the inter-
pretation of the sentence will of course be very different for each of these. The task
of entity linking (Ji and Grishman, 2011) or entity resolution is the task of mappingentity linking

a discourse entity to some real-world individual.3 We usually operationalize entity

2 We will follow the common NLP usage of anaphor to mean any mention that has an antecedent, rather
than the more narrow usage to mean only mentions (like pronouns) whose interpretation depends on the
antecedent (under the narrower interpretation, repeated names are not anaphors).
3 Computational linguistics/NLP thus differs in its use of the term reference from the field of formal
semantics, which uses the words reference and coreference to describe the relation between a mention
and a real-world entity. By contrast, we follow the functional linguistics tradition in which a mention
refers to a discourse entity (Webber, 1978) and the relation between a discourse entity and the real world
individual requires an additional step of linking.
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linking or resolution by mapping to an ontology: a list of entities in the world, like
a gazeteer (Chapter 15). Perhaps the most common ontology used for this task is
Wikipedia; each Wikipedia page acts as the unique id for a particular entity. Thus
the entity linking task of wikification (Mihalcea and Csomai, 2007) is the task of de-
ciding which Wikipedia page corresponding to an individual is being referred to by
a mention. But entity linking can be done with any ontology; for example if we have
an ontology of genes, we can link mentions of genes in text to the disambiguated
gene name in the ontology.

In the next sections we introduce the task of coreference resolution in more de-
tail, and offer a variety of architectures for resolution, from simple deterministic
baseline algorithms to state-of-the-art neural models.

Before turning to algorithms, however, we mention some important tasks we
will only touch on briefly at the end of this chapter. First are the famous Winograd
Schema problems (so-called because they were first pointed out by Terry Winograd
in his dissertation). These entity coreference resolution problems are designed to
be too difficult to be solved by the resolution methods we describe in this chapter,
and the kind of real-world knowledge they require has made them a kind of chal-
lenge task for natural language understanding. For example, consider the task of
determining the correct antecedent of the pronoun they in the following example:
(21.2) The city council denied the demonstrators a permit because

a. they feared violence.
b. they advocated violence.

Determining the correct antecedent for the pronoun they requires understanding
that the second clause is intended as an explanation of the first clause, and also
that city councils are perhaps more likely than demonstrators to fear violence and
that demonstrators might be more likely to advocate violence. Solving Winograd
Schema problems requires finding way to represent or discover the necessary real
world knowledge.

A problem we won’t discuss in this chapter is the related task of event corefer-
ence, deciding whether two event mentions (such as the buy and the acquisition inevent

coreference
these two sentences from the ECB+ corpus) refer to the same event:
(21.3) AMD agreed to [buy] Markham, Ontario-based ATI for around $5.4 billion

in cash and stock, the companies announced Monday.
(21.4) The [acquisition] would turn AMD into one of the world’s largest providers

of graphics chips.
Event mentions are much harder to detect than entity mentions, since they can be ver-
bal as well as nominal. Once detected, the same mention-pair and mention-ranking
models used for entities are often applied to events.

An even more complex kind of coreference is discourse deixis (Webber, 1988),discourse deixis

in which an anaphor refers back to a discourse segment, which can be quite hard to
delimit or categorize, like the examples in (21.5) adapted from Webber (1991):
(21.5) According to Soleil, Beau just opened a restaurant

a. But that turned out to be a lie.
b. But that was false.
c. That struck me as a funny way to describe the situation.

The referent of that is a speech act (see Chapter 24) in (21.5a), a proposition in
(21.5b), and a manner of description in (21.5c). We don’t give algorithms in this
chapter for these difficult types of non-nominal antecedents, but see Kolhatkar
et al. (2018) for a survey.
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21.1 Coreference Phenomena: Linguistic Background

We now offer some linguistic background on reference phenomena. We introduce
the four types of referring expressions (definite and indefinite NPs, pronouns, and
names), describe how these are used to evoke and access entities in the discourse
model, and talk about linguistic features of the anaphor/antecedent relation (like
number/gender agreement, or properties of verb semantics).

21.1.1 Types of Referring Expressions
Indefinite Noun Phrases: The most common form of indefinite reference in En-
glish is marked with the determiner a (or an), but it can also be marked by a quan-
tifier such as some or even the determiner this. Indefinite reference generally intro-
duces into the discourse context entities that are new to the hearer.

(21.6) a. Mrs. Martin was so very kind as to send Mrs. Goddard a beautiful goose.
b. He had gone round one day to bring her some walnuts.
c. I saw this beautiful cauliflower today.

Definite Noun Phrases: Definite reference, such as via NPs that use the English
article the, refers to an entity that is identifiable to the hearer. An entity can be
identifiable to the hearer because it has been mentioned previously in the text and
thus is already represented in the discourse model:

(21.7) It concerns a white stallion which I have sold to an officer. But the pedigree
of the white stallion was not fully established.

Alternatively, an entity can be identifiable because it is contained in the hearer’s
set of beliefs about the world, or the uniqueness of the object is implied by the
description itself, in which case it evokes a representation of the referent into the
discourse model, as in (21.9):

(21.8) I read about it in the New York Times.
(21.9) Have you seen the car keys?

These last uses are quite common; more than half of definite NPs in newswire
texts are non-anaphoric, often because they are the first time an entity is mentioned
(Poesio and Vieira 1998, Bean and Riloff 1999).

Pronouns: Another form of definite reference is pronominalization, used for enti-
ties that are extremely salient in the discourse, (as we discuss below):

(21.10) Emma smiled and chatted as cheerfully as she could,

Pronouns can also participate in cataphora, in which they are mentioned beforecataphora

their referents are, as in (21.11).

(21.11) Even before she saw it, Dorothy had been thinking about the Emerald City
every day.

Here, the pronouns she and it both occur before their referents are introduced.
Pronouns also appear in quantified contexts in which they are considered to be

bound, as in (21.12).bound

(21.12) Every dancer brought her left arm forward.

Under the relevant reading, her does not refer to some woman in context, but instead
behaves like a variable bound to the quantified expression every dancer. We are not
concerned with the bound interpretation of pronouns in this chapter.
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In some languages, pronouns can appear as clitics attached to a word, like lo
(‘it’) in this Spanish example from AnCora (Recasens and Martı́, 2010):

(21.13) La intención es reconocer el gran prestigio que tiene la maratón y unirlo
con esta gran carrera.
‘The aim is to recognize the great prestige that the Marathon has and join|it
with this great race.”

Demonstrative Pronouns: Demonstrative pronouns this and that can appear ei-
ther alone or as determiners, for instance, this ingredient, that spice:

(21.14) I just bought a copy of Thoreau’s Walden. I had bought one five years ago.
That one had been very tattered; this one was in much better condition.

Note that this NP is ambiguous; in colloquial spoken English, it can be indefinite,
as in (21.6), or definite, as in (21.14).

Zero Anaphora: Instead of using a pronoun, in some languages (including Chi-
nese, Japanese, and Italian) it is possible to have an anaphor that has no lexical
realization at all, called a zero anaphor or zero pronoun, as in the following Italianzero anaphor

and Japanese examples from Poesio et al. (2016):

(21.15) EN [John]i went to visit some friends. On the way [he]i bought some
wine.

IT [Giovanni]i andò a far visita a degli amici. Per via φi comprò del vino.
JA [John]i-wa yujin-o houmon-sita. Tochu-de φi wain-o ka-tta.

or this Chinese example:

(21.16) [我]前一会精神上太紧张。[0]现在比较平静了
[I] was too nervous a while ago. ... [0] am now calmer.

Zero anaphors complicate the task of mention detection in these languages.

Names: Names (such as of people, locations, or organizations) can be used to refer
to both new and old entities in the discourse:

(21.17) a. Miss Woodhouse certainly had not done him justice.
b. International Business Machines sought patent compensation

from Amazon; IBM had previously sued other companies.

21.1.2 Information Status
The way referring expressions are used to evoke new referents into the discourse
(introducing new information), or access old entities from the model (old informa-
tion), is called their information status or information structure. Entities can beinformation

status
discourse-new or discourse-old, and indeed it is common to distinguish at leastdiscourse-new

discourse-old three kinds of entities informationally (Prince, 1981a):

new NPs:
brand new NPs: these introduce entities that are discourse-new and hearer-

new like a fruit or some walnuts.
unused NPs: these introduce entities that are discourse-new but hearer-old

(like Hong Kong, Marie Curie, or the New York Times.

old NPs: also called evoked NPs, these introduce entities that already in the dis-
course model, hence are both discourse-old and hearer-old, like it in “I went
to a new restaurant. It was...”.
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inferrables: these introduce entities that are neither hearer-old nor discourse-old,
but the hearer can infer their existence by reasoning based on other entities
that are in the discourse. Consider the following examples:

(21.18) I went to a superb restaurant yesterday. The chef had just opened it.
(21.19) Mix flour, butter and water. Knead the dough until shiny.

Neither the chef nor the dough were in the discourse model based on the first
sentence of either example, but the reader can make a bridging inferencebridging

inference
that these entities should be added to the discourse model and associated with
the restaurant and the ingredients, based on world knowledge that restaurants
have chefs and dough is the result of mixing flour and liquid (Haviland and
Clark 1974, Webber and Baldwin 1992, Nissim et al. 2004, Hou et al. 2018).

The form of an NP gives strong clues to its information status. We often talk
about an entity’s position on the given-new dimension, the extent to which the refer-given-new

ent is given (salient in the discourse, easier for the hearer to call to mind, predictable
by the hearer), versus new (non-salient in the discourse, unpredictable) (Chafe 1976,
Prince 1981b, Gundel et al. 1993). A referent that is very accessible (Ariel, 2001)accessible

i.e., very salient in the hearer’s mind or easy to call to mind, can be referred to with
less linguistic material. For example pronouns are used only when the referent has
a high degree of activation or salience in the discourse model.4 By contrast, lesssalience

salient entities, like a new referent being introduced to the discourse, will need to be
introduced with a longer and more explicit referring expression to help the hearer
recover the referent.

Thus when an entity is first introduced into a discourse its mentions are likely
to have full names, titles or roles, or appositive or restrictive relative clauses, as in
the introduction of our protagonist in (21.1): Victoria Chen, CFO of Megabucks
Banking. As an entity is discussed over a discourse, it becomes more salient to the
hearer and its mentions on average typically becomes shorter and less informative,
for example with a shortened name (for example Ms. Chen), a definite description
(the 38-year-old), or a pronoun (she or her) (Hawkins 1978). However, this change
in length is not monotonic, and is sensitive to discourse structure (Grosz 1977b,
Reichman 1985, Fox 1993).

21.1.3 Complications: Non-Referring Expressions
Many noun phrases or other nominals are not referring expressions, although they
may bear a confusing superficial resemblance. For example in some of the earliest
computational work on reference resolution, Karttunen (1969) pointed out that the
NP a car in the following example does not create a discourse referent:

(21.20) Janet doesn’t have a car.

and cannot be referred back to by anaphoric it or the car:

(21.21) *It is a Toyota.

(21.22) *The car is red.

We summarize here four common types of structures that are not counted as men-
tions in coreference tasks and hence complicate the task of mention-detection:

4 Pronouns also usually (but not always) refer to entities that were introduced no further than one or two
sentences back in the ongoing discourse, whereas definite noun phrases can often refer further back.
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Appositives: An appositional structure is a noun phrase that appears next to a
head noun phrase, describing the head. In English they often appear in commas, like
“a unit of UAL” appearing in apposition to the NP United, or CFO of Megabucks
Banking in apposition to Victoria Chen.

(21.23) Victoria Chen, CFO of Megabucks Banking, saw ...
(21.24) United, a unit of UAL, matched the fares.

Appositional NPs are not referring expressions, instead functioning as a kind of
supplementary parenthetical description of the head NP. Nonetheless, sometimes it
is useful to link these phrases to an entity they describe, and so some datasets like
ntoNotes mark appositional relationships.

Predicative and Prenominal NPs: Predicative or attributive NPs describe prop-
erties of the head noun. In United is a unit of UAL, the NP a unit of UAL describes
a property of United, rather than referring to a distinct entity. Thus they are not
marked as mentions in coreference tasks; in our example the NPs $2.3 million and
the company’s president, are attributive, describing properties of her pay and the
38-year-old; Example (21.27) shows a Chinese example in which the predicate NP
(中国最大的城市; China’s biggest city) is not a mention.

(21.25) her pay jumped to $2.3 million
(21.26) the 38-year-old became the company’s president
(21.27) 上海是[中国最大的城市] [Shanghai is China’s biggest city]

Expletives: Many uses of pronouns like it in English and corresponding pronouns
in other languages are not referential. Such expletive or pleonastic cases includeexpletive

it is raining, in idioms like hit it off, or in particular syntactic situations like cleftsclefts

(21.28a) or extraposition (21.28b):

(21.28) a. It was Emma Goldman who founded Mother Earth
b. It surprised me that there was a herring hanging on her wall.

Generics: Another kind of expression that does not refer back to an entity explic-
itly evoked in the text is generic reference. Consider (21.29).

(21.29) I love mangos. They are very tasty.

Here, they refers, not to a particular mango or set of mangos, but instead to the class
of mangos in general. The pronoun you can also be used generically:

(21.30) In July in San Francisco you have to wear a jacket.

21.1.4 Linguistic Properties of the Coreference Relation
Now that we have seen the linguistic properties of individual referring expressions
we turn to properties of the antecedent/anaphor pair. Understanding these properties
is helpful both in designing novel features and performing error analyses.

Number Agreement: Referring expressions and their referents must generally
agree in number; English she/her/he/him/his/it are singular, we/us/they/them are plu-
ral, and you is unspecified for number. So a plural antecedent like the chefs cannot
generally corefer with a singular anaphor like she. However, algorithms cannot
enforce number agreement too strictly. First, semantically plural entities can be re-
ferred to by either it or they:

(21.31) IBM announced a new machine translation product yesterday. They have
been working on it for 20 years.
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Second, singular they has become much more common, in which they is used tosingular they

describe singular individuals, often useful because they is gender neutral. Although
recently increasing, singular they is quite old, part of English for many centuries.5

Person Agreement: English distinguishes between first, second, and third person,
and a pronoun’s antecedent must agree with the pronoun in person. Thus a third
person pronoun (he, she, they, him, her, them, his, her, their) must have a third person
antecedent (one of the above or any other noun phrase). However, phenomena like
quotation can cause exceptions; in this example I, my, and she are coreferent:

(21.32) “I voted for Nader because he was most aligned with my values,” she said.

Gender or Noun Class Agreement: In many languages, all nouns have grammat-
ical gender or noun class6 and pronouns generally agree with the grammatical gender
of their antecedent. In English this occurs only with third-person singular pronouns,
which distinguish between male (he, him, his), female (she, her), and nonpersonal
(it) grammatical genders. Non-binary pronouns like ze or hir may also occur in more
recent texts. Knowing which gender to associate with a name in text can be complex,
and may require world knowledge about the individual. Some examples:

(21.33) Maryam has a theorem. She is exciting. (she=Maryam, not the theorem)
(21.34) Maryam has a theorem. It is exciting. (it=the theorem, not Maryam)

Binding Theory Constraints: The binding theory is a name for syntactic con-
straints on the relations between a mention and an antecedent in the same sentence
(Chomsky, 1981). Oversimplifying a bit, reflexive pronouns like himself and herselfreflexive

corefer with the subject of the most immediate clause that contains them (21.35),
whereas nonreflexives cannot corefer with this subject (21.36).

(21.35) Janet bought herself a bottle of fish sauce. [herself=Janet]
(21.36) Janet bought her a bottle of fish sauce. [her6=Janet]

Recency: Entities introduced in recent utterances tend to be more salient than
those introduced from utterances further back. Thus, in (21.37), the pronoun it is
more likely to refer to Jim’s map than the doctor’s map.

(21.37) The doctor found an old map in the captain’s chest. Jim found an even
older map hidden on the shelf. It described an island.

Grammatical Role: Entities mentioned in subject position are more salient than
those in object position, which are in turn more salient than those mentioned in
oblique positions. Thus although the first sentence in (21.38) and (21.39) expresses
roughly the same propositional content, the preferred referent for the pronoun he
varies with the subject—John in (21.38) and Bill in (21.39).

(21.38) Billy Bones went to the bar with Jim Hawkins. He called for a glass of
rum. [ he = Billy ]

(21.39) Jim Hawkins went to the bar with Billy Bones. He called for a glass of
rum. [ he = Jim ]

5 Here’s a bound pronoun example from Shakespeare’s Comedy of Errors: There’s not a man I meet but
doth salute me As if I were their well-acquainted friend
6 The word “gender” is generally only used for languages with 2 or 3 noun classes, like most Indo-
European languages; many languages, like the Bantu languages or Chinese, have a much larger number
of noun classes.
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Verb Semantics: Some verbs semantically emphasize one of their arguments, bi-
asing the interpretation of subsequent pronouns. Compare (21.40) and (21.41).

(21.40) John telephoned Bill. He lost the laptop.
(21.41) John criticized Bill. He lost the laptop.

These examples differ only in the verb used in the first sentence, yet “he” in (21.40)
is typically resolved to John, whereas “he” in (21.41) is resolved to Bill. This may
be due to the link between implicit causality and saliency: the implicit cause of a
“criticizing” event is its object, whereas the implicit cause of a “telephoning” event
is its subject. In such verbs, the entity which is the implicit cause is more salient.

Selectional Restrictions: Many other kinds of semantic knowledge can play a role
in referent preference. For example, the selectional restrictions that a verb places on
its arguments (Chapter 10) can help eliminate referents, as in (21.42).

(21.42) I ate the soup in my new bowl after cooking it for hours

There are two possible referents for it, the soup and the bowl. The verb eat, however,
requires that its direct object denote something edible, and this constraint can rule
out bowl as a possible referent.

21.2 Coreference Tasks and Datasets

We can formulate the task of coreference resolution as follows: Given a text T , find
all entities and the coreference links between them. We evaluate our task by com-
paring the links our system creates with those in human-created gold coreference
annotations on T .

Let’s return to our coreference example, now using superscript numbers for each
coreference chain (cluster), and subscript letters for individual mentions in the clus-
ter:

(21.43) [Victoria Chen]1
a, CFO of [Megabucks Banking]2

a, saw [[her]1
b pay]3

a jump
to $2.3 million, as [the 38-year-old]1

c also became [[the company]2
b’s

president. It is widely known that [she]1
d came to [Megabucks]2

c from rival
[Lotsabucks]4

a.

Assuming example (21.43) was the entirety of the article, the chains for her pay and
Lotsabucks are singleton mentions:

1. {Victoria Chen, her, the 38-year-old, She}
2. {Megabucks Banking, the company, Megabucks}
3. { her pay}
4. { Lotsabucks}
For most coreference evaluation campaigns, the input to the system is the raw

text of articles, and systems must detect mentions and then link them into clusters.
Solving this task requires dealing with pronominal anaphora (figuring out that her
refers to Victoria Chen), filtering out non-referential pronouns like the pleonastic It
in It has been ten years), dealing with definite noun phrases to figure out that the
38-year-old is coreferent with Victoria Chen, and that the company is the same as
Megabucks. And we need to deal with names, to realize that Megabucks is the same
as Megabucks Banking.
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Exactly what counts as a mention and what links are annotated differs from task
to task and dataset to dataset. For example some coreference datasets do not label
singletons, making the task much simpler. Resolvers can achieve much higher scores
on corpora without singletons, since singletons constitute the majority of mentions in
running text, and they are often hard to distinguish from non-referential NPs. Some
tasks use gold mention-detection (i.e. the system is given human-labeled mention
boundaries and the task is just to cluster these gold mentions), which eliminates the
need to detect and segment mentions from running text.

Coreference is usually evaluated by the CoNLL F1 score, which combines three
metrics: MUC, B3, and CEAFe; Section 21.7 gives the details.

Let’s mention a few characteristics of one popular coreference dataset, OntoNotes
(Pradhan et al. 2007, Pradhan et al. 2007a), and the CoNLL 2012 Shared Task
based on it (Pradhan et al., 2012a). OntoNotes contains hand-annotated Chinese
and English coreference datasets of roughly one million words each, consisting of
newswire, magazine articles, broadcast news, broadcast conversations, web data and
conversational speech data, as well as about 300,000 words of annotated Arabic
newswire. The most important distinguishing characteristic of OntoNotes is that
it does not label singletons, simplifying the coreference task, since singletons rep-
resent 60%-70% of all entities. In other ways, it is similar to other coreference
datasets. Referring expression NPs that are coreferent are marked as mentions, but
generics and pleonastic pronouns are not marked. Appositive clauses are not marked
as separate mentions, but they are included in the mention. Thus in the NP, “Richard
Godown, president of the Industrial Biotechnology Association” the mention is the
entire phrase. Prenominal modifiers are annotated as separate entities only if they
are proper nouns. Thus wheat is not an entity in wheat fields, but UN is an entity in
UN policy (but not adjectives like American in American policy).

A number of corpora mark richer discourse phenomena. The ISNotes corpus
annotates a portion of OntoNotes for information status, include bridging examples
(Hou et al., 2018). The LitBank coreference corpus (Bamman et al., 2020) contains
coreference annotations for 210,532 tokens from 100 different literary novels, in-
cluding singletons and quantified and negated noun phrases. The AnCora-CO coref-
erence corpus (Recasens and Martı́, 2010) contains 400,000 words each of Spanish
(AnCora-CO-Es) and Catalan (AnCora-CO-Ca) news data, and includes labels for
complex phenomena like discourse deixis in both languages. The ARRAU corpus
(Uryupina et al., 2020) contains 350,000 words of English marking all NPs, which
means singleton clusters are available. ARRAU includes diverse genres like dialog
(the TRAINS data) and fiction (the Pear Stories), and has labels for bridging refer-
ences, discourse deixis, generics, and ambiguous anaphoric relations.

21.3 Mention Detection

The first stage of coreference is mention detection: finding the spans of text thatmention
detection

constitute each mention. Mention detection algorithms are usually very liberal in
proposing candidate mentions (i.e., emphasizing recall), and only filtering later. For
example many systems run parsers and named entity taggers on the text and extract
every span that is either an NP, a possessive pronoun, or a named entity.

Doing so from our sample text repeated in (21.44):

(21.44) Victoria Chen, CFO of Megabucks Banking, saw her pay jump to $2.3
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million, as the 38-year-old also became the company’s president. It is
widely known that she came to Megabucks from rival Lotsabucks.

might result in the following list of 13 potential mentions:

Victoria Chen $2.3 million she
CFO of Megabucks Banking the 38-year-old Megabucks
Megabucks Banking the company Lotsabucks
her the company’s president
her pay It

More recent mention detection systems are even more generous; the span-based
algorithm we will describe in Section 21.6 first extracts literally all N-gram spans of
words up to N=10. Of course recall from Section 21.1.3 that many NPs—and the
overwhelming majority of random N-gram spans—are not referring expressions.
Therefore all such mention detection systems need to eventually filter out pleonas-
tic/expletive pronouns like It above, appositives like CFO of Megabucks Banking
Inc, or predicate nominals like the company’s president or $2.3 million.

Some of this filtering can be done by rules. Early rule-based systems designed
regular expressions to deal with pleonastic it, like the following rules from Lappin
and Leass (1994) that use dictionaries of cognitive verbs (e.g., believe, know, antic-
ipate) to capture pleonastic it in “It is thought that ketchup...”, or modal adjectives
(e.g., necessary, possible, certain, important), for, e.g., “It is likely that I...”. Such
rules are sometimes used as part of modern systems:

It is Modaladjective that S

It is Modaladjective (for NP) to VP

It is Cogv-ed that S

It seems/appears/means/follows (that) S

Mention-detection rules are sometimes designed specifically for particular eval-
uation campaigns. For OntoNotes, for example, mentions are not embedded within
larger mentions, and while numeric quantities are annotated, they are rarely coref-
erential. Thus for OntoNotes tasks like CoNLL 2012 (Pradhan et al., 2012a), a
common first pass rule-based mention detection algorithm (Lee et al., 2013) is:

1. Take all NPs, possessive pronouns, and named entities.
2. Remove numeric quantities (100 dollars, 8%), mentions embedded in

larger mentions, adjectival forms of nations, and stop words (like there).
3. Remove pleonastic it based on regular expression patterns.

Rule-based systems, however, are generally insufficient to deal with mention-
detection, and so modern systems incorporate some sort of learned mention detec-
tion component, such as a referentiality classifier, an anaphoricity classifier—
detecting whether an NP is an anaphor—or a discourse-new classifier— detecting
whether a mention is discourse-new and a potential antecedent for a future anaphor.

An anaphoricity detector, for example, can draw its positive training examplesanaphoricity
detector

from any span that is labeled as an anaphoric referring expression in hand-labeled
datasets like OntoNotes, ARRAU, or AnCora. Any other NP or named entity can be
marked as a negative training example. Anaphoricity classifiers use features of the
candidate mention such as its head word, surrounding words, definiteness, animacy,
length, position in the sentence/discourse, many of which were first proposed in
early work by Ng and Cardie (2002a); see Section 21.5 for more on features.
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Referentiality or anaphoricity detectors can be run as filters, in which only men-
tions that are classified as anaphoric or referential are passed on to the coreference
system. The end result of such a filtering mention detection system on our example
above might be the following filtered set of 9 potential mentions:

Victoria Chen her pay she
Megabucks Bank the 38-year-old Megabucks
her the company Lotsabucks

It turns out, however, that hard filtering of mentions based on an anaphoricity
or referentiality classifier leads to poor performance. If the anaphoricity classifier
threshold is set too high, too many mentions are filtered out and recall suffers. If the
classifier threshold is set too low, too many pleonastic or non-referential mentions
are included and precision suffers.

The modern approach is instead to perform mention detection, anaphoricity, and
coreference jointly in a single end-to-end model (Ng 2005b, Denis and Baldridge 2007,
Rahman and Ng 2009). For example mention detection in the Lee et al. (2017),(2018)
system is based on a single end-to-end neural network that computes a score for each
mention being referential, a score for two mentions being coreference, and combines
them to make a decision, training all these scores with a single end-to-end loss. We’ll
describe this method in detail in Section 21.6. 7

Despite these advances, correctly detecting referential mentions seems to still be
an unsolved problem, since systems incorrectly marking pleonastic pronouns like
it and other non-referential NPs as coreferent is a large source of errors of mod-
ern coreference resolution systems (Kummerfeld and Klein 2013, Martschat and
Strube 2014, Martschat and Strube 2015, Wiseman et al. 2015, Lee et al. 2017).

Mention, referentiality, or anaphoricity detection is thus an important open area
of investigation. Other sources of knowledge may turn out to be helpful, especially
in combination with unsupervised and semisupervised algorithms, which also mit-
igate the expense of labeled datasets. In early work, for example Bean and Riloff
(1999) learned patterns for characterizing anaphoric or non-anaphoric NPs; (by ex-
tracting and generalizing over the first NPs in a text, which are guaranteed to be
non-anaphoric). Chang et al. (2012) look for head nouns that appear frequently in
the training data but never appear as gold mentions to help find non-referential NPs.
Bergsma et al. (2008b) use web counts as a semisupervised way to augment standard
features for anaphoricity detection for English it, an important task because it is both
common and ambiguous; between a quarter and half it examples are non-anaphoric.
Consider the following two examples:

(21.45) You can make [it] in advance. [anaphoric]
(21.46) You can make [it] in Hollywood. [non-anaphoric]

The it in make it is non-anaphoric, part of the idiom make it. Bergsma et al. (2008b)
turn the context around each example into patterns, like “make * in advance” from
(21.45), and “make * in Hollywood” from (21.46). They then use Google N-grams
to enumerate all the words that can replace it in the patterns. Non-anaphoric contexts
tend to only have it in the wildcard positions, while anaphoric contexts occur with
many other NPs (for example make them in advance is just as frequent in their data

7 Some systems try to avoid mention detection or anaphoricity detection altogether. For datasets like
OntoNotes which don’t label singletons, an alternative to filtering out non-referential mentions is to run
coreference resolution, and then simply delete any candidate mentions which were not corefered with
another mention. This likely doesn’t work as well as explicitly modeling referentiality, and cannot solve
the problem of detecting singletons, which is important for tasks like entity linking.
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as make it in advance, but make them in Hollywood did not occur at all). These
N-gram contexts can be used as features in a supervised anaphoricity classifier.

21.4 Architectures for Coreference Algorithms

Modern systems for coreference are based on supervised neural machine learning,
supervised from hand-labeled datasets like OntoNotes. In this section we overview
the various architecture of modern systems, using the categorization of Ng (2010),
which distinguishes algorithms based on whether they make each coreference deci-
sion in a way that is entity-based—representing each entity in the discourse model—
or only mention-based—considering each mention independently, and whether they
use ranking models to directly compare potential antecedents. Afterwards, we go
into more detail on one state-of-the-art algorithm in Section 21.6.

21.4.1 The Mention-Pair Architecture
We begin with the mention-pair architecture, the simplest and most influentialmention-pair

coreference architecture, which introduces many of the features of more complex
algorithms, even though other architectures perform better. The mention-pair ar-mention-pair

chitecture is based around a classifier that— as its name suggests—is given a pair
of mentions, a candidate anaphor and a candidate antecedent, and makes a binary
classification decision: coreferring or not.

Let’s consider the task of this classifier for the pronoun she in our example, and
assume the slightly simplified set of potential antecedents in Fig. 21.2.

Victoria Chen Megabucks Banking her her pay the 37-year-old she

p(coref|”Victoria Chen”,”she”)

p(coref|”Megabucks Banking”,”she”)

Figure 21.2 For each pair of a mention (like she), and a potential antecedent mention (like
Victoria Chen or her), the mention-pair classifier assigns a probability of a coreference link.

For each prior mention (Victoria Chen, Megabucks Banking, her, etc.), the binary
classifier computes a probability: whether or not the mention is the antecedent of
she. We want this probability to be high for actual antecedents (Victoria Chen, her,
the 38-year-old) and low for non-antecedents (Megabucks Banking, her pay).

Early classifiers used hand-built features (Section 21.5); more recent classifiers
use neural representation learning (Section 21.6)

For training, we need a heuristic for selecting training samples; since most pairs
of mentions in a document are not coreferent, selecting every pair would lead to
a massive overabundance of negative samples. The most common heuristic, from
(Soon et al., 2001), is to choose the closest antecedent as a positive example, and all
pairs in between as the negative examples. More formally, for each anaphor mention
mi we create

• one positive instance (mi,m j) where m j is the closest antecedent to mi, and
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• a negative instance (mi,mk) for each mk between m j and mi

Thus for the anaphor she, we would choose (she, her) as the positive example
and no negative examples. Similarly, for the anaphor the company we would choose
(the company, Megabucks) as the positive example and (the company, she) (the com-
pany, the 38-year-old) (the company, her pay) and (the company, her) as negative
examples.

Once the classifier is trained, it is applied to each test sentence in a clustering
step. For each mention i in a document, the classifier considers each of the prior i−1
mentions. In closest-first clustering (Soon et al., 2001), the classifier is run right to
left (from mention i−1 down to mention 1) and the first antecedent with probability
> .5 is linked to i. If no antecedent has probably > 0.5, no antecedent is selected for
i. In best-first clustering, the classifier is run on all i− 1 antecedents and the most
probable preceding mention is chosen as the antecedent for i. The transitive closure
of the pairwise relation is taken as the cluster.

While the mention-pair model has the advantage of simplicity, it has two main
problems. First, the classifier doesn’t directly compare candidate antecedents to
each other, so it’s not trained to decide, between two likely antecedents, which one
is in fact better. Second, it ignores the discourse model, looking only at mentions,
not entities. Each classifier decision is made completely locally to the pair, without
being able to take into account other mentions of the same entity. The next two
models each address one of these two flaws.

21.4.2 The Mention-Rank Architecture
The mention ranking model directly compares candidate antecedents to each other,
choosing the highest-scoring antecedent for each anaphor.

In early formulations, for mention i, the classifier decides which of the {1, ..., i−
1} prior mentions is the antecedent (Denis and Baldridge, 2008). But suppose i is
in fact not anaphoric, and none of the antecedents should be chosen? Such a model
would need to run a separate anaphoricity classifier on i. Instead, it turns out to be
better to jointly learn anaphoricity detection and coreference together with a single
loss (Rahman and Ng, 2009).

So in modern mention-ranking systems, for the ith mention (anaphor), we have
an associated random variable yi ranging over the values Y (i) = {1, ..., i−1, ε}. The
value ε is a special dummy mention meaning that i does not have an antecedent (i.e.,
is either discourse-new and starts a new coref chain, or is non-anaphoric).

Victoria Chen Megabucks Banking her her pay the 37-year-old she

p(”Victoria Chen”|”she”)

p(ϵ|”she”)

ϵ

One or more 
of these

should be high

All of these
should be low

}
p(”her pay”|she”)

p(”her”|she”) p(”the 37-year-old”|she”)

p(”Megabucks Banking”|she”) }
Figure 21.3 For each candidate anaphoric mention (like she), the mention-ranking system assigns a proba-
bility distribution over all previous mentions plus the special dummy mention ε.

At test time, for a given mention i the model computes one softmax over all the
antecedents (plus ε) giving a probability for each candidate antecedent (or none).
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Fig. 21.3 shows an example of the computation for the single candidate anaphor
she.

Once the antecedent is classified for each anaphor, transitive closure can be run
over the pairwise decisions to get a complete clustering.

Training is trickier in the mention-ranking model than the mention-pair model,
because for each anaphor we don’t know which of all the possible gold antecedents
to use for training. Instead, the best antecedent for each mention is latent; that
is, for each mention we have a whole cluster of legal gold antecedents to choose
from. Early work used heuristics to choose an antecedent, for example choosing the
closest antecedent as the gold antecedent and all non-antecedents in a window of
two sentences as the negative examples (Denis and Baldridge, 2008). Various kinds
of ways to model latent antecedents exist (Fernandes et al. 2012, Chang et al. 2013,
Durrett and Klein 2013). The simplest way is to give credit to any legal antecedent
by summing over all of them, with a loss function that optimizes the likelihood of all
correct antecedents from the gold clustering (Lee et al., 2017). We’ll see the details
in Section 21.6.

Mention-ranking models can be implemented with hand-build features or with
neural representation learning (which might also incorporate some hand-built fea-
tures). we’ll explore both directions in Section 21.5 and Section 21.6.

21.4.3 Entity-based Models
Both the mention-pair and mention-ranking models make their decisions about men-
tions. By contrast, entity-based models link each mention not to a previous mention
but to a previous discourse entity (cluster of mentions).

A mention-ranking model can be turned into an entity-ranking model simply
by having the classifier make its decisions over clusters of mentions rather than
individual mentions (Rahman and Ng, 2009).

For traditional feature-based models, this can be done by extracting features over
clusters. The size of a cluster is a useful feature, as is its ‘shape’, which is the
list of types of the mentions in the cluster i.e., sequences of the tokens (P)roper,
(D)efinite, (I)ndefinite, (Pr)onoun, so that a cluster composed of {Victoria, her, the
38-year-old}would have the shape P-Pr-D (Björkelund and Kuhn, 2014). An entity-
based model that includes a mention-pair classifier can use as features aggregates of
mention-pair probabilities, for example computing the average probability of coref-
erence over all mention-pairs in the two clusters (Clark and Manning 2015).

Neural models can learn representations of clusters automatically, for example
by using an RNN over the sequence of cluster mentions to encode a state correspond-
ing to a cluster representation (Wiseman et al., 2016), or by learning distributed rep-
resentations for pairs of clusters by pooling over learned representations of mention
pairs (Clark and Manning, 2016b).

However, although entity-based models are more expressive, the use of cluster-
level information in practice has not led to large gains in performance, so mention-
ranking models are still more commonly used.

21.5 Classifiers using hand-built features

Hand-designed features play an important role in coreference, whether as the sole
input to classification in pre-neural classifiers, or as augmentations to the automatic
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representation learning used in state-of-the-art neural systems like the one we’ll de-
scribe in Section 21.6.

In this section we describe features commonly used in logistic regression, SVM,
or random forest classifiers for coreference resolution.

Given an anaphor mention and a potential antecedent mention, most feature
based classifiers make use of three types of features: (i) features of the anaphor, (ii)
features of the candidate antecedent, and (iii) features of the relationship between
the pair. Entity-based models can make additional use of two additional classes: (iv)
feature of all mentions from the antecedent’s entity cluster, and (v) features of the
relation between the anaphor and the mentions in the antecedent entity cluster.

Figure 21.4 shows a selection of commonly used features, and shows the value
that would be computed for the potential anaphor “she” and potential antecedent
“Victoria Chen” in our example sentence, repeated below:

(21.47) Victoria Chen, CFO of Megabucks Banking, saw her pay jump to $2.3
million, as the 38-year-old also became the company’s president. It is
widely known that she came to Megabucks from rival Lotsabucks.

Features that prior work has found to be particularly useful are exact string
match, entity headword agreement, mention distance, as well as (for pronouns) exact
attribute match and i-within-i, and (for nominals and proper names) word inclusion
and cosine. For lexical features (like head words) it is common to only use words that
appear enough times (perhaps more than 20 times), backing off to parts of speech
for rare words.

It is crucial in feature-based systems to use conjunctions of features; one exper-
iment suggested that moving from individual features in a classifier to conjunctions
of multiple features increased F1 by 4 points (Lee et al., 2017). Specific conjunc-
tions can be designed by hand (Durrett and Klein, 2013), all pairs of features can be
conjoined (Bengtson and Roth, 2008), or feature conjunctions can be learned using
decision tree or random forest classifiers (Ng and Cardie 2002a, Lee et al. 2017).

Finally, some of these features can also be used in neural models as well. Modern
neural systems (Section 21.6) use contextual word embeddings, so they don’t benefit
from adding shallow features like string or head match, grammatical role, or mention
types. However other features like mention length, distance between mentions, or
genre can complement neural contextual embedding models nicely.

21.6 A neural mention-ranking algorithm

In this section we describe the neural mention-ranking system of Lee et al. (2017).
This end-to-end system doesn’t exactly have a separate mention-detection step. In-
stead, it considers every possible span of text up to a set length (i.e. all n-grams of
length 1,2,3...N) as a possible mention.8

Given a document D with T words, the model considers all of the N = T (T−1)
2

text spans up to some length (in the version of Lee et al. (2018), that length is 10).
Each span i starts at word START(i) and ends at word END(i).

The task is to assign to each span i an antecedent yi, a random variable ranging
over the values Y (i) = {1, ..., i− 1, ε}; each previous span and a special dummy

8 But because this number of potential mentions makes the algorithm very slow and unwieldy (the
model’s size is O(t4) in document length) in practice various versions of the algorithm find ways to prune
the possible mentions, essentially using a mention score as something of a mention-detector.
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Features of the Anaphor or Antecedent Mention
First (last) word Victoria/she First or last word (or embedding) of antecedent/anaphor
Head word Victoria/she Head word (or head embedding) of antecedent/anaphor
Attributes Sg-F-A-3-

PER/Sg-F-A-
3-PER

The number, gender, animacy, person, named entity type
attributes of (antecedent/anaphor)

Length 2/1 length in words of (antecedent/anaphor)
Grammatical role Sub/Sub The grammatical role—subject, direct object, indirect

object/PP—of (antecedent/anaphor)
Mention type P/Pr Type: (P)roper, (D)efinite, (I)ndefinite, (Pr)onoun) of an-

tecedent/anaphor
Features of the Antecedent Entity

Entity shape P-Pr-D The ‘shape’ or list of types of the mentions in the
antecedent entity (cluster), i.e., sequences of (P)roper,
(D)efinite, (I)ndefinite, (Pr)onoun.

Entity attributes Sg-F-A-3-
PER

The number, gender, animacy, person, named entity type
attributes of the antecedent entity

Antecedent cluster size 3 Number of mentions in the antecedent cluster
Features of the Pair of Mentions

Longer anaphor F True of anaphor is longer than antecedent
Pairs of any features Victoria/she,

2/1, Sub/Sub,
P/Pr, etc .

For each individual feature, pair of type of antecedent+
type of anaphor

Sentence distance 1 The number of sentences between antecedent and anaphor
Mention distance 4 The number of mentions between antecedent and anaphor
i-within-i F Anaphor has i-within-i relation with antecedent
Cosine Cosine between antecedent and anaphor embeddings
Appositive F True if the anaphor is in the syntactic apposition relation to

the antecedent. Useful even if appositives aren’t mentions
(to know to attach the appositive to a preceding head)

Features of the Pair of Entities
Exact String Match F True if the strings of any two mentions from the antecedent

and anaphor clusters are identical.
Head Word Match F True if any mentions from antecedent cluster has same

headword as any mention in anaphor cluster
Word Inclusion F All words in anaphor cluster included in antecedent cluster

Features of the Document
Genre/source N The document genre— (D)ialog, (N)ews, etc,

Figure 21.4 Some common features for feature-based coreference algorithms, with values for the anaphor
“she” and potential antecedent “Victoria Chen”.

token ε. Choosing the dummy token means that i does not have an antecedent, either
because i is discourse-new and starts a new coreference chain, or because i is non-
anaphoric.

For each pair of spans i and j, the system assigns a score s(i, j) for the coref-
erence link between span i and span j. The system then learns a distribution P(yi)
over the antecedents for span i:

P(yi) =
exp(s(i,yi))∑

y′∈Y (i) exp(s(i,yi))
(21.48)
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This score s(i, j) includes three factors: m(i); whether span i is a mention; m( j);
whether span j is a mention; and c(i, j); whether j is the antecedent of i:

s(i, j) = m(i)+m( j)+ c(i, j) (21.49)

For the dummy antecedent ε, the score s(i, ε) is fixed to 0. This way if any non-
dummy scores are positive, the model predicts the highest-scoring antecedent, but if
all the scores are negative it abstains.

The scoring functions m(i) and c(i, j) are based on a vector gi that represents
span i:

m(i) = wm ·FFNNm(gi) (21.50)

c(i, j) = wc ·FFNNc([gi,g j,gi ◦g j,φ(i, j)]) (21.51)

The antecedent score c(i, j) takes as input a representation of the spans i and j, but
also the element-wise similarity of the two spans to each other gi ◦ g j (here ◦ is
element-wise multiplication). The antecedent score c also considers a feature vec-
tor φ(i, j) that encodes useful features like mention distances, and also information
about the speaker and genre.

The representation for each span, gi, can be computed with a biLSTM or with
BERT. In the biLSTM version, the representation gi for span i is a concatenation
of the biLSTM hidden representations of the start and end tokens of the span, an
attention-based representation of the head, and a feature vector containing only one
feature: the length of span i:

gi = [hSTART(i),hEND(i),hATT(i),φ(i)] (21.52)

These are computed as follows. The output of the biLSTM for each word wt of the
input is ht :

−→
h t = LSTMforward(

−→
h t−1,wt)

←−
h t = LSTMforward(

←−
h t+1,wt)

ht = [
−→
h t ,
←−
h t ] (21.53)

The attention representation is computed as usual; the system learns a weight vector
wα , and computes its dot product with the hidden state ht transformed by a FFNN:

αt =wα · FFNNα(ht) (21.54)

The attention score is normalized into a distribution via a softmax:

ai,t =
exp(αt)∑END(i)

k=START(i) exp(αk)
(21.55)

And then the attention distribution is used to create a vector hATT(i) which is an
attention-weighted sum of words in span i:

hATT(i) =

END(i)∑

t=START(i)

ai,t ·wt (21.56)

Fig. 21.5 from Lee et al. (2017) shows the biLSTM computation of the span
representation and the mention score.
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General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x∗)

Word & character
embedding (x)

Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-
sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a
manageable number of spans is considered for coreference decisions. In general, the model considers all
possible spans up to a maximum width, but we depict here only a small subset.

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, ϵ) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2: Second step of our model. Antecedent
scores are computed from pairs of span represen-
tations. The final coreference score of a pair of
spans is computed by summing the mention scores
of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ϵ
to 0, the model predicts the best scoring antecedent
if any non-dummy scores are positive, and it ab-
stains if they are all negative.

A challenging aspect of this model is that its
size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions

above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj , φ(i, j)])

where · denotes the dot product, ◦ denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each
span gi ◦ gj and a feature vector φ(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of infor-
mation are crucial to accurately predicting
coreference links: the context surrounding
the mention span and the internal structure
within the span. We use a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the lexical information of both the inside and
outside of each span. We also include an attention
mechanism over words in each span to model head
words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every

Mention score (m)

Span representation (g)

Span head (hatt)

Bidirectional LSTM (h)

Input word embeddings  
(ELMo)

Figure 21.5 Computation of the span representation (using the biLSTM encoder) and the
mention score in the end-to-end coreference model of Lee et al. (2017). The model considers
all spans up to a maximum width; the figure shows a small subset of these. Figure after Lee
et al. (2017).

In the BERT version, this entire biLSTM encoder is replaced with BERT. The
span representations gi are instead computed by concatenating the first and last
word-pieces of the span, plus the attended version of all word pieces in the span
(Joshi et al., 2019).

Fig. 21.6 shows the computation of the score s for the three possible antecedents
of the company in the example sentence from Fig. 21.5.
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size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions

above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj , φ(i, j)])

where · denotes the dot product, ◦ denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each
span gi ◦ gj and a feature vector φ(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of infor-
mation are crucial to accurately predicting
coreference links: the context surrounding
the mention span and the internal structure
within the span. We use a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the lexical information of both the inside and
outside of each span. We also include an attention
mechanism over words in each span to model head
words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every

(m)

(c)

Figure 21.6 The computation of the score s for the three possible antecedents of the com-
pany in the example sentence from Fig. 21.5. Figure after Lee et al. (2017).

At inference time, some method is generally used to prune the mentions (for
example using the mention score m as a filter to keep only the best few mentions
as a function like 0.4T of the sentence length T ). Then the joint distribution of
antecedents for each document is computed in a forward pass. Finally, we can then
do transitive closure on the antecedents to create a final clustering for the document.

For training, we don’t have a single gold antecedent for each mention; instead
the coreference labeling only gives us each entire cluster of coreferent mentions, and
a mention has a latent antecedent. We therefor use a loss function that maximizes
the sum of the coreference probability of any of the legal antecedents. For a given
mention i with possible antecedents Y (i), let GOLD(i) be the set of mentions in the
gold cluster containing i. Since the set of mentions occurring before i is Y (i), the
set of mentions in that gold cluster that also occur before i is Y (i)∩ GOLD(i). We
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therefore want to maximize:
∑

ŷ∈Y (i)∩GOLD(i)

P(ŷ) (21.57)

If a mention i is not in a gold cluster GOLD(i) = ε.
To turn this probability into a loss function, we’ll use the cross-entropy loss

function we defined in Eq. 5.11 in Chapter 5, by taking the − log of the probability.
If we then sum over all mentions, we get the final loss function for training:

L =

N∑

i=2

− log
∑

ŷ∈Y (i)∩GOLD(i)

P(ŷ) (21.58)

Fig. 21.7 shows example predictions from the model, showing the attention weights,
which Lee et al. (2017) find correlate with traditional semantic heads. Note that
the model gets the second example wrong, presumably because attendants and pilot
likely have nearby word embeddings.1

(A fire in a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee (the blaze) in the four-story building.

A fire in (a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee the blaze in (the four-story building).

2

We are looking for (a region of central Italy bordering the Adriatic Sea). (The area) is mostly
mountainous and includes Mt. Corno, the highest peak of the Apennines. (It) also includes a lot of
sheep, good clean-living, healthy sheep, and an Italian entrepreneur has an idea about how to make a
little money of them.

3
(The flight attendants) have until 6:00 today to ratify labor concessions. (The pilots’) union and ground
crew did so yesterday.

4

(Prince Charles and his new wife Camilla) have jumped across the pond and are touring the United
States making (their) first stop today in New York. It’s Charles’ first opportunity to showcase his new
wife, but few Americans seem to care. Here’s Jeanie Mowth. What a difference two decades make.
(Charles and Diana) visited a JC Penney’s on the prince’s last official US tour. Twenty years later
here’s the prince with his new wife.

5
Also such location devices, (some ships) have smoke floats (they) can toss out so the man overboard
will be able to use smoke signals as a way of trying to, let the rescuer locate (them).

Table 4: Examples predictions from the development data. Each row depicts a single coreference cluster
predicted by our model. Bold, parenthesized spans indicate mentions in the predicted cluster. The
redness of each word indicates the weight of the head-finding attention mechanism (ai,t in Section 4).
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Figure 4: Indirect measure of mention precision
using agreement with gold syntax. Constituency
precision: % of unpruned spans matching syn-
tactic constituents. Head word precision: % of
unpruned constituents whose syntactic head word
matches the most attended word. Frequency: % of
gold spans with each width.

high, since no explicit supervision of syntactic
heads is provided. The model simply learns from
the clustering data that these head words are useful
for making coreference decisions.

9.4 Qualitative Analysis

Our qualitative analysis in Table 4 highlights the
strengths and weaknesses of our model. Each row
is a visualization of a single coreference cluster
predicted by the model. Bolded spans in paren-
theses belong to the predicted cluster, and the red-
ness of a word indicates its weight from the head-
finding attention mechanism (ai,t in Section 4).

Strengths The effectiveness of the attention
mechanism for making coreference decisions can
be seen in Example 1. The model pays attention
to fire in the span A fire in a Bangladeshi gar-
ment factory, allowing it to successfully predict
the coreference link with the blaze. For a sub-
span of that mention, a Bangladeshi garment fac-
tory, the model pays most attention instead to fac-
tory, allowing it successfully predict the corefer-
ence link with the four-story building.

The task-specific nature of the attention mecha-
nism is also illustrated in Example 4. The model
generally pays attention to coordinators more than
the content of the coordination, since coordinators,
such as and, provide strong cues for plurality.

The model is capable of detecting relatively
long and complex noun phrases, such as a re-
gion of central Italy bordering the Adriatic Sea
in Example 2. It also appropriately pays atten-

Figure 21.7 Sample predictions from the Lee et al. (2017) model, with one cluster per
example, showing one correct example and one mistake. Bold, parenthesized spans are men-
tions in the predicted cluster. The amount of red color on a word indicates the head-finding
attention weight ai,t in (21.55). Figure adapted from Lee et al. (2017).

21.7 Evaluation of Coreference Resolution

We evaluate coreference algorithms model-theoretically, comparing a set of hypoth-
esis chains or clusters H produced by the system against a set of gold or reference
chains or clusters R from a human labeling, and reporting precision and recall.

However, there are a wide variety of methods for doing this comparison. In fact,
there are 5 common metrics used to evaluate coreference algorithms: the link based
MUC (Vilain et al., 1995) and BLANC (Recasens and Hovy 2011, Luo et al. 2014)
metrics, the mention based B3 metric (Bagga and Baldwin, 1998), the entity based
CEAF metric (Luo, 2005), and the link based entity aware LEA metric (Moosavi and
Strube, 2016).

Let’s just explore two of the metrics. The MUC F-measure (Vilain et al., 1995)MUC
F-measure

is based on the number of coreference links (pairs of mentions) common to H and
R. Precision is the number of common links divided by the number of links in H.
Recall is the number of common links divided by the number of links in R; This
makes MUC biased toward systems that produce large chains (and fewer entities),
and it ignores singletons, since they don’t involve links.

B3 is mention-based rather than link-based. For each mention in the referenceB3

chain, we compute a precision and recall, and then we take a weighted sum over all
N mentions in the document to compute a precision and recall for the entire task. For
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a given mention i, let R be the reference chain that includes i, and H the hypothesis
chain that has i. The set of correct mentions in H is H ∩R. Precision for mention i
is thus |H∩R|

|H| , and recall for mention i thus |H∩R|
|R| . The total precision is the weighted

sum of the precision for mention i, weighted by a weight wi. The total recall is the
weighted sum of the recall for mention i, weighted by a weight wi. Equivalently:

Precision =

N∑

i=1

wi
# of correct mentions in hypothesis chain containing entityi

# of mentions in hypothesis chain containing entityi

Recall =

N∑

i=1

wi
# of correct mentions in hypothesis chain containing entityi

# of mentions in reference chain containing entityi

The weight wi for each entity can be set to different values to produce different
versions of the algorithm.

Following a proposal from Denis and Baldridge (2009), the CoNLL coreference
competitions were scored based on the average of MUC, CEAF-e, and B3 (Pradhan
et al. 2011, Pradhan et al. 2012b), and so it is common in many evaluation campaigns
to report an average of these 3 metrics. See Luo and Pradhan (2016) for a detailed
description of the entire set of metrics; reference implementations of these should
be used rather than attempting to reimplement from scratch (Pradhan et al., 2014).

Alternative metrics have been proposed that deal with particular coreference do-
mains or tasks. For example, consider the task of resolving mentions to named
entities (persons, organizations, geopolitical entities), which might be useful for in-
formation extraction or knowledge base completion. A hypothesis chain that cor-
rectly contains all the pronouns referring to an entity, but has no version of the name
itself, or is linked with a wrong name, is not useful for this task. We might instead
want a metric that weights each mention by how informative it is (with names being
most informative) (Chen and Ng, 2013) or a metric that considers a hypothesis to
match a gold chain only if it contains at least one variant of a name (the NEC F1
metric of Agarwal et al. (2019)).

21.8 Winograd Schema problems

From early on in the field, researchers have noted that some cases of coreference
are quite difficult, seeming to require world knowledge or sophisticated reasoning
to solve. The problem was most famously pointed out by Winograd (1972) with the
following example:

(21.59) The city council denied the demonstrators a permit because

a. they feared violence.
b. they advocated violence.

Winograd noticed that the antecedent that most readers preferred for the pro-
noun they in continuation (a) was the city council, but in (b) was the demonstrators.
He suggested that this requires understanding that the second clause is intended
as an explanation of the first clause, and also that our cultural frames suggest that
city councils are perhaps more likely than demonstrators to fear violence and that
demonstrators might be more likely to advocate violence.

In an attempt to get the field of NLP to focus more on methods involving world
knowledge and common-sense reasoning, Levesque (2011) proposed a challenge
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task called the Winograd Schema Challenge.9 The problems in the challenge taskWinograd
schema

are coreference problems designed to be easily disambiguated by the human reader,
but hopefully not solvable by simple techniques such as selectional restrictions, or
other basic word association methods.

The problems are framed as a pair of statements that differ in a single word or
phrase, and a coreference question:

(21.60) The trophy didn’t fit into the suitcase because it was too large.
Question: What was too large? Answer: The trophy

(21.61) The trophy didn’t fit into the suitcase because it was too small.
Question: What was too small? Answer: The suitcase

The problems have the following characteristics:

1. The problems each have two parties
2. A pronoun preferentially refers to one of the parties, but could grammatically

also refer to the other
3. A question asks which party the pronoun refers to
4. If one word in the question is changed, the human-preferred answer changes

to the other party

The kind of world knowledge that might be needed to solve the problems can
vary. In the trophy/suitcase example, it is knowledge about the physical world; that
a bigger object cannot fit into a smaller object. In the original Winograd sentence,
it is stereotypes about social actors like politicians and protesters. In examples like
the following, it is knowledge about human actions like turn-taking or thanking.

(21.62) Bill passed the gameboy to John because his turn was [over/next]. Whose
turn was [over/next]? Answers: Bill/John

(21.63) Joan made sure to thank Susan for all the help she had [given/received].
Who had [given/received] help? Answers: Susan/Joan.

Although the Winograd Schema was designed to require common-sense rea-
soning, a large percentage of the original set of problem can be solved by pre-
trained language models, fine-tuned on Winograd Schema sentences (Kocijan et al.,
2019). Large pretrained language models encode an enormous amount of world or
common-sense knowledge! The current trend is therefore to propose new datasets
with increasingly difficult Winograd-like coreference resolution problems like KNOWREF
(Emami et al., 2019), with examples like:

(21.64) Marcus is undoubtedly faster than Jarrett right now but in [his] prime the
gap wasn’t all that big.

In the end, it seems likely that some combination of language modeling and knowl-
edge will prove fruitful; indeed, it seems that knowledge-based models overfit less
to lexical idiosyncracies in Winograd Schema training sets (Trichelair et al., 2018),

21.9 Gender Bias in Coreference

As with other aspects of language processing, coreference models exhibit gender
and other biases (Zhao et al. 2018a, Rudinger et al. 2018, Webster et al. 2018).

9 Levesque’s call was quickly followed up by Levesque et al. (2012) and Rahman and Ng (2012), a
competition at the IJCAI conference (Davis et al., 2017), and a natural language inference version of the
problem called WNLI (Wang et al., 2018).



21.9 • GENDER BIAS IN COREFERENCE 437

For example the WinoBias dataset (Zhao et al., 2018a) uses a variant of the Wino-
grad Schema paradigm to test the extent to which coreference algorithms are biased
toward linking gendered pronouns with antecedents consistent with cultural stereo-
types. As we summarized in Chapter 6, embeddings replicate societal biases in their
training test, such as associating men with historically sterotypical male occupa-
tions like doctors, and women with stereotypical female occupations like secretaries
(Caliskan et al. 2017, Garg et al. 2018).

A WinoBias sentence contain two mentions corresponding to stereotypically-
male and stereotypically-female occupations and a gendered pronoun that must be
linked to one of them. The sentence cannot be disambiguated by the gender of the
pronoun, but a biased model might be distracted by this cue. Here is an example
sentence:

(21.65) The secretary called the physiciani and told himi about a new patient
[pro-stereotypical]

(21.66) The secretary called the physiciani and told heri about a new patient
[anti-stereotypical]

Zhao et al. (2018a) consider a coreference system to be biased if it is more accu-
rate at linking pronouns consistent with gender stereotypical occupations (e.g., him
with physician in (21.65)) than linking pronouns inconsistent with gender-stereotypical
occupations (e.g., her with physician in (21.66)). They show that coreference sys-
tems of all architectures (rule-based, feature-based machine learned, and end-to-
end-neural) all show significant bias, performing on average 21 F1 points worse in
the anti-stereotypical cases.

One possible source of this bias is that female entities are significantly un-
derrepresented in the OntoNotes dataset, used to train most coreference systems.
Zhao et al. (2018a) propose a way to overcome this bias: they generate a second
gender-swapped dataset in which all male entities in OntoNotes are replaced with
female ones and vice versa, and retrain coreference systems on the combined orig-
inal and swapped OntoNotes data, also using debiased GloVE embeddings (Boluk-
basi et al., 2016). The resulting coreference systems no longer exhibit bias on the
WinoBias dataset, without significantly impacting OntoNotes coreference accuracy.
In a follow-up paper, Zhao et al. (2019) show that the same biases exist in ELMo
contextualized word vector representations and coref systems that use them. They
showed that retraining ELMo with data augmentation again reduces or removes bias
in coreference systems on WinoBias.

Webster et al. (2018) introduces another dataset, GAP, and the task of Gendered
Pronoun Resolution as a tool for developing improved coreference algorithms for
gendered pronouns. GAP is a gender-balanced labeled corpus of 4,454 sentences
with gendered ambiguous pronouns (by contrast, only 20% of the gendered pro-
nouns in the English OntoNotes training data are feminine). The examples were
created by drawing on naturally occurring sentences from Wikipedia pages to create
hard to resolve cases with two named entities of the same gender and an ambiguous
pronoun that may refer to either person (or neither), like the following:

(21.67) In May, Fujisawa joined Mari Motohashi’s rink as the team’s skip, moving
back from Karuizawa to Kitami where she had spent her junior days.

Webster et al. (2018) show that modern coreference algorithms perform signif-
icantly worse on resolving feminine pronouns than masculine pronouns in GAP.
Kurita et al. (2019) shows that a system based on BERT contextualized word repre-
sentations shows similar bias.
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21.10 Summary

This chapter introduced the task of coreference resolution.

• This is the task of linking together mentions in text which corefer, i.e. refer
to the same discourse entity in the discourse model, resulting in a set of
coreference chains (also called clusters or entities).

• Mentions can be definite NPs or indefinite NPs, pronouns (including zero
pronouns) or names.

• The surface form of an entity mention is linked to its information status
(new, old, or inferrable), and how accessible or salient the entity is.

• Some NPs are not referring expressions, such as pleonastic it in It is raining.
• Many corpora have human-labeled coreference annotations that can be used

for supervised learning, including OntoNotes for English, Chinese, and Ara-
bic, ARRAU for English, and AnCora for Spanish and Catalan.

• Mention detection can start with all nouns and named entities and then use
anaphoricity classifiers or referentiality classifiers to filter out non-mentions.

• Three common architectures for coreference are mention-pair, mention-rank,
and entity-based, each of which can make use of feature-based or neural clas-
sifiers.

• Modern coreference systems tend to be end-to-end, performing mention de-
tection and coreference in a single end-to-end architecture.

• Algorithms learn representations for text spans and heads, and learn to com-
pare anaphor spans with candidate antecedent spans.

• Coreference systems are evaluated by comparing with gold entity labels using
precision/recall metrics like MUC, B3, CEAF, BLANC, or LEA.

• The Winograd Schema Challenge problems are difficult coreference prob-
lems that seem to require world knowledge or sophisticated reasoning to solve.

• Coreference systems exhibit gender bias which can be evaluated using datasets
like Winobias and GAP.

Bibliographical and Historical Notes
Coreference has been part of natural language understanding since the 1970s (Woods
et al. 1972, Winograd 1972). The discourse model and the entity-centric foundation
of coreference was formulated by Karttunen (1969) (at the 3rd COLING confer-
ence), playing a role also in linguistic semantics (Heim 1982, Kamp 1981). But it
was Bonnie Webber’s (1978) dissertation and following work (Webber 1983) that
explored the model’s computational aspects, providing fundamental insights into
how entities are represented in the discourse model and the ways in which they can
license subsequent reference. Many of the examples she provided continue to chal-
lenge theories of reference to this day.

The Hobbs algorithm10 is a tree-search algorithm that was the first in a longHobbs
algorithm

series of syntax-based methods for identifying reference robustly in naturally occur-
ring text. The input to the Hobbs algorithm is a pronoun to be resolved, together

10 The simpler of two algorithms presented originally in Hobbs (1978).
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with a syntactic (constituency) parse of the sentences up to and including the cur-
rent sentence. The details of the algorithm depend on the grammar used, but can be
understand from a a simplified version due to Kehler et al. (2004) that just searches
through the list of NPs in the current and prior sentences. This simplified Hobbs
algorithm searches NPs in the following order: “(i) in the current sentence from
right-to-left, starting with the first NP to the left of the pronoun, (ii) in the previous
sentence from left-to-right, (iii) in two sentences prior from left-to-right, and (iv) in
the current sentence from left-to-right, starting with the first noun group to the right
of the pronoun (for cataphora). The first noun group that agrees with the pronoun
with respect to number, gender, and person is chosen as the antecedent” (Kehler
et al., 2004).

Lappin and Leass (1994) was an influential entity-based system that used weights
to combine syntactic and other features, extended soon after by Kennedy and Bogu-
raev (1996) whose system avoids the need for full syntactic parses.

Approximately contemporaneously centering (Grosz et al., 1995) was applied to
pronominal anaphora resolution by Brennan et al. (1987), and a wide variety of work
followed focused on centering’s use in coreference (Kameyama 1986, Di Euge-
nio 1990, Walker et al. 1994, Di Eugenio 1996, Strube and Hahn 1996, Kehler 1997a,
Tetreault 2001, Iida et al. 2003). Kehler and Rohde (2013) show how centering can
be integrated with coherence-driven theories of pronoun interpretation. See Chap-
ter 22 for the use of centering in measuring discourse coherence.

Coreference competitions as part of the US DARPA-sponsored MUC confer-
ences provided early labeled coreference datasets (the 1995 MUC-6 and 1998 MUC-
7 corpora), and set the tone for much later work, choosing to focus exclusively
on the simplest cases of identity coreference (ignoring difficult cases like bridging,
metonymy, and part-whole) and drawing the community toward supervised machine
learning and metrics like the MUC metric (Vilain et al., 1995). The later ACE eval-
uations produced labeled coreference corpora in English, Chinese, and Arabic that
were widely used for model training and evaluation.

This DARPA work influenced the community toward supervised learning be-
ginning in the mid-90s (Connolly et al. 1994, Aone and Bennett 1995, McCarthy
and Lehnert 1995). Soon et al. (2001) laid out a set of basic features, extended
by Ng and Cardie (2002b), and a series of machine learning models followed over
the next 15 years. These often focused separately on pronominal anaphora resolu-
tion (Kehler et al. 2004, Bergsma and Lin 2006), full NP coreference (Cardie and
Wagstaff 1999, Ng and Cardie 2002b, Ng 2005a) and definite NP reference (Poesio
and Vieira 1998, Vieira and Poesio 2000), as well as separate anaphoricity detection
(Bean and Riloff 1999, Bean and Riloff 2004, Ng and Cardie 2002a, Ng 2004), or
singleton detection (de Marneffe et al., 2015).

The move from mention-pair to mention-ranking approaches was pioneered by
Yang et al. (2003) and Iida et al. (2003) who proposed pairwise ranking methods,
then extended by Denis and Baldridge (2008) who proposed to do ranking via a soft-
max over all prior mentions. The idea of doing mention detection, anaphoricity, and
coreference jointly in a single end-to-end model grew out of the early proposal of Ng
(2005b) to use a dummy antecedent for mention-ranking, allowing ‘non-referential’
to be a choice for coreference classifiers, Denis and Baldridge’s (2007) joint sys-
tem combining anaphoricity classifier probabilities with coreference probabilities,
the Denis and Baldridge (2008) ranking model, and the Rahman and Ng (2009)
proposal to train the two models jointly with a single objective.

Simple rule-based systems for coreference returned to prominence in the 2010s,
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partly because of their ability to encode entity-based features in a high-precision
way (Zhou et al. 2004, Haghighi and Klein 2009, Raghunathan et al. 2010, Lee
et al. 2011, Lee et al. 2013, Hajishirzi et al. 2013) but in the end they suffered
from an inability to deal with the semantics necessary to correctly handle cases of
common noun coreference.

A return to supervised learning led to a number of advances in mention-ranking
models which were also extended into neural architectures, for example using re-
inforcement learning to directly optimize coreference evaluation models Clark and
Manning (2016a), doing end-to-end coreference all the way from span extraction
(Lee et al. 2017, Zhang et al. 2018). Neural models also were designed to take
advantage of global entity-level information (Clark and Manning 2016b, Wiseman
et al. 2016, Lee et al. 2018).

Coreference is also related to the task of entity linking discussed in Chapter 23.
Coreference can help entity linking by giving more possible surface forms to help
link to the right Wikipedia page, and conversely entity linking can help improve
coreference resolution. Consider this example from Hajishirzi et al. (2013):

(21.68) [Michael Eisner]1 and [Donald Tsang]2 announced the grand opening of
[[Hong Kong]3 Disneyland]4 yesterday. [Eisner]1 thanked [the President]2
and welcomed [fans]5 to [the park]4.

Integrating entity linking into coreference can help draw encyclopedic knowl-
edge (like the fact that Donald Tsang is a president) to help disambiguate the men-
tion the President. Ponzetto and Strube (2006) (2007) and Ratinov and Roth (2012)
showed that such attributes extracted from Wikipedia pages could be used to build
richer models of entity mentions in coreference. More recent research shows how to
do linking and coreference jointly (Hajishirzi et al. 2013, Zheng et al. 2013) or even
jointly with named entity tagging as well (Durrett and Klein 2014).

The coreference task as we introduced it involves a simplifying assumption that
the relationship between an anaphor and its antecedent is one of identity: the two
coreferring mentions refer to the identical discourse referent. In real texts, the rela-
tionship can be more complex, where different aspects of a discourse referent can
be neutralized or refocused. For example (21.69) (Recasens et al., 2011) shows an
example of metonymy, in which the capital city Washington is used metonymicallymetonymy

to refer to the US. (21.70-21.71) show other examples (Recasens et al., 2011):

(21.69) a strict interpretation of a policy requires The U.S. to notify foreign
dictators of certain coup plots ... Washington rejected the bid ...

(21.70) I once crossed that border into Ashgh-Abad on Nowruz, the Persian New
Year. In the South, everyone was celebrating New Year; to the North, it
was a regular day.

(21.71) In France, the president is elected for a term of seven years, while in the
United States he is elected for a term of four years.

For further linguistic discussions of these complications of coreference see Puste-
jovsky (1991), van Deemter and Kibble (2000), Poesio et al. (2006), Fauconnier and
Turner (2008), Versley (2008), and Barker (2010).

Ng (2017) offers a useful compact history of machine learning models in coref-
erence resolution. There are three excellent book-length surveys of anaphora/coref-
erence resolution, covering different time periods: Hirst (1981) (early work until
about 1981), Mitkov (2002) (1986-2001), and Poesio et al. (2016) (2001-2015).

Andy Kehler wrote the Discourse chapter for the 2000 first edition of this text-
book, which we used as the starting point for the second-edition chapter, and there
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are some remnants of Andy’s lovely prose still in this third-edition coreference chap-
ter.

Exercises
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CHAPTER

22 Discourse Coherence

And even in our wildest and most wandering reveries, nay in our very dreams,
we shall find, if we reflect, that the imagination ran not altogether at adven-
tures, but that there was still a connection upheld among the different ideas,
which succeeded each other. Were the loosest and freest conversation to be
transcribed, there would immediately be transcribed, there would immediately
be observed something which connected it in all its transitions.

David Hume, An enquiry concerning human understanding, 1748

Orson Welles’ movie Citizen Kane was groundbreaking in many ways, perhaps most
notably in its structure. The story of the life of fictional media magnate Charles
Foster Kane, the movie does not proceed in chronological order through Kane’s
life. Instead, the film begins with Kane’s death (famously murmuring “Rosebud”)
and is structured around flashbacks to his life inserted among scenes of a reporter
investigating his death. The novel idea that the structure of a movie does not have
to linearly follow the structure of the real timeline made apparent for 20th century
cinematography the infinite possibilities and impact of different kinds of coherent
narrative structures.

But coherent structure is not just a fact about movies or works of art. Like
movies, language does not normally consist of isolated, unrelated sentences, but
instead of collocated, structured, coherent groups of sentences. We refer to such
a coherent structured group of sentences as a discourse, and we use the word co-discourse

herence to refer to the relationship between sentences that makes real discoursescoherence

different than just random assemblages of sentences. The chapter you are now read-
ing is an example of a discourse, as is a news article, a conversation, a thread on
social media, a Wikipedia page, and your favorite novel.

What makes a discourse coherent? If you created a text by taking random sen-
tences each from many different sources and pasted them together, would that be a
coherent discourse? Almost certainly not. Real discourses exhibit both local coher-local

ence and global coherence. Let’s consider three ways in which real discourses areglobal

locally coherent;
First, sentences or clauses in real discourses are related to nearby sentences in

systematic ways. Consider this example from Hobbs (1979):

(22.1) John took a train from Paris to Istanbul. He likes spinach.

This sequence is incoherent because it is unclear to a reader why the second
sentence follows the first; what does liking spinach have to do with train trips? In
fact, a reader might go to some effort to try to figure out how the discourse could be
coherent; perhaps there is a French spinach shortage? The very fact that hearers try
to identify such connections suggests that human discourse comprehension involves
the need to establish this kind of coherence.

By contrast, in the following coherent example:

(22.2) Jane took a train from Paris to Istanbul. She had to attend a conference.
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the second sentence gives a REASON for Jane’s action in the first sentence. Struc-
tured relationships like REASON that hold between text units are called coherence
relations, and coherent discourses are structured by many such coherence relations.coherence

relations
Coherence relations are introduced in Section 22.1.

A second way a discourse can be locally coherent is by virtue of being “about”
someone or something. In a coherent discourse some entities are salient, and the
discourse focuses on them and doesn’t go back and forth between multiple entities.
This is called entity-based coherence. Consider the following incoherent passage,
in which the salient entity seems to wildly swing from John to Jenny to the piano
store to the living room, back to Jenny, then the piano again:

(22.3) John wanted to buy a piano for his living room.
Jenny also wanted to buy a piano.
He went to the piano store.
It was nearby.
The living room was on the second floor.
She didn’t find anything she liked.
The piano he bought was hard to get up to that floor.

Entity-based coherence models measure this kind of coherence by tracking salient
entities across a discourse. For example Centering Theory (Grosz et al., 1995), theCentering

Theory
most influential theory of entity-based coherence, keeps track of which entities in
the discourse model are salient at any point (salient entities are more likely to be
pronominalized or to appear in prominent syntactic positions like subject or object).
In Centering Theory, transitions between sentences that maintain the same salient
entity are considered more coherent than ones that repeatedly shift between entities.
The entity grid model of coherence (Barzilay and Lapata, 2008) is a commonlyentity grid

used model that realizes some of the intuitions of the Centering Theory framework.
Entity-based coherence is introduced in Section 22.3.

Finally, discourses can be locally coherent by being topically coherent: nearbytopically
coherent

sentences are generally about the same topic and use the same or similar vocab-
ulary to discuss these topics. Because topically coherent discourses draw from a
single semantic field or topic, they tend to exhibit the surface property known as
lexical cohesion (Halliday and Hasan, 1976): the sharing of identical or semanti-lexical cohesion

cally related words in nearby sentences. For example, the fact that the words house,
chimney, garret, closet, and window— all of which belong to the same semantic
field— appear in the two sentences in (22.4), or that they share the identical word
shingled, is a cue that the two are tied together as a discourse:

(22.4) Before winter I built a chimney, and shingled the sides of my house...
I have thus a tight shingled and plastered house... with a garret and a

closet, a large window on each side....

In addition to the local coherence between adjacent or nearby sentences, dis-
courses also exhibit global coherence. Many genres of text are associated with
particular conventional discourse structures. Academic articles might have sections
describing the Methodology or Results. Stories might follow conventional plotlines
or motifs. Persuasive essays have a particular claim they are trying to argue for,
and an essay might express this claim together with a structured set of premises that
support the argument and demolish potential counterarguments. We’ll introduce
versions of each of these kinds of global coherence.

Why do we care about the local or global coherence of a discourse? Since co-
herence is a property of a well-written text, coherence detection plays a part in any
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task that requires measuring the quality of a text. For example coherence can help
in pedagogical tasks like essay grading or essay quality measurement that are try-
ing to grade how well-written a human essay is (Somasundaran et al. 2014, Feng
et al. 2014, Lai and Tetreault 2018). Coherence can also help for summarization;
knowing the coherence relationship between sentences can help know how to se-
lect information from them. Finally, detecting incoherent text may even play a role
in mental health tasks like measuring symptoms of schizophrenia or other kinds
of disordered language (Ditman and Kuperberg 2010, Elvevåg et al. 2007, Bedi
et al. 2015, Iter et al. 2018).

22.1 Coherence Relations

Recall from the introduction the difference between passages (22.5) and (22.6).

(22.5) Jane took a train from Paris to Istanbul. She likes spinach.
(22.6) Jane took a train from Paris to Istanbul. She had to attend a conference.

The reason (22.6) is more coherent is that the reader can form a connection be-
tween the two sentences, in which the second sentence provides a potential REASON
for the first sentences. This link is harder to form for (22.5). These connections
between text spans in a discourse can be specified as a set of coherence relations.coherence

relation
The next two sections describe two commonly used models of coherence relations
and associated corpora: Rhetorical Structure Theory (RST), and the Penn Discourse
TreeBank (PDTB).

22.1.1 Rhetorical Structure Theory
The most commonly used model of discourse organization is Rhetorical Structure
Theory (RST) (Mann and Thompson, 1987). In RST relations are defined betweenRST

two spans of text, generally a nucleus and a satellite. The nucleus is the unit thatnucleus

satellite is more central to the writer’s purpose and that is interpretable independently; the
satellite is less central and generally is only interpretable with respect to the nucleus.
Some symmetric relations, however, hold between two nuclei.

Below are a few examples of RST coherence relations, with definitions adapted
from the RST Treebank Manual (Carlson and Marcu, 2001).

Reason: The nucleus is an action carried out by an animate agent and the satellite
is the reason for the nucleus.

(22.7) [NUC Jane took a train from Paris to Istanbul.] [SAT She had to attend a
conference.]

Elaboration: The satellite gives additional information or detail about the situation
presented in the nucleus.

(22.8) [NUC Dorothy was from Kansas.] [SAT She lived in the midst of the great
Kansas prairies.]

Evidence: The satellite gives additional information or detail about the situation
presented in the nucleus. The information is presented with the goal of convince the
reader to accept the information presented in the nucleus.

(22.9) [NUC Kevin must be here.] [SAT His car is parked outside.]
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Attribution: The satellite gives the source of attribution for an instance of reported
speech in the nucleus.

(22.10) [SAT Analysts estimated] [NUC that sales at U.S. stores declined in the
quarter, too]

List: In this multinuclear relation, a series of nuclei is given, without contrast or
explicit comparison:

(22.11) [NUC Billy Bones was the mate; ] [NUC Long John, he was quartermaster]

RST relations are traditionally represented graphically; the asymmetric Nucleus-
Satellite relation is represented with an arrow from the satellite to the nucleus:

Kevin must be here. His car is parked outside

evidence

We can also talk about the coherence of a larger text by considering the hierar-
chical structure between coherence relations. Figure 22.1 shows the rhetorical struc-
ture of a paragraph from Marcu (2000a) for the text in (22.12) from the Scientific
American magazine.

(22.12) With its distant orbit–50 percent farther from the sun than Earth–and slim
atmospheric blanket, Mars experiences frigid weather conditions. Surface
temperatures typically average about -60 degrees Celsius (-76 degrees
Fahrenheit) at the equator and can dip to -123 degrees C near the poles. Only
the midday sun at tropical latitudes is warm enough to thaw ice on occasion,
but any liquid water formed in this way would evaporate almost instantly
because of the low atmospheric pressure.

Title
(1)

Mars

2-9

evidence

2-3

background

  (2)
WIth its 

distant orbit  
<p> -- 50
 percent 

farther from 
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Figure 22.1 A discourse tree for the Scientific American text in (22.12), from Marcu (2000a). Note that
asymmetric relations are represented with a curved arrow from the satellite to the nucleus.

The leaves in the Fig. 22.1 tree correspond to text spans of a sentence, clause or
phrase that are called elementary discourse units or EDUs in RST; these units canEDU

also be referred to as discourse segments. Because these units may correspond to
arbitrary spans of text, determining the boundaries of an EDU is an important task
for extracting coherence relations. Roughly speaking, one can think of discourse
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segments as being analogous to constituents in sentence syntax, and indeed as we’ll
see in Section 22.2 we generally draw on parsing algorithms to infer discourse struc-
ture.

There are corpora for many discourse coherence models; the RST Discourse
TreeBank (Carlson et al., 2001) is the largest available discourse corpus. It con-
sists of 385 English language documents selected from the Penn Treebank, with full
RST parses for each one, using a large set of 78 distinct relations, grouped into 16
classes. RST treebanks exist also for Spanish, German, Basque, Dutch and Brazilian
Portuguese (Braud et al., 2017).

Now that we’ve seen examples of coherence, we can see more clearly how a
coherence relation can play a role in summarization or information extraction. For
example, the nuclei of a text presumably express more important information than
the satellites, which might be dropped in a summary.

22.1.2 Penn Discourse TreeBank (PDTB)
The Penn Discourse TreeBank (PDTB) is a second commonly used dataset thatPDTB

embodies another model of coherence relations (Miltsakaki et al. 2004, Prasad et al. 2008,
Prasad et al. 2014). PDTB labeling is lexically grounded. Instead of asking anno-
tators to directly tag the coherence relation between text spans, they were given a
list of discourse connectives, words that signal discourse relations, like because,discourse

connectives
although, when, since, or as a result. In a part of a text where these words marked a
coherence relation between two text spans, the connective and the spans were then
annotated, as in Fig. 22.13, where the phrase as a result signals a causal relationship
between what PDTB calls Arg1 (the first two sentences, here in italics) and Arg2
(the third sentence, here in bold).

(22.13) Jewelry displays in department stores were often cluttered and uninspired.
And the merchandise was, well, fake. As a result, marketers of faux gems
steadily lost space in department stores to more fashionable
rivals—cosmetics makers.

(22.14) In July, the Environmental Protection Agency imposed a gradual ban on
virtually all uses of asbestos. (implicit=as a result) By 1997, almost all
remaining uses of cancer-causing asbestos will be outlawed.

Not all coherence relations are marked by an explicit discourse connective, and
so the PDTB also annotates pairs of neighboring sentences with no explicit signal,
like (22.14). The annotator first chooses the word or phrase that could have been its
signal (in this case as a result), and then labels its sense. For example for the am-
biguous discourse connective since annotators marked whether it is using a CAUSAL
or a TEMPORAL sense.

The final dataset contains roughly 18,000 explicit relations and 16,000 implicit
relations. Fig. 22.2 shows examples from each of the 4 major semantic classes, while
Fig. 22.3 shows the full tagset.

Unlike the RST Discourse Treebank, which integrates these pairwise coherence
relations into a global tree structure spanning an entire discourse, the PDTB does not
annotate anything above the span-pair level, making no commitment with respect to
higher-level discourse structure.

There are also treebanks using similar methods for other languages; (22.15)
shows an example from the Chinese Discourse TreeBank (Zhou and Xue, 2015).
Because Chinese has a smaller percentage of explicit discourse connectives than
English (only 22% of all discourse relations are marked with explicit connectives,
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Class Type Example
TEMPORAL SYNCHRONOUS The parishioners of St. Michael and All Angels stop to chat at

the church door, as members here always have. (Implicit while)
In the tower, five men and women pull rhythmically on ropes
attached to the same five bells that first sounded here in 1614.

CONTINGENCY REASON Also unlike Mr. Ruder, Mr. Breeden appears to be in a position
to get somewhere with his agenda. (implicit=because) As a for-
mer White House aide who worked closely with Congress,
he is savvy in the ways of Washington.

COMPARISON CONTRAST The U.S. wants the removal of what it perceives as barriers to
investment; Japan denies there are real barriers.

EXPANSION CONJUNCTION Not only do the actors stand outside their characters and make
it clear they are at odds with them, but they often literally stand
on their heads.

Figure 22.2 The four high-level semantic distinctions in the PDTB sense hierarchy

Temporal Comparison
• Asynchronous • Contrast (Juxtaposition, Opposition)
• Synchronous (Precedence, Succession) •Pragmatic Contrast (Juxtaposition, Opposition)

• Concession (Expectation, Contra-expectation)
• Pragmatic Concession

Contingency Expansion
• Cause (Reason, Result) • Exception
• Pragmatic Cause (Justification) • Instantiation
• Condition (Hypothetical, General, Unreal

Present/Past, Factual Present/Past)
• Restatement (Specification, Equivalence, Generalization)

• Pragmatic Condition (Relevance, Implicit As-
sertion)

• Alternative (Conjunction, Disjunction, Chosen Alterna-
tive)
• List

Figure 22.3 The PDTB sense hierarchy. There are four top-level c
¯
lasses, 16 types, and 23 subtypes (not all

types have subtypes). 11 of the 16 types are commonly used for implicit argument classification; the 5 types in
italics are too rare in implicit labeling to be used.

compared to 47% in English), annotators labeled this corpus by directly mapping
pairs of sentences to 11 sense tags, without starting with a lexical discourse connec-
tor.

(22.15) [Conn为] [Arg2推动图们江地区开发]，[Arg1韩国捐款一百万美元
设立了图们江发展基金]
“[In order to] [Arg2 promote the development of the Tumen River region],
[Arg1 South Korea donated one million dollars to establish the Tumen
River Development Fund].”

These discourse treebanks have been used for shared tasks on multilingual dis-
course parsing (Xue et al., 2016).

22.2 Discourse Structure Parsing

Given a sequence of sentences, how can we automatically determine the coherence
relations between them? This task is often called discourse parsing (even thoughdiscourse

parsing
for PDTB we are only assigning labels to leaf spans and not building a full parse
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tree as we do for RST).

22.2.1 EDU segmentation for RST parsing
RST parsing is generally done in two stages. The first stage, EDU segmentation,
extracts the start and end of each EDU. The output of this stage would be a labeling
like the following:

(22.16) [Mr. Rambo says]e1 [that a 3.2-acre property]e2 [overlooking the San
Fernando Valley]e3 [is priced at $4 million]e4 [because the late actor Erroll
Flynn once lived there.]e5

Since EDUs roughly correspond to clauses, early models of EDU segmentation
first ran a syntactic parser, and then post-processed the output. Modern systems
generally use neural sequence models supervised by the gold EDU segmentation in
the RST Discourse Treebank. Fig. 22.4 shows an example after Wang et al. (2018)
and Muller et al. (2019) of a supervised architecture that uses the biLSTM-CRF
architecture we saw for named entity tagging and semantic role labeling. Here the
input sentence is passed through an encoder and then passed through a biLSTM with
a CRF layer on top to produce a sequence of 0s and 1, where 1 indicates the start of
an EDU (except at the start of sentence).

Mr. Rambo says that

LSTM1 LSTM1 LSTM1 LSTM1

LSTM2 LSTM2 LSTM2 LSTM2biLSTM

0 0 0 1CRF Layer

Word 
Representations

ENCODER

…

Figure 22.4 biLSTM-CRF for EDU segmentation. Word inputs can draw from any encoder
for contextual embeddings like BERT.

22.2.2 RST parsing
Tools for building RST coherence structure for a discourse have long been based on
syntactic parsing algorithms like shift-reduce parsing (Marcu, 1999). Many modern
RST parsers since Ji and Eisenstein (2014) draw on the neural syntactic parsers we
saw in Chapter 14 in Section 14.4, using representation learning to build represen-
tations for each span, and training a parser to choose the correct shift and reduce
actions based on the gold parses in the training set.

We’ll describe the shift-reduce parser of Yu et al. (2018). The parser state con-
sists of a stack and a queue, and produces this structure by taking a series of actions
on the states. Actions include:
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• shift: pushes the first EDU in the queue onto the stack creating a single-node
subtree.

• reduce(l,d): merges the top two subtrees on the stack, where l is the coherence
relation label, and d is the nuclearity direction, d ∈ {NN,NS,SN}.

As well as the pop root operation, to remove the final tree from the stack.

560

e1 e2 e3 e4

attr elab

elab e1: American Telephone & Telegraph Co. said it
e2: will lay off 75 to 85 technicians here , effective Nov. 1.
e3: The workers install , maintain and repair its private branch exchanges,
e4: which are large intracompany telephone networks.

Figure 1: An example of RST discourse tree, where {e1, e2, e3, e4} are EDUs, attr and elab are
discourse relation labels, and arrows indicate the nuclearities of discourse relations.

RST discourse parsing. Other studies still adopt discrete syntax features proposed by statistical models,
feeding them into neural network models (Braud et al., 2016; Braud et al., 2017).

The above approaches model syntax trees in an explicit way, requiring discrete syntax parsing outputs
as inputs for RST parsing. These approaches may suffer from the error propagation problem. Syntax trees
produced by a supervised syntax parsing model could have errors, which may propagate into discourse
parsing models. The problem could be extremely serious when inputs of discourse parsing have different
distributions with the training data of the supervised syntax parser. Recently, Zhang et al. (2017) suggest
an alternative method, which extracts syntax features from a Bi-Affine dependency parser (Dozat and
Manning, 2016), and the method gives competitive performances on relation extraction. It actually
represents syntax trees implicitly, thus it can reduce the error propagation problem.

In this work, we investigate the implicit syntax feature extraction approach for RST parsing. In ad-
dition, we propose a transition-based neural model for this task, which is able to incorporate various
features flexibly. We exploit hierarchical bi-directional LSTMs (Bi-LSTMs) to encode texts, and further
enhance the transition-based model with dynamic oracle. Based on the proposed model, we study the
effectiveness of our proposed implicit syntax features. We conduct experiments on a standard RST dis-
course TreeBank (Carlson et al., 2003). First, we evaluate the performance of our proposed transition-
based baseline, finding that the model is able to achieve strong performances after applying dynamic
oracle. Then we evaluate the effectiveness of implicit syntax features extracted from a Bi-Affine depen-
dency parser. Results show that the implicit syntax features are effective, giving better performances than
explicit Tree-LSTM (Li et al., 2015b). Our codes will be released for public under the Apache License
2.0 at https://github.com/yunan4nlp/NNDisParser.

In summary, we mainly make the following two contributions in this work: (1) we propose a transition-
based neural RST discourse parsing model with dynamic oracle, (2) we compare three different syntactic
integration approaches proposed by us. The rest of the paper is organized as follows. Section 2 describes
our proposed models including the transition-based neural model, the dynamic oracle strategy and the
implicit syntax feature extraction approach. Section 3 presents the experiments to evaluate our models.
Section 4 shows the related work. Finally, section 5 draws conclusions.

2 Transition-based Discourse Parsing

We follow Ji and Eisenstein (2014), exploiting a transition-based framework for RST discourse parsing.
The framework is conceptually simple and flexible to support arbitrary features, which has been widely
used in a number of NLP tasks (Zhu et al., 2013; Dyer et al., 2015; Zhang et al., 2016). In addition, a
transition-based model formalizes a certain task into predicting a sequence of actions, which is essential
similar to sequence-to-sequence models proposed recently (Bahdanau et al., 2014). In the following,
we first describe the transition system for RST discourse parsing, and then introduce our neural network
model by its encoder and decoder parts, respectively. Thirdly, we present our proposed dynamic oracle
strategy aiming to enhance the transition-based model. Then we introduce the integration method of
implicit syntax features. Finally we describe the training method of our neural network models.

2.1 The Transition-based System
The transition-based framework converts a structural learning problem into a sequence of action predic-
tions, whose key point is a transition system. A transition system consists of two parts: states and actions.
The states are used to store partially-parsed results and the actions are used to control state transitions.

Figure 22.5 Example RST discourse tree, showing four EDUs. Figure from Yu et al. (2018).

Fig. 22.6 shows the actions the parser takes to build the structure in Fig. 22.5.

561

Step Stack Queue Action Relation

1 ? e1, e2, e3, e4 SH ?
2 e1 e2, e3, e4 SH ?
3 e1, e2 e3, e4 RD(attr,SN) ?
4 e1:2 e3, e4 SH de1e2
5 e1:2 , e3 e4 SH de1e2
6 e1:2 , e3, e4 ? RD(elab,NS) de1e2
7 e1:2 , e3:4 ? RD(elab,SN) de1e2, de3e4

8 e1:4 ? PR de1e2, de3e4, \e1:2e3:4

Table 1: An example of the transition-based system for RST discourse parsing.

The initial state is an empty state, and the final state represents a full result. There are three kinds of
actions in our transition system:

• Shift (SH), which removes the first EDU in the queue onto the stack, forming a single-node subtree.

• Reduce (RD) (l,d), which merges the top two subtrees on the stack, where l is a discourse relation
label, and d 2 {NN,NS,SN} indicates the relation nuclearity (nuclear (N) or satellite (S)).

• Pop Root (PR), which pops out the top tree on the stack, marking the decoding being completed,
when the stack holds only one subtree and the queue is empty.

Given the RST tree as shown in Figure 1, it can be generated by the following action sequence: {SH,
SH, RD(attr,SN), SH, SH, RD(elab,NS), RD(elab,SN), PR}. Table 1 shows the decoding
process in detail. By this way, we naturally convert RST discourse parsing into predicting a sequence of
transition actions, where each line includes a state and next step action referring to the tree.

2.2 Encoder-Decoder
Previous transition-based RST discourse parsing studies exploit statistical models, using manually-
designed discrete features (Sagae, 2009; Heilman and Sagae, 2015; Wang et al., 2017). In this work, we
propose a transition-based neural model for RST discourse parsing, which follows an encoder-decoder
framework. Given an input sequence of EDUs {e1, e2, ..., en}, the encoder computes the input represen-
tations {he

1,h
e
2, ...,h

e
n}, and the decoder predicts next step actions conditioned on the encoder outputs.

2.2.1 Encoder
We follow Li et al. (2016), using hierarchical Bi-LSTMs to encode the source EDU inputs, where the
first-layer is used to represent sequencial words inside of EDUs, and the second layer is used to represent
sequencial EDUs. Given an input sentence {w1, w2, ..., wm}, first we represent each word by its form
(e.g., wi) and POS tag (e.g. ti), concatenating their neural embeddings. By this way, the input vectors
of the first-layer Bi-LSTM are {xw

1 ,xw
2 , ...,xw

m}, where xw
i = emb(wi) � emb(ti), and then we apply

Bi-LSTM directly, obtaining:

{hw
1 ,hw

2 , ...,hw
m} = Bi-LSTM({xw

1 ,xw
2 , ...,xw

m}) (1)

The second-layer Bi-LSTM is built over sequential EDUs. We should first obtain a suitable representa-
tion for each EDU, which is composed by a span of words inside a certain sentence. Assuming an EDU
with its words by {ws, ws+1, ..., wt}, after applying the first-layer Bi-LSTM, we obtain their representa-
tions by {hw

s ,hw
s+1...,h

w
t }, then we calculate the EDU representation by average pooling:

xe =
1

t� s + 1

tX

s

hw
k (2)

When the EDU representations are ready, we apply the second-layer Bi-LSTM directly, resulting:

{he
1,h

e
2, ...,h

e
n} = Bi-LSTM({xe

1,x
e
2, ...,x

e
n}) (3)

Figure 22.6 Parsing the example of Fig. 22.5 using a shift-reduce parser. Figure from Yu
et al. (2018).

The Yu et al. (2018) uses an encoder-decoder architecture, where the encoder
represents the input span of words and EDUs using a hierarchical biLSTM. The
first biLSTM layer represents the words inside an EDU, and the second represents
the EDU sequence. Given an input sentence w1,w2, ...,wm, the words can be repre-
sented as usual (by static embeddings, combinations with character embeddings or
tags, or contextual embeddings) resulting in an input word representation sequence
xw

1 ,x
w
2 , ...,x

w
m. The result of the word-level biLSTM is then a sequence of hw values:

hw
1 ,h

w
2 , ...,h

w
m = biLSTM(xw

1 ,x
w
2 , ...,x

w
m) (22.17)

An EDU of span ws,ws+1, ...,wt then has biLSTM output representation hw
s ,h

w
s+1, ...,h

w
t ,

and is represented by average pooling:

xe =
1

t− s+1

t∑

k=s

hw
k (22.18)

The second layer uses this input to compute a final representation of the sequence of
EDU representations he:

he
1,h

e
2, ...,h

e
n = biLSTM(xe

1,x
e
2, ...,x

e
n) (22.19)

The decoder is then a feedforward network W that outputs an action o based on a
concatenation of the top three subtrees on the stack (so,s1,s2) plus the first EDU in
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the queue (q0):

o = W(ht
s0,h

t
s1,h

t
s2,h

e
q0) (22.20)

where the representation of the EDU on the queue he
q0 comes directly from the

encoder, and the three hidden vectors representing partial trees are computed by
average pooling over the encoder output for the EDUs in those trees:

ht
s =

1
j− i+1

j∑

k=i

he
k (22.21)

Training first maps each RST gold parse tree into a sequence of oracle actions, and
then uses the standard cross-entropy loss (with l2 regularization) to train the system
to take such actions. Give a state S and oracle action a, we first compute the decoder
output using Eq. 22.20, apply a softmax to get probabilities:

pa =
exp(oa)∑

a′∈A exp(oa′)
(22.22)

and then computing the cross-entropy loss:

LCE() = − log(pa)+
λ

2
||Θ||2 (22.23)

RST discourse parsers are evaluated on the test section of the RST Discourse Tree-
bank, either with gold EDUs or end-to-end, using the RST-Pareval metrics (Marcu,
2000b). It is standard to first transform the gold RST trees into right-branching bi-
nary trees, and to report four metrics: trees with no labels (S for Span), labeled with
nuclei (N), with relations (R), or both (F for Full), for each metric computing micro-
averaged F1 over all spans from all documents (Marcu 2000b, Morey et al. 2017).

22.2.3 PDTB discourse parsing
PDTB discourse parsing, the task of detecting PDTB coherence relations between
spans, is sometimes called shallow discourse parsing because the task just involves

shallow
discourse

parsing
flat relationships between text spans, rather than the full trees of RST parsing.

The set of four subtasks for PDTB discourse parsing was laid out by Lin et al.
(2014) in the first complete system, with separate tasks for explicit (tasks 1-3) and
implicit (task 4) connectives:

1. Find the discourse connectives (disambiguating them from non-discourse uses)
2. Find the two spans for each connective
3. Label the relationship between these spans
4. Assign a relation between every adjacent pair of sentences

Many systems have been proposed for Task 4: taking a pair of adjacent sentences
as input and assign a coherence relation sense label as output. The setup often fol-
lows Lin et al. (2009) in assuming gold sentence span boundaries and assigning each
adjacent span one of the 11 second-level PDTB tags or none (removing the 5 very
rare tags of the 16 shown in italics in Fig. 22.3).

A simple but very strong algorithm for Task 4 is to represent each of the two
spans by BERT embeddings and take the last layer hidden state corresponding to
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the position of the [CLS] token, pass this through a single layer tanh feedforward
network and then a softmax for sense classification (Nie et al., 2019).

Each of the other tasks also have been addressed. Task 1 is to disambiguat-
ing discourse connectives from their non-discourse use. For example as Pitler and
Nenkova (2009) point out, the word and is a discourse connective linking the two
clauses by an elaboration/expansion relation in (22.24) while it’s a non-discourse
NP conjunction in (22.25):

(22.24) Selling picked up as previous buyers bailed out of their positions and
aggressive short sellers—anticipating further declines—moved in.

(22.25) My favorite colors are blue and green.

Similarly, once is a discourse connective indicating a temporal relation in (22.26),
but simply a non-discourse adverb meaning ‘formerly’ and modifying used in (22.27):

(22.26) The asbestos fiber, crocidolite, is unusually resilient once it enters the
lungs, with even brief exposures to it causing symptoms that show up
decades later, researchers said.

(22.27) A form of asbestos once used to make Kent cigarette filters has caused a
high percentage of cancer deaths among a group of workers exposed to it
more than 30 years ago, researchers reported.

Determining whether a word is a discourse connective is thus a special case
of word sense disambiguation. Early work on disambiguation showed that the 4
PDTB high-level sense classes could be disambiguated with high (94%) accuracy
used syntactic features from gold parse trees (Pitler and Nenkova, 2009). Recent
work performs the task end-to-end from word inputs using a biLSTM-CRF with
BIO outputs (B-CONN, I-CONN, O) (Yu et al., 2019).

For task 2, PDTB spans can be identified with the same sequence models used to
find RST EDUs: a biLSTM sequence model with pretrained contextual embedding
(BERT) inputs (Muller et al., 2019). Simple heuristics also do pretty well as a base-
line at finding spans, since 93% of relations are either completely within a single
sentence or span two adjacent sentences, with one argument in each sentence (Biran
and McKeown, 2015).

22.3 Centering and Entity-Based Coherence

A second way a discourse can be coherent is by virtue of being “about” some entity.
This idea that at each point in the discourse some entity is salient, and a discourse
is coherent by continuing to discuss the same entity, appears early in functional lin-
guistics and the psychology of discourse (Chafe 1976, Kintsch and Van Dijk 1978),
and soon made its way to computational models. In this section we introduce two
models of this kind of entity-based coherence: Centering Theory (Grosz et al.,entity-based

1995), and the entity grid model of Barzilay and Lapata (2008).

22.3.1 Centering
Centering Theory (Grosz et al., 1995) is a theory of both discourse salience andCentering

Theory
discourse coherence. As a model of discourse salience, Centering proposes that at
any given point in the discourse one of the entities in the discourse model is salient:
it is being “centered” on. As a model of discourse coherence, Centering proposes
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that discourses in which adjacent sentences CONTINUE to maintain the same salient
entity are more coherent than those which SHIFT back and forth between multiple
entities (we will see that CONTINUE and SHIFT are technical terms in the theory).

The following two texts from Grosz et al. (1995) which have exactly the same
propositional content but different saliences, can help in understanding the main
Centering intuition.

(22.28) a. John went to his favorite music store to buy a piano.
b. He had frequented the store for many years.
c. He was excited that he could finally buy a piano.
d. He arrived just as the store was closing for the day.

(22.29) a. John went to his favorite music store to buy a piano.
b. It was a store John had frequented for many years.
c. He was excited that he could finally buy a piano.
d. It was closing just as John arrived.

While these two texts differ only in how the two entities (John and the store) are
realized in the sentences, the discourse in (22.28) is intuitively more coherent than
the one in (22.29). As Grosz et al. (1995) point out, this is because the discourse
in (22.28) is clearly about one individual, John, describing his actions and feelings.
The discourse in (22.29), by contrast, focuses first on John, then the store, then back
to John, then to the store again. It lacks the “aboutness” of the first discourse.

Centering Theory realizes this intuition by maintaining two representations for
each utterance Un. The backward-looking center of Un, denoted as Cb(Un), rep-

backward-
looking

center resents the current salient entity, the one being focused on in the discourse after Un
is interpreted. The forward-looking centers of Un, denoted as C f (Un), are a setforward-looking

center
of potential future salient entities, the discourse entities evoked by Un any of which
could serve as Cb (the salient entity) of the following utterance, i.e. Cb(Un+1).

The set of forward-looking centers C f (Un) are ranked according to factors like
discourse salience and grammatical role (for example subjects are higher ranked
than objects, which are higher ranked than all other grammatical roles). We call the
highest-ranked forward-looking center Cp (for “preferred center”). Cp is a kind of
prediction about what entity will be talked about next. Sometimes the next utterance
indeed talks about this entity, but sometimes another entity becomes salient instead.

We’ll use here the algorithm for centering presented in Brennan et al. (1987),
which defines four intersentential relationships between a pair of utterances Un and
Un+1 that depend on the relationship between Cb(Un+1), Cb(Un), and Cp(Un+1);
these are shown in Fig. 22.7.

Cb(Un+1) =Cb(Un) Cb(Un+1) 6=Cb(Un)
or undefined Cb(Un)

Cb(Un+1) =Cp(Un+1) Continue Smooth-Shift
Cb(Un+1) 6=Cp(Un+1) Retain Rough-Shift

Figure 22.7 Centering Transitions for Rule 2 from Brennan et al. (1987).

The following rules are used by the algorithm:

Rule 1: If any element of C f (Un) is realized by a pronoun in utterance
Un+1, then Cb(Un+1) must be realized as a pronoun also.

Rule 2: Transition states are ordered. Continue is preferred to Retain is
preferred to Smooth-Shift is preferred to Rough-Shift.
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Rule 1 captures the intuition that pronominalization (including zero-anaphora)
is a common way to mark discourse salience. If there are multiple pronouns in an
utterance realizing entities from the previous utterance, one of these pronouns must
realize the backward center Cb; if there is only one pronoun, it must be Cb.

Rule 2 captures the intuition that discourses that continue to center the same en-
tity are more coherent than ones that repeatedly shift to other centers. The transition
table is based on two factors: whether the backward-looking center Cb is the same
from Un to Un+1 and whether this discourse entity is the one that was preferred (Cp)
from Un. If both of these hold, a CONTINUE relation, the speaker has been talking
about the same entity and is going to continue talking about that entity. In a RETAIN
relation, the speaker intends to SHIFT to a new entity in a future utterance and mean-
while places the current entity in a lower rank C f . In a SHIFT relation, the speaker is
shifting to a new salient entity.

Let’s walk though the start of (22.28) again, repeated as (22.30), showing the
representations after each utterance is processed.

(22.30) John went to his favorite music store to buy a piano. (U1)
He was excited that he could finally buy a piano. (U2)
He arrived just as the store was closing for the day. (U3)
It was closing just as John arrived (U4)

Using the grammatical role hierarchy to order the C f , for sentence U1 we get:

C f (U1): {John, music store, piano}
Cp(U1): John
Cb(U1): undefined

and then for sentence U2:

C f (U2): {John, piano}
Cp(U2): John
Cb(U2): John
Result: Continue (Cp(U2)=Cb(U2); Cb(U1) undefined)

The transition from U1 to U2 is thus a CONTINUE. Completing this example is left
as exercise (1) for the reader

22.3.2 Entity Grid model
Centering embodies a particular theory of how entity mentioning leads to coher-
ence: that salient entities appear in subject position or are pronominalized, and that
discourses are salient by means of continuing to mention the same entity in such
ways.

The entity grid model of Barzilay and Lapata (2008) is an alternative way toentity grid

capture entity-based coherence: instead of having a top-down theory, the entity-grid
model using machine learning to induce the patterns of entity mentioning that make
a discourse more coherent.

The model is based around an entity grid, a two-dimensional array that repre-
sents the distribution of entity mentions across sentences. The rows represent sen-
tences, and the columns represent discourse entities (most versions of the entity grid
model focus just on nominal mentions). Each cell represents the possible appearance
of an entity in a sentence, and the values represent whether the entity appears and its
grammatical role. Grammatical roles are subject (S), object (O), neither (X), or ab-
sent (–); in the implementation of Barzilay and Lapata (2008), subjects of passives
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are represented with O, leading to a representation with some of the characteristics
of thematic roles.

Computational Linguistics Volume 34, Number 1

these patterns can be encoded as feature vectors appropriate for performing coherence-
related ranking and classification tasks.

3.1 The Entity-Grid Discourse Representation

Each text is represented by an entity grid, a two-dimensional array that captures
the distribution of discourse entities across text sentences. We follow Miltsakaki and
Kukich (2000) in assuming that our unit of analysis is the traditional sentence (i.e., a
main clause with accompanying subordinate and adjunct clauses). The rows of the
grid correspond to sentences, and the columns correspond to discourse entities. By
discourse entity we mean a class of coreferent noun phrases (we explain in Section 3.3
how coreferent entities are identified). For each occurrence of a discourse entity in the
text, the corresponding grid cell contains information about its presence or absence
in a sequence of sentences. In addition, for entities present in a given sentence, grid
cells contain information about their syntactic role. Such information can be expressed
in many ways (e.g., using constituent labels or thematic role information). Because
grammatical relations figure prominently in entity-based theories of local coherence (see
Section 2), they serve as a logical point of departure. Each grid cell thus corresponds to
a string from a set of categories reflecting whether the entity in question is a subject (S),
object (O), or neither (X). Entities absent from a sentence are signaled by gaps (–).
Grammatical role information can be extracted from the output of a broad-coverage
dependency parser (Lin 2001; Briscoe and Carroll 2002) or any state-of-the art statistical
parser (Collins 1997; Charniak 2000). We discuss how this information was computed
for our experiments in Section 3.3.

Table 1 illustrates a fragment of an entity grid constructed for the text in Table 2.
Because the text contains six sentences, the grid columns are of length six. Consider
for instance the grid column for the entity trial, [O – – – – X]. It records that trial is
present in sentences 1 and 6 (as O and X, respectively) but is absent from the rest of the
sentences. Also note that the grid in Table 1 takes coreference resolution into account.
Even though the same entity appears in different linguistic forms, for example, Microsoft
Corp., Microsoft, and the company , it is mapped to a single entry in the grid (see the
column introduced by Microsoft in Table 1).

Table 1
A fragment of the entity grid. Noun phrases are represented by their head nouns. Grid cells
correspond to grammatical roles: subjects (S), objects (O), or neither (X).
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Figure 22.8 Part of the entity grid for the text in Fig. 22.9. Entities are listed by their head
noun; each cell represents whether an entity appears as subject (S), object (O), neither (X), or
is absent (–). Figure from Barzilay and Lapata (2008).

Barzilay and Lapata Modeling Local Coherence

Table 2
Summary augmented with syntactic annotations for grid computation.

1 [The Justice Department]S is conducting an [anti-trust trial]O against [Microsoft Corp.]X

with [evidence]X that [the company]S is increasingly attempting to crush [competitors]O.
2 [Microsoft]O is accused of trying to forcefully buy into [markets]X where [its own

products]S are not competitive enough to unseat [established brands]O.
3 [The case]S revolves around [evidence]O of [Microsoft]S aggressively pressuring

[Netscape]O into merging [browser software]O.
4 [Microsoft]S claims [its tactics]S are commonplace and good economically.
5 [The government]S may file [a civil suit]O ruling that [conspiracy]S to curb [competition]O

through [collusion]X is [a violation of the Sherman Act]O.
6 [Microsoft]S continues to show [increased earnings]O despite [the trial]X.

When a noun is attested more than once with a different grammatical role in the
same sentence, we default to the role with the highest grammatical ranking: subjects are
ranked higher than objects, which in turn are ranked higher than the rest. For example,
the entity Microsoft is mentioned twice in Sentence 1 with the grammatical roles x (for
Microsoft Corp.) and s (for the company ), but is represented only by s in the grid (see
Tables 1 and 2).

3.2 Entity Grids as Feature Vectors

A fundamental assumption underlying our approach is that the distribution of entities
in coherent texts exhibits certain regularities reflected in grid topology. Some of these
regularities are formalized in Centering Theory as constraints on transitions of the
local focus in adjacent sentences. Grids of coherent texts are likely to have some dense
columns (i.e., columns with just a few gaps, such as Microsoft in Table 1) and many
sparse columns which will consist mostly of gaps (see markets and earnings in Table 1).
One would further expect that entities corresponding to dense columns are more often
subjects or objects. These characteristics will be less pronounced in low-coherence texts.

Inspired by Centering Theory, our analysis revolves around patterns of local entity
transitions. A local entity transition is a sequence {S, O, X, –}n that represents entity
occurrences and their syntactic roles in n adjacent sentences. Local transitions can be
easily obtained from a grid as continuous subsequences of each column. Each transition
will have a certain probability in a given grid. For instance, the probability of the
transition [S –] in the grid from Table 1 is 0.08 (computed as a ratio of its frequency
[i.e., six] divided by the total number of transitions of length two [i.e., 75]). Each text
can thus be viewed as a distribution defined over transition types.

We can now go one step further and represent each text by a fixed set of transition
sequences using a standard feature vector notation. Each grid rendering j of a document
di corresponds to a feature vector Φ(x ij) = (p1(x ij), p2(x ij), . . . , pm(x ij)), where m is the
number of all predefined entity transitions, and pt(x ij) the probability of transition t
in grid x ij. This feature vector representation is usefully amenable to machine learning
algorithms (see our experiments in Sections 4–6). Furthermore, it allows the consid-
eration of large numbers of transitions which could potentially uncover novel entity
distribution patterns relevant for coherence assessment or other coherence-related tasks.

Note that considerable latitude is available when specifying the transition types to
be included in a feature vector. These can be all transitions of a given length (e.g., two
or three) or the most frequent transitions within a document collection. An example of

7

Figure 22.9 A discourse with the entities marked and annotated with grammatical func-
tions. Figure from Barzilay and Lapata (2008).

Fig. 22.8 from Barzilay and Lapata (2008) shows a grid for the text shown in
Fig. 22.9. There is one row for each of the six sentences. The second column, for
the entity ‘trial’, is O – – – X, showing that the trial appears in the first sentence as
direct object, in the last sentence as an oblique, and does not appear in the middle
sentences. The third column, for the entity Microsoft, shows that it appears as sub-
ject in sentence 1 (it also appears as the object of the preposition against, but entities
that appear multiple times are recorded with their highest-ranked grammatical func-
tion). Computing the entity grids requires extracting entities and doing coreference
resolution to cluster them into discourse entities (Chapter 22) as well as parsing the
sentences to get grammatical roles.

In the resulting grid, columns that are dense (like the column for Microsoft) in-
dicate entities that are mentioned often in the texts; sparse columns (like the column
for earnings) indicate entities that are mentioned rarely.

In the entity grid model, coherence is measured by patterns of local entity tran-
sition. For example, Department is a subject in sentence 1, and then not men-
tioned in sentence 2; this is the transition [S –]. The transitions are thus sequences
{S,O X, –}n which can be extracted as continuous cells from each column. Each
transition has a probability; the probability of [S –] in the grid from Fig. 22.8 is 0.08
(it occurs 6 times out of the 75 total transitions of length two). Fig. 22.10 shows the
distribution over transitions of length 2 for the text of Fig. 22.9 (shown as the first
row d1), and 2 other documents.

The transitions and their probabilities can then be used as features for a machine
learning model. This model can be a text classifier trained to produce human-labeled
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a feature space with transitions of length two is illustrated in Table 3. The second row
(introduced by d1) is the feature vector representation of the grid in Table 1.

3.3 Grid Construction: Linguistic Dimensions

One of the central research issues in developing entity-based models of coherence is
determining what sources of linguistic knowledge are essential for accurate prediction,
and how to encode them succinctly in a discourse representation. Previous approaches
tend to agree on the features of entity distribution related to local coherence—the
disagreement lies in the way these features are modeled.

Our study of alternative encodings is not a mere duplication of previous ef-
forts (Poesio et al. 2004) that focus on linguistic aspects of parameterization. Because we
are interested in an automatically constructed model, we have to take into account com-
putational and learning issues when considering alternative representations. Therefore,
our exploration of the parameter space is guided by three considerations: the linguistic
importance of a parameter, the accuracy of its automatic computation, and the size of the
resulting feature space. From the linguistic side, we focus on properties of entity distri-
bution that are tightly linked to local coherence, and at the same time allow for multiple
interpretations during the encoding process. Computational considerations prevent us
from considering discourse representations that cannot be computed reliably by exist-
ing tools. For instance, we could not experiment with the granularity of an utterance—
sentence versus clause—because available clause separators introduce substantial noise
into a grid construction. Finally, we exclude representations that will explode the size of
the feature space, thereby increasing the amount of data required for training the model.

Entity Ex traction. The accurate computation of entity classes is key to computing mean-
ingful entity grids. In previous implementations of entity-based models, classes of coref-
erent nouns have been extracted manually (Miltsakaki and Kukich 2000; Karamanis
et al. 2004; Poesio et al. 2004), but this is not an option for our model. An obvious
solution for identifying entity classes is to employ an automatic coreference resolution
tool that determines which noun phrases refer to the same entity in a document.

Current approaches recast coreference resolution as a classification task. A pair
of NPs is classified as coreferring or not based on constraints that are learned from
an annotated corpus. A separate clustering mechanism then coordinates the possibly
contradictory pairwise classifications and constructs a partition on the set of NPs. In
our experiments, we employ Ng and Cardie’s (2002) coreference resolution system.
The system decides whether two NPs are coreferent by exploiting a wealth of lexical,
grammatical, semantic, and positional features. It is trained on the MUC (6–7) data sets
and yields state-of-the-art performance (70.4 F-measure on MUC-6 and 63.4 on MUC-7).

Table 3
Example of a feature-vector document representation using all transitions of length two given
syntactic categories S, O, X, and –.

S S S O S X S – O S O O O X O – X S X O X X X – – S – O – X – –

d1 .01 .01 0 .08 .01 0 0 .09 0 0 0 .03 .05 .07 .03 .59
d2 .02 .01 .01 .02 0 .07 0 .02 .14 .14 .06 .04 .03 .07 0.1 .36
d3 .02 0 0 .03 .09 0 .09 .06 0 0 0 .05 .03 .07 .17 .39
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Figure 22.10 A feature vector for representing documents using all transitions of length 2.
Document d1 is the text in Fig. 22.9. Figure from Barzilay and Lapata (2008).

coherence scores (for example from humans labeling each text as coherent or inco-
herent). But such data is expensive to gather. Barzilay and Lapata (2005) introduced
a simplifying innovation: coherence models can be trained by self-supervision:
trained to distinguish the natural original order of sentences in a discourse from
a modified order (such as a randomized order). We turn to these evaluations in the
next section.

22.3.3 Evaluating Neural and Entity-based coherence

Entity-based coherence models, as well as the neural models we introduce in the
next section, are generally evaluated in one of two ways.

First, we can have humans rate the coherence of a document and train a classifier
to predict these human ratings, which can be categorial (high/low, or high/mid/low)
or continuous. This is the best evaluation to use if we have some end task in mind,
like essay grading, where human raters are the correct definition of the final label.

Alternatively, since it’s very expensive to get human labels, and we might not
yet have an end-task in mind, we can use natural texts to do self-supervision. In
self-supervision we pair up a natural discourse with a pseudo-document created by
changing the ordering. Since naturally-ordered discourses are more coherent than
random permutation (Lin et al., 2011), a successful coherence algorithm should pre-
fer the original ordering.

Self-supervision has been implemented in 3 ways. In the sentence order dis-
crimination task (Barzilay and Lapata, 2005), we compare a document to a random
permutation of its sentence. A model is considered correct for an (original, per-
muted) test pair if it ranks the original document higher. Given k documents, we can
compute n permutations, resulting in kn pairs each with one original document and
one permutation, to use in training and testing.

In the sentence insertion task (Chen et al., 2007) we take a document, remove
one of the n sentences s, and create n−1 copies of the document with s inserted into
each position. The task is to decide which of the n documents is the one with the
original ordering, distinguishing the original position for s from all other positions.
Insertion is harder than discrimination since we are comparing documents that differ
by only one sentence.

Finally, in the sentence order reconstruction task (Lapata, 2003), we take a
document, randomize the sentences, and train the model to put them back in the
correct order. Again given k documents, we can compute n permutations, resulting
in kn pairs each with one original document and one permutation, to use in training
and testing. Reordering is of course a much harder task than simple classification.
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22.4 Representation learning models for local coherence

The third kind of local coherence is topical or semantic field coherence. Discourses
cohere by talking about the same topics and subtopics, and drawing on the same
semantic fields in doing so.

The field was pioneered by a series of unsupervised models in the 1990s of this
kind of coherence that made use of lexical cohesion (Halliday and Hasan, 1976):lexical cohesion

the sharing of identical or semantically related words in nearby sentences. Morris
and Hirst (1991) computed lexical chains of words (like pine, bush trees, trunk) that
occurred through a discourse and that were related in Roget’s Thesaurus (by being in
the same category, or linked categories). They showed that the number and density
of chain correlated with the topic structure. The TextTiling algorithm of HearstTextTiling

(1997) computed the cosine between neighboring text spans (the normalized dot
product of vectors of raw word counts), again showing that sentences or paragraph in
a subtopic have high cosine with each other, but not with sentences in a neighboring
subtopic.

A third early model, the LSA Coherence method of Foltz et al. (1998) was the
first to use embeddings, modeling the coherence between two sentences as the co-
sine between their LSA sentence embedding vectors1, computing embeddings for a
sentence s by summing the embeddings of its words w:

sim(s, t) = cos(s,t)

= cos(
∑

w∈s

w,
∑

w∈t

w) (22.31)

and defining the overall coherence of a text as the average similarity over all pairs of
adjacent sentences si and si+1:

coherence(T ) =
1

n−1

n−1∑

i=1

cos(si,si+1) (22.32)

Modern neural representation-learning coherence models, beginning with Li et al.
(2014), draw on the intuitions of these early unsupervised models for learning sen-
tence representations and measuring how they change between neighboring sen-
tences. But the new models also draw on the idea pioneered by Barzilay and Lapata
(2005) of self-supervision. That is, unlike say coherence relation models, which
train on hand-labeled representations for RST or PDTB, these models are trained to
distinguish natural discourses from unnatural discourses formed by scrambling the
order of sentences, thus using representation learning to discover the features that
matter for at least the ordering aspect of coherence.

Here we present one such model, the local coherence discriminator (LCD) (Xu
et al., 2019). Like early models, LCD computes the coherence of a text as the av-
erage of coherence scores between consecutive pairs of sentences. But unlike the
early unsupervised models, LCD is a self-supervised model trained to discriminate
consecutive sentence pairs (si,si+1) in the training documents (assumed to be coher-
ent) from (constructed) incoherent pairs (si,s′). All consecutive pairs are positive
examples, and the negative (incoherent) partner for a sentence si is another sentence
uniformly sampled from the same document as si.

1 See Chapter 6 for more on LSA embeddings; they are computed by applying SVD to the term-
document matrix (each cell weighted by log frequency and normalized by entropy), and then the first
300 dimensions are used as the embedding.
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681

Loss function: The role of the loss function is
to encourage f+ = f✓(si, si+1) to be high while
f� = f✓(si, s

0) to be low. Common losses such as
margin or log loss can all be used. Through exper-
imental validation, we found that margin loss to
be superior for this problem. Specifically, L takes
on the form: L(f+, f�) = max(0, ⌘ � f+ + f�)
where ⌘ is the margin hyperparameter.

Negative samples: Technically, we are free to
choose any sentence s0 to form a negative pair
with si. However, because of potential differ-
ences in genre, topic and writing style, such neg-
atives might cause the discriminative model to
learn cues unrelated to coherence. Therefore, we
only select sentences from the same document to
construct negative pairs. Specifically, suppose si

comes from document dk with length nk, then
p(s0|si) is a uniform distribution over the nk�1
sentences {sj}j 6= i from dk. For a document with
n sentences, there are n�1 positive pairs, and
(n�1)⇤(n�2)/2 negative pairs. It turns out that
the quadratic number of negatives provides a rich
enough learning signal, while at the same time, is
not too prohibitively large to be effectively cov-
ered by a sampling procedure. In practice, we
sample a new set of negatives each time we see
a document, hence after many epochs, we can ef-
fectively cover the space for even very long doc-
uments. Section 5.7 discusses further details on
sampling.

4.1 Model Architecture

The specific neural architecture that we use for f✓
is illustrated in Figure 1. We assume the use of
some pre-trained sentence encoder, which is dis-
cussed in the next section.

Given an input sentence pair, the sentence en-
coder maps the sentences to real-valued vectors S
and T . We then compute the concatenation of the
following features: (1) concatenation of the two
vectors (S, T ); (2) element-wise difference S�T ;
(3) element-wise product S ⇤T ; (4) absolute value
of element-wise difference |S � T |. The concate-
nated feature representation is then fed to a one-
layer MLP to output the coherence score.

In practice, we make our overall coherence
model bidirectional, by training a forward model
with input (S, T ) and a backward model with in-
put (T, S) with the same architecture but separate
parameters. The coherence score is then the aver-
age from the two models.

Figure 1: Generic architecture for our proposed model.

4.2 Pre-trained Generative Model as the
Sentence Encoder

Our model can work with any pre-trained sen-
tence encoder, ranging from the most simplistic
average GloVe (Pennington et al., 2014) embed-
dings to more sophisticated supervised or unsu-
pervised pre-trained sentence encoders (Conneau
et al., 2017). As mentioned in the introduction,
since generative models can often be turned into
sentence encoder, generative coherence model can
be leveraged by our model to benefit from the
advantages of both generative and discriminative
training, similar to (Kiros et al., 2015; Peters et al.,
2018). After initialization, we freeze the genera-
tive model parameters to avoid overfitting.

In Section 5, we will experimentally show that
while we do benefit from strong pre-trained en-
coders, the fact that our local discriminative model
improves over previous methods is independent of
the choice of sentence encoder.

5 Experiments

5.1 Evaluation Tasks

Following Nguyen and Joty (2017) and other pre-
vious work, we evaluate our models on the dis-
crimination and insertion tasks. Additionally, we
evaluate on the paragraph reconstruction task in
open-domain settings, in a similar manner to Li
and Jurafsky (2017).

In the discrimination task, a document is com-
pared to a random permutation of its sentences,
and the model is considered correct if it scores the
original document higher than the permuted one.
Twenty permutations are used in the test set in ac-
cordance with previous work.

Figure 22.11 The architecture of the LCD model of document coherence, showing the
computation of the score for a pair of sentences s and t. Figure from Xu et al. (2019).

Fig. 22.11 describes the architecture of the model fθ , which takes a sentence
pair and returns a score, higher scores for more coherent pairs. Given an input
sentence pair s and t, the model computes sentence embeddings s and t (using any
sentence embeddings algorithm), and then concatenates four features of the pair: (1)
the concatenation of the two vectors (2) their difference s− t; (3) the absolute value
of their difference |s− t|; (4) their element-wise product s� t. These are passed
through a one-layer feedforward network to output the coherence score.

The model is trained to make this coherence score higher for real pairs than for
negative pairs. More formally, the training objective for a corpus C of documents d,
each of which consists of a list of sentences si, is:

Lθ =
∑

d∈C

∑

si∈d

E
p(s′|si)

[L( fθ (si,si+1), fθ (si,s′))] (22.33)

Ep(s′|si) is the expectation with respect to the negative sampling distribution con-
ditioned on si: given a sentence si the algorithms samples a negative sentence s′

uniformly over the other sentences in the same document. L is a loss function that
takes two scores, one for a positive pair and one for a negative pair, with the goal of
encouraging f+ = fθ (si,si+1) to be high and f− = fθ (si,s′)) to be low. Fig. 22.11
use the margin loss l( f+, f−) = max(0,η− f++ f−) where η is the margin hyper-
parameter.

Xu et al. (2019) also give a useful baseline algorithm that itself has quite high
performance in measuring perplexity: train an RNN language model on the data,
and compute the log likelihood of sentence si in two ways, once given the preceding
context (conditional log likelihood) and once with no context (marginal log likeli-
hood). The difference between these values tells us how much the preceding context
improved the predictability of si, a predictability measure of coherence.

Training models to predict longer contexts than just consecutive pairs of sen-
tences can result in even stronger discourse representations. For example a Trans-
former language model trained with a contrastive sentence objective to predict text
up to a distance of ±2 sentences improves performance on various discourse coher-
ence tasks (Iter et al., 2020).

Language-model style models are generally evaluated by the methods of Sec-
tion 22.3.3, although they can also be evaluated on the RST and PDTB coherence
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relation tasks.

22.5 Global Coherence

A discourse must also cohere globally rather than just at the level of pairs of sen-
tences. Consider stories, for example. The narrative structure of stories is one of
the oldest kinds of global coherence to be studied. In his influential Morphology of
the Folktale, Propp (1968) models the discourse structure of Russian folktales via
a kind of plot grammar. His model includes a set of character categories he called
dramatis personae, like Hero, Villain, Donor, or Helper, and a set of events he
called functions (like “Villain commits kidnapping”, “Donor tests Hero”, or “Hero
is pursued”) that have to occur in particular order, along with other components.
Propp shows that the plots of each of the fairy tales he studies can be represented as
a sequence of these functions, different tales choosing different subsets of functions,
but always in the same order. Indeed Lakoff (1972b) showed that Propp’s model
amounted to a discourse grammar of stories, and in recent computational work Fin-
layson (2016) demonstrates that some of these Proppian functions could be induced
from corpora of folktale texts by detecting events that have similar actions across
stories. Bamman et al. (2013) showed that generalizations over dramatis personae
could be induced from movie plot summaries on Wikipedia. Their model induced
latent personae from features like the actions the character takes (e.g., Villains stran-
gle), the actions done to them (e.g., Villains are foiled and arrested) or the descriptive
words used of them (Villains are evil).

In this section we introduce two kinds of such global discourse structure that
have been widely studied computationally. The first is the structure of arguments:
the way people attempt to convince each other in persuasive essays by offering
claims and supporting premises. The second is somewhat related: the structure of
scientific papers, and the way authors present their goals, results, and relationship to
prior work in their papers.

22.5.1 Argumentation Structure
The first type of global discourse structure is the structure of arguments. Analyzing
people’s argumentation computationally is often called argumentation mining.argumentation

mining
The study of arguments dates back to Aristotle, who in his Rhetorics described

three components of a good argument: pathos (appealing to the emotions of thepathos

listener), ethos (appealing to the speaker’s personal character), and logos (the logicalethos
logos structure of the argument).

Most of the discourse structure studies of argumentation have focused on lo-
gos, particularly via building and training on annotated datasets of persuasive es-
says or other arguments (Reed et al. 2008, Stab and Gurevych 2014a, Peldszus
and Stede 2016, Habernal and Gurevych 2017, Musi et al. 2018). Such corpora,
for example, often include annotations of argumentative components like claimsclaims

(the central component of the argument that is controversial and needs support) and
premises (the reasons given by the author to persuade the reader by supporting orpremises

attacking the claim or other premises), as well as the argumentative relations be-argumentative
relations

tween them like SUPPORT and ATTACK.
Consider the following example of a persuasive essay from Stab and Gurevych

(2014b). The first sentence (1) presents a claim (in bold). (2) and (3) present two
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premises supporting the claim. (4) gives a premise supporting premise (3).

“(1) Museums and art galleries provide a better understanding
about arts than Internet. (2) In most museums and art galleries, de-
tailed descriptions in terms of the background, history and author are
provided. (3) Seeing an artwork online is not the same as watching it
with our own eyes, as (4) the picture online does not show the texture
or three-dimensional structure of the art, which is important to study.”

Thus this example has three argumentative relations: SUPPORT(2,1), SUPPORT(3,1)
and SUPPORT(4,3). Fig. 22.12 shows the structure of a much more complex argu-
ment.

Stab and Gurevych Parsing Argumentation Structures

cloning. This example illustrates that knowing argumentative relations is important for
separating several arguments in a paragraph. The example also shows that argument
components frequently exhibit preceding text units that are not relevant to the argument
but helpful for recognizing the argument component type. For example, preceding dis-
course connectors like “therefore”, “consequently”, or “thus” can signal a subsequent
claim. Discourse markers like “because”, “since”, or “furthermore” could indicate a
premise. Formally, these preceding tokens of an argument component starting at token
ti are defined as the tokens ti�m, ..., ti�1 that are not covered by another argument
component in the sentence s = t1, t2, ..., tn where 1  i  n and i�m � 1. The third body
paragraph illustrates a contra argument and argumentative attack relations:

Admittedly, [cloning could be misused for military purposes]Claim5. For example,
[
:
it

:::::
could

:::
be

:::::
used

::
to

::::::::::
manipulate

:::::::
human

::::::
genes

::
in

::::::
order

::
to

::::::
create

::::::::
obedient

:::::::
soldiers

::::
with

::::::::::::
extraordinary

:::::::
abilities]Premise9. However, because [

::::
moral

::::
and

:::::::
ethical

::::::
values

:::
are

::::::::::::
internationally

::::::
shared]Premise10, [

:
it
:::

is
::::
very

::::::::
unlikely

::::
that

:::::::
cloning

::::
will

::
be

::::::::
misused

:::
for

::::::
militant

:::::::::
objectives]Premise11.

The paragraph begins with Claim5, which attacks the stance of the author. It is supported
by Premise9 in the second sentence. The third sentence includes two premises, both of
which defend the stance of the author. Premise11 is an attack of Claim5, and Premise10
supports Premise11. The last paragraph (conclusion) restates the major claim and sum-
marizes the main aspects of the essay:

To sum up, although [permitting cloning might bear some risks like misuse for
military purposes]Claim6, I strongly believe that [this technology is beneficial to
humanity]MajorClaim2. It is likely that [this technology bears some important cures which
will significantly improve life conditions]Claim7.

The conclusion of the essay starts with an attacking claim followed by the restatement of
the major claim. The last sentence includes another claim that summarizes the most im-
portant points of the author’s argumentation. Figure 2 shows the entire argumentation
structure of the example essay.

Figure 2
Argumentation structure of the example essay. Arrows indicate argumentative relations.
Arrowheads denote argumentative support relations and circleheads attack relations. Dashed
lines indicate relations that are encoded in the stance attributes of claims. “P” denotes premises.

629

Figure 22.12 Argumentation structure of a persuasive essay. Arrows indicate argumentation relations, ei-
ther of SUPPORT (with arrowheads) or ATTACK (with circleheads); P denotes premises. Figure from Stab and
Gurevych (2017).

While argumentation mining is clearly related to rhetorical structure and other
kinds of coherence relations, arguments tend to be much less local; often a persua-
sive essay will have only a single main claim, with premises spread throughout the
text, without the local coherence we see in coherence relations.

Algorithms for detecting argumentation structure often include classifiers for
distinguishing claims, premises, or non-argumentation, together with relation clas-
sifiers for deciding if two spans have the SUPPORT, ATTACK, or neither relation
(Peldszus and Stede, 2013). While these are the main focus of much computational
work, there is also preliminary efforts on annotating and detecting richer semantic
relationships (Park and Cardie 2014, Hidey et al. 2017) such as detecting argumen-
tation schemes, larger-scale structures for argument like argument from example,argumentation

schemes
or argument from cause to effect, or argument from consequences (Feng and
Hirst, 2011).

Another important line of research is studying how these argument structure (or
other features) are associated with the success or persuasiveness of an argument
(Habernal and Gurevych 2016, Tan et al. 2016, Hidey et al. 2017. Indeed, while it
is Aristotle’s logos that is most related to discourse structure, Aristotle’s ethos and
pathos techniques are particularly relevant in the detection of mechanisms of this
sort of persuasion. For example scholars have investigated the linguistic realizationpersuasion

of features studied by social scientists like reciprocity (people return favors), social
proof (people follow others’ choices), authority (people are influenced by those
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with power), and scarcity (people value things that are scarce), all of which can
be brought up in a persuasive argument (Cialdini, 1984). Rosenthal and McKeown
(2017) showed that these features could be combined with argumentation structure
to predict who influences whom on social media, Althoff et al. (2014) found that
linguistic models of reciprocity and authority predicted success in online requests,
while the semisupervised model of Yang et al. (2019) detected mentions of scarcity,
commitment, and social identity to predict the success of peer-to-peer lending plat-
forms.

See Stede and Schneider (2018) for a comprehensive survey of argument mining.

22.5.2 The structure of scientific discourse
Scientific papers have a very specific global structure: somewhere in the course of
the paper the authors must indicate a scientific goal, develop a method for a solu-
tion, provide evidence for the solution, and compare to prior work. One popular
annotation scheme for modeling these rhetorical goals is the argumentative zoningargumentative

zoning
model of Teufel et al. (1999) and Teufel et al. (2009), which is informed by the idea
that each scientific paper tries to make a knowledge claim about a new piece of
knowledge being added to the repository of the field (Myers, 1992). Sentences in
a scientific paper can be assigned one of 15 tags; Fig. 22.13 shows 7 (shortened)
examples of labeled sentences.

Category Description Example
AIM Statement of specific research goal, or

hypothesis of current paper
“The aim of this process is to examine the role that
training plays in the tagging process”

OWN METHOD New Knowledge claim, own work:
methods

“In order for it to be useful for our purposes, the
following extensions must be made:”

OWN RESULTS Measurable/objective outcome of own
work

“All the curves have a generally upward trend but
always lie far below backoff (51% error rate)”

USE Other work is used in own work “We use the framework for the allocation and
transfer of control of Whittaker....”

GAP WEAK Lack of solution in field, problem with
other solutions

“Here, we will produce experimental evidence
suggesting that this simple model leads to serious
overestimates”

SUPPORT Other work supports current work or is
supported by current work

“Work similar to that described here has been car-
ried out by Merialdo (1994), with broadly similar
conclusions.”

ANTISUPPORT Clash with other’s results or theory; su-
periority of own work

“This result challenges the claims of...”

Figure 22.13 Examples for 7 of the 15 labels from the Argumentative Zoning labelset (Teufel et al., 2009).

Teufel et al. (1999) and Teufel et al. (2009) develop labeled corpora of scientific
articles from computational linguistics and chemistry, which can be used as supervi-
sion for training standard sentence-classification architecture to assign the 15 labels.

22.6 Summary

In this chapter we introduced local and global models for discourse coherence.
• Discourses are not arbitrary collections of sentences; they must be coherent.

Among the factors that make a discourse coherent are coherence relations
between the sentences, entity-based coherence, and topical coherence.
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• Various sets of coherence relations and rhetorical relations have been pro-
posed. The relations in Rhetorical Structure Theory (RST) hold between
spans of text and are structured into a tree. Because of this, shift-reduce
and other parsing algorithms are generally used to assign these structures.
The Penn Discourse Treebank (PDTB) labels only relations between pairs of
spans, and the labels are generally assigned by sequence models.

• Entity-based coherence captures the intuition that discourses are about an
entity, and continue mentioning the entity from sentence to sentence. Cen-
tering Theory is a family of models describing how salience is modeled for
discourse entities, and hence how coherence is achieved by virtue of keeping
the same discourse entities salient over the discourse. The entity grid model
gives a more bottom-up way to compute which entity realization transitions
lead to coherence.

• Many different genres have different types of global coherence. Persuasive
essays have claims and premises that are extracted in the field of argument
mining, scientific articles have structure related to aims, methods, results, and
comparisons.

Bibliographical and Historical Notes
Coherence relations arose from the independent development of a number of schol-
ars, including Hobbs (1979) idea that coherence relations play an inferential role for
the hearer, and the investigations by Mann and Thompson (1987) of the discourse
structure of large texts. Other approaches to coherence relations and their extrac-
tion include Segmented Discourse Representation Theory (SDRT) (Asher and Las-SDRT

carides 2003, Baldridge et al. 2007) and the Linguistic Discourse Model (Polanyi 1988,
Scha and Polanyi 1988, Polanyi et al. 2004). Wolf and Gibson (2005) argue that
coherence structure includes crossed bracketings, which make it impossible to rep-
resent as a tree, and propose a graph representation instead. A compendium of over
350 relations that have been proposed in the literature can be found in Hovy (1990).

RST parsing was first proposed by Marcu (1997), and early work was rule-based,
focused on discourse markers (Marcu, 2000a). The creation of the RST Discourse
TreeBank (Carlson et al. 2001, Carlson and Marcu 2001) enabled a wide variety
of machine learning algorithms, beginning with the shift-reduce parser of Marcu
(1999) that used decision trees to choose actions, and continuing with a wide variety
of machine learned parsing methods (Soricut and Marcu 2003, Sagae 2009, Hernault
et al. 2010, Feng and Hirst 2014, Surdeanu et al. 2015, Joty et al. 2015) and chunkers
(Sporleder and Lapata, 2005). Subba and Di Eugenio (2009) integrated sophisticated
semantic information into RST parsing. Ji and Eisenstein (2014) first applied neural
models to RST parsing neural models, leading to the modern set of neural RST
models (Li et al. 2014, Li et al. 2016, Braud et al. 2017, Yu et al. 2018, inter alia) as
well as neural segmenters (Wang et al. 2018). and neural PDTB parsing models (Ji
and Eisenstein 2015, Qin et al. 2016, Qin et al. 2017).

Barzilay and Lapata (2005) pioneered the idea of self-supervision for coher-
ence: training a coherence model to distinguish true orderings of sentences from
random permutations. Li et al. (2014) first applied this paradigm to neural sentence-
representation, and many neural self-supervised models followed (Li and Juraf-
sky 2017, Logeswaran et al. 2018, Lai and Tetreault 2018, Xu et al. 2019, Iter
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et al. 2020)
Another aspect of global coherence is the global topic structure of a text, the way

the topics shift over the course of the document. Barzilay and Lee (2004) introduced
an HMM model for capturing topics for coherence, and later work expanded this
intuition (Soricut and Marcu 2006, Elsner et al. 2007, Louis and Nenkova 2012, Li
and Jurafsky 2017).

The relationship between explicit and implicit discourse connectives has been
a fruitful one for research. Marcu and Echihabi (2002) first proposed to use sen-
tences with explicit relations to help provide training data for implicit relations, by
removing the explicit relations and trying to re-predict them as a way of improv-
ing performance on implicit connectives; this idea was refined by Sporleder and
Lascarides (2005), (Pitler et al., 2009), and Rutherford and Xue (2015). This rela-
tionship can also be used as a way to create discourse-aware representations. The
DisSent algorithm (Nie et al., 2019) creates the task of predicting explicit discourse
markers between two sentences. They show that representations learned to be good
at this task also function as powerful sentence representations for other discourse
tasks.

The idea of entity-based coherence seems to have arisen in multiple fields in the
mid-1970s, in functional linguistics (Chafe, 1976), in the psychology of discourse
processing (Kintsch and Van Dijk, 1978), and in the roughly contemporaneous work
of Grosz, Sidner, Joshi, and their colleagues. Grosz (1977a) addressed the focus
of attention that conversational participants maintain as the discourse unfolds. She
defined two levels of focus; entities relevant to the entire discourse were said to
be in global focus, whereas entities that are locally in focus (i.e., most central to a
particular utterance) were said to be in immediate focus. Sidner (1979, 1983) de-
scribed a method for tracking (immediate) discourse foci and their use in resolving
pronouns and demonstrative noun phrases. She made a distinction between the cur-
rent discourse focus and potential foci, which are the predecessors to the backward-
and forward-looking centers of Centering theory, respectively. The name and further
roots of the centering approach lie in papers by Joshi and Kuhn (1979) and Joshi and
Weinstein (1981), who addressed the relationship between immediate focus and the
inferences required to integrate the current utterance into the discourse model. Grosz
et al. (1983) integrated this work with the prior work of Sidner and Grosz. This led
to a manuscript on centering which, while widely circulated since 1986, remained
unpublished until Grosz et al. (1995). A collection of centering papers appears in
Walker et al. (1998). See Karamanis et al. (2004) and Poesio et al. (2004) for a
deeper exploration of centering and its parameterizations, and the History section of
Chapter 22 for more on the use of centering on coreference.

The grid model of entity-based coherence was first proposed by Barzilay and
Lapata (2005) drawing on earlier work by Lapata (2003) and Barzilay, and then
extended by them Barzilay and Lapata (2008) and others with additional features
(Elsner and Charniak 2008, (2011), Feng et al. 2014, Lin et al. 2011) a model that
projects entities into a global graph for the discourse (Guinaudeau and Strube 2013,
Mesgar and Strube 2016), and a convolutional model to capture longer-range entity
dependencies (Nguyen and Joty, 2017).

Theories of discourse coherence have also been used in algorithms for interpret-
ing discourse-level linguistic phenomena, including verb phrase ellipsis and gapping
(Asher 1993, Kehler 1993), and tense interpretation (Lascarides and Asher 1993,
Kehler 1994, Kehler 2000). An extensive investigation into the relationship be-
tween coherence relations and discourse connectives can be found in Knott and Dale
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(1994).
Useful surveys of discourse processing and structure include Stede (2011) and

Webber et al. (2012).
Andy Kehler wrote the Discourse chapter for the 2000 first edition of this text-

book, which we used as the starting point for the second-edition chapter, and there
are some remnants of Andy’s lovely prose still in this third-edition coherence chap-
ter.

Exercises
22.1 Finish the Centering Theory processing of the last two utterances of (22.30),

and show how (22.29) would be processed. Does the algorithm indeed mark
(22.29) as less coherent?

22.2 Select an editorial column from your favorite newspaper, and determine the
discourse structure for a 10–20 sentence portion. What problems did you
encounter? Were you helped by superficial cues the speaker included (e.g.,
discourse connectives) in any places?
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CHAPTER

23 Question Answering

The quest for knowledge is deeply human, and so it is not surprising that practi-
cally as soon as there were computers we were asking them questions. By the early
1960s, systems used the two major paradigms of question answering—information-
retrieval-based and knowledge-based—to answer questions about baseball statis-
tics or scientific facts. Even imaginary computers got into the act. Deep Thought,
the computer that Douglas Adams invented in The Hitchhiker’s Guide to the Galaxy,
managed to answer “the Ultimate Question Of Life, The Universe, and Everything”.1

In 2011, IBM’s Watson question-answering system won the TV game-show Jeop-
ardy!, surpassing humans at answering questions like:

WILLIAM WILKINSON’S “AN ACCOUNT OF THE 
PRINCIPALITIES OF WALLACHIA AND MOLDOVIA”
INSPIRED THIS AUTHOR’S MOST FAMOUS NOVEL 2

Question answering systems are mainly designed to fill human information needs.
Humans ask questions in many situations: when talking to a virtual assistant, when
interacting with a search engine, when querying a database. Most question answer-
ing systems focus on a particular subset of these information needs: factoid ques-
tions, questions that can be answered with simple facts expressed in short texts, like
the following:

(23.1) Where is the Louvre Museum located?
(23.2) What is the average age of the onset of autism?

In this chapter we describe the two major paradigms for factoid question an-
swering. Information-retrieval (IR) based QA, sometimes called open domain
question QA, relies on the vast amount of text on the web or in collections of sci-
entific papers like PubMed. Given a user question, information retrieval is used to
find relevant passages. Then neural reading comprehension algorithms read these
retrieved passages and draw an answer directly from spans of text.

In the second paradigm, knowledge-based question answering, a system in-
stead builds a semantic representation of the query, such as mapping What states bor-
der Texas? to the logical representation: λx.state(x)∧ borders(x, texas), or When
was Ada Lovelace born? to the gapped relation: birth-year (Ada Lovelace,

?x). These meaning representations are then used to query databases of facts.
We’ll also briefly discuss two other paradigms for question answering. One re-

lies on the fact that the huge pretrained language models we use throughout NLP
have already encoded a lot of factoids. We’ll see how to query a language model
directly to answer a question. And we’ll also mention the classic pre-neural hy-
brid question-answering algorithms that combine information from IR-based and
knowledge-based sources.

1 The answer was 42, but unfortunately the details of the question were never revealed.
2 The answer, of course, is ‘Who is Bram Stoker’, and the novel was Dracula.
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We’ll explore the possibilities and limitations of all these approaches, along the
way also introducing two technologies that are key for question answering but also
relevant throughout NLP: information retrieval (a key component of IR-based QA)
and entity linking (similarly key for knowledge-based QA). We’ll start in the next
section by introducing the task of information retrieval.

A final note: we focus in this chapter only on factoid question answering, but
there are many other important QA tasks that the interested reader may want to
follow up on. These include long-form question answering (answering why ques-
tions, or other questions that require generating a long answer), community ques-
tion answering, in which we make use of datasets of community-created question-
answer pairs like Quora or Stack Overflow. Finally, question answering is an impor-
tant benchmark for NLP progress in general, and so researchers have built systems
that successfully answer questions on exams like the New York Regents Science
Exam as a way to benchmark NLP and AI (Clark et al., 2019).

23.1 Information Retrieval

Information retrieval or IR is the name of the field encompassing the retrieval of allinformation
retrieval

IR manner of media based on user information needs. The resulting IR system is often
called a search engine. Our goal in this section is to give a sufficient overview of IR
to see its application to question answering. Readers with more interest specifically
in information retrieval should see the Historical Notes section at the end of the
chapter and textbooks like Manning et al. (2008).

The IR task we consider is called ad hoc retrieval, in which a user poses aad hoc retrieval

query to a retrieval system, which then returns an ordered set of documents from
some collection. A document refers to whatever unit of text the system indexes anddocument

retrieves (web pages, scientific papers, news articles, or even shorter passages like
paragraphs). A collection refers to a set of documents being used to satisfy usercollection

requests. A term refers to a word in a collection, but it may also include phrases.term

Finally, a query represents a user’s information need expressed as a set of terms.query

The high-level architecture of an ad hoc retrieval engine is shown in Fig. 23.1.
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vector
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Figure 23.1 The architecture of an ad hoc IR system.

The basic IR architecture uses the vector space model we introduced in Chap-
ter 6, in which we map queries and document to vectors based on unigram word
counts, and use the cosine similarity between the vectors to rank potential documents
(Salton, 1971). This is thus an example of the bag-of-words model introduced in
Chapter 4, since words are considered independently of their positions.
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23.1.1 Term weighting and document scoring
Let’s look at the details of how the match between a document and query is scored.

We don’t use raw word counts in IR, instead computing a term weight for eachterm weight

document word. Two term weighting schemes are common: the tf-idf weighting
introduced in Chapter 6, and a slightly more powerful variant called BM25.BM25

We’ll reintroduce tf-idf here so readers don’t need to look back at Chapter 6.
Tf-idf (the ‘-’ here is a hyphen, not a minus sign) is the product of two terms, the
term frequency tf and the indirect document frequency idf.

The term frequency tells us how frequent the word is; words that occur more
often in a document are likely to be informative about the document’s contents. We
usually use the log10 of the word frequency, rather than the raw count. The intuition
is that a word appearing 100 times in a document doesn’t make that word 100 times
more likely to be relevant to the meaning of the document. Because we can’t take
the log of 0, we normally add 1 to the count:3

tft,d = log10(count(t,d)+1) (23.3)

If we use log weighting, terms which occur 0 times in a document would have
tf = log10(1) = 0, 10 times in a document tf = log10(11) = 1.4, 100 times tf =
log10(101) = 2.004, 1000 times tf = 3.00044, and so on.

The document frequency dft of a term t is the number of documents it oc-
curs in. Terms that occur in only a few documents are useful for discriminating
those documents from the rest of the collection; terms that occur across the entire
collection aren’t as helpful. The inverse document frequency or idf term weight
(Sparck Jones, 1972) is defined as:

idft = log10
N
dft

(23.4)

where N is the total number of documents in the collection, and dft is the number
of documents in which term t occurs. The fewer documents in which a term occurs,
the higher this weight; the lowest weight of 0 is assigned to terms that occur in every
document.

Here are some idf values for some words in the corpus of Shakespeare plays,
ranging from extremely informative words that occur in only one play like Romeo,
to those that occur in a few like salad or Falstaff, to those that are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.4

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

3 Or we can use this alternative: tft,d =

{
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

4 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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The tf-idf value for word t in document d is then the product of term frequency
tft,d and IDF:

tf-idf(t,d) = tft,d · idft (23.5)

23.1.2 Document Scoring
We score document d by the cosine of its vector d with the query vector q:

score(q,d) = cos(q,d) =
q ·d
|q||d| (23.6)

Another way to think of the cosine computation is as the dot product of unit vectors;
we first normalize both the query and document vector to unit vectors, by dividing
by their lengths, and then take the dot product:

score(q,d) = cos(q,d) =
q

|q| ·
d

|d| (23.7)

We can spell out Eq. 23.7, using the tf-idf values and spelling out the dot product as
a sum of products:

score(q,d) =
∑

t∈q

tf-idf(t,q)√∑
qi∈q tf-idf 2(qi,q)

· tf-idf(t,d)√∑
di∈d tf-idf 2(di,d)

(23.8)

In practice, it’s common to approximate Eq. 23.8 by simplifying the query pro-
cessing. Queries are usually very short, so each query word is likely to have a count
of 1. And the cosine normalization for the query (the division by |q|) will be the
same for all documents, so won’t change the ranking between any two documents
Di and D j So we generally use the following simple score for a document d given a
query q:

score(q,d) =
∑

t∈q

tf-idf(t,d)
|d| (23.9)

Let’s walk through an example of a tiny query against a collection of 4 nano doc-
uments, computing tf-idf values and seeing the rank of the documents. We’ll assume
all words in the following query and documents are downcased and punctuation is
removed:

Query: sweet love
Doc 1: Sweet sweet nurse! Love?
Doc 2: Sweet sorrow
Doc 3: How sweet is love?
Doc 4: Nurse!

Fig. 23.2 shows the computation of the tf-idf values and the document vector
length |d| for the first two documents using Eq. 23.3, Eq. 23.4, and Eq. 23.5 (com-
putations for documents 3 and 4 are left as an exercise for the reader).

Fig. 23.3 shows the scores of the 4 documents, reranked according to Eq. 23.9.
The ranking follows intuitively from the vector space model. Document 1, which has
both terms including two instances of sweet, is the highest ranked, above document
3 which has a larger length |d| in the denominator, and also a smaller tf for sweet.
Document 3 is missing one of the terms, and Document 4 is missing both.
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Document 1 Document 2
word count tf df idf tf-idf count tf df idf tf-idf
love 1 0.301 2 0.301 0.091 0 0 2 0.301 0
sweet 2 0.477 3 0.125 0.060 1 0.301 3 0.125 0.038
sorrow 0 0 1 0.602 0 1 0.301 1 0.602 0.181
how 0 0 1 0.602 0 0 0 1 0.602 0
nurse 1 0.301 2 0.301 0.091 0 0 2 0.301 0
is 0 0 1 0.602 0 0 0 1 0.602 0

|d1|=
√
.0912 + .0602 + .9012 = .141 |d2|=

√
.0382 + .1812 = .185

Figure 23.2 Computation of tf-idf for nano-documents 1 and 2, using Eq. 23.3, Eq. 23.4,
and Eq. 23.5.

Doc |d| tf-idf(sweet) tf-idf(love) score
1 .141 .060 .091 1.07
3 .274 .038 .091 0.471
2 .185 .038 0 0.205
4 .090 0 0 0
Figure 23.3 Ranking documents by Eq. 23.9.

A slightly more complex variant in the tf-idf family is the BM25 weightingBM25

scheme (sometimes called Okapi BM25 after the Okapi IR system in which it was
introduced (Robertson et al., 1995)). BM25 adds two parameters: k, a knob that
adjust the balance between term frequency and IDF, and b, which controls the im-
portance of document length normalization. The BM25 score of a document d given
a query q is:

∑

t∈q

IDF︷ ︸︸ ︷
log
(

N
dft

)
weighted tf︷ ︸︸ ︷

tft,d

k
(

1−b+b
(
|d|
|davg|

))
+ tft,d

(23.10)

where |davg| is the length of the average document. When k is 0, BM25 reverts to
no use of term frequency, just a binary selection of terms in the query (plus idf).
A large k results in raw term frequency (plus idf). b ranges from 1 (scaling by
document length) to 0 (no length scaling). Manning et al. (2008) suggest reasonable
values are k = [1.2,2] and b = 0.75. Kamphuis et al. (2020) is a useful summary of
the many minor variants of BM25.

Stop words In the past it was common to remove high-frequency words from both
the query and document before representing them. The list of such high-frequency
words to be removed is called a stop list. The intuition is that high-frequency termsstop list

(often function words like the, a, to) carry little semantic weight and may not help
with retrieval, and can also help shrink the inverted index files we describe below.
The downside of using a stop list is that it makes it difficult to search for phrases
that contain words in the stop list. For example, common stop lists would reduce the
phrase to be or not to be to the phrase not. In modern IR systems, the use of stop lists
is much less common, partly due to improved efficiency and partly because much
of their function is already handled by IDF weighting, which downweights function
words that occur in every document. Nonetheless, stop word removal is occasionally
useful in various NLP tasks so is worth keeping in mind.
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23.1.3 Inverted Index
In order to compute scores, we need to efficiently find documents that contain words
in the query. (As we saw in Fig. 23.3, any document that contains none of the query
terms will have a score of 0 and can be ignored.) The basic search problem in IR is
thus to find all documents d ∈C that contain a term q ∈ Q.

The data structure for this task is the inverted index, which we use for mak-inverted index

ing this search efficient, and also conveniently storing useful information like the
document frequency and the count of each term in each document.

An inverted index, given a query term, gives a list of documents that contain the
term. It consists of two parts, a dictionary and the postings. The dictionary is a listpostings

of terms (designed to be efficiently accessed), each pointing to a postings list for the
term. A postings list is the list of document IDs associated with each term, which
can also contain information like the term frequency or even the exact positions of
terms in the document. The dictionary can also start the document frequency for
each term For example, a simple inverted index for our 4 sample documents above,
with each word containing its document frequency in {}, and a pointer to a postings
list that contains document IDs and term counts in [], might look like the following:

how {1} → 3 [1]
is {1} → 3 [1]
love {2} → 1 [1]→ 3 [1]
nurse {2} → 1 [1]→ 4 [1]
sorry {1} → 2 [1]
sweet {3} → 1 [2]→ 2 [1]→ 3 [1]

Given a list of terms in query, we can very efficiently get lists of all candidate
documents, together with the information necessary to compute the tf-idf scores we
need.

There are alternatives to the inverted index. For the question-answering domain
of finding Wikipedia pages to match a user query, Chen et al. (2017) show that
indexing based on bigrams works better than unigrams, and use efficient hashing
algorithms rather than the inverted index to make the search efficient.

23.1.4 Evaluation of Information-Retrieval Systems
We measure the performance of ranked retrieval systems using the same precision
and recall metrics we have been using. We make the assumption that each docu-
ment returned by the IR system is either relevant to our purposes or not relevant.
Precision is the fraction of the returned documents that are relevant, and recall is the
fraction of all relevant documents that are returned. More formally, let’s assume a
system returns T ranked documents in response to an information request, a subset
R of these are relevant, a disjoint subset, N, are the remaining irrelevant documents,
and U documents in the collection as a whole are relevant to this request. Precision
and recall are then defined as:

Precision =
|R|
|T | Recall =

|R|
|U | (23.11)

Unfortunately, these metrics don’t adequately measure the performance of a system
that ranks the documents it returns. If we are comparing the performance of two
ranked retrieval systems, we need a metric that prefers the one that ranks the relevant
documents higher. We need to adapt precision and recall to capture how well a
system does at putting relevant documents higher in the ranking.
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Rank Judgment PrecisionRank RecallRank
1 R 1.0 .11
2 N .50 .11
3 R .66 .22
4 N .50 .22
5 R .60 .33
6 R .66 .44
7 N .57 .44
8 R .63 .55
9 N .55 .55

10 N .50 .55
11 R .55 .66
12 N .50 .66
13 N .46 .66
14 N .43 .66
15 R .47 .77
16 N .44 .77
17 N .44 .77
18 R .44 .88
19 N .42 .88
20 N .40 .88
21 N .38 .88
22 N .36 .88
23 N .35 .88
24 N .33 .88
25 R .36 1.0

Figure 23.4 Rank-specific precision and recall values calculated as we proceed down
through a set of ranked documents (assuming the collection has 9 relevant documents).
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Figure 23.5 The precision recall curve for the data in table 23.4.

Let’s turn to an example. Assume the table in Fig. 23.4 gives rank-specific pre-
cision and recall values calculated as we proceed down through a set of ranked doc-
uments for a particular query; the precisions are the fraction of relevant documents
seen at a given rank, and recalls the fraction of relevant documents found at the same
rank. The recall measures in this example are based on this query having 9 relevant
documents in the collection as a whole.
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Note that recall is non-decreasing; when a relevant document is encountered,
recall increases, and when a non-relevant document is found it remains unchanged.
Precision, on the other hand, jumps up and down, increasing when relevant doc-
uments are found, and decreasing otherwise. The most common way to visualize
precision and recall is to plot precision against recall in a precision-recall curve,precision-recall

curve
like the one shown in Fig. 23.5 for the data in table 23.4.

Fig. 23.5 shows the values for a single query. But we’ll need to combine values
for all the queries, and in a way that lets us compare one system to another. One way
of doing this is to plot averaged precision values at 11 fixed levels of recall (0 to 100,
in steps of 10). Since we’re not likely to have datapoints at these exact levels, we
use interpolated precision values for the 11 recall values from the data points we dointerpolated

precision
have. We can accomplish this by choosing the maximum precision value achieved
at any level of recall at or above the one we’re calculating. In other words,

IntPrecision(r) = max
i>=r

Precision(i) (23.12)

This interpolation scheme not only lets us average performance over a set of queries,
but also helps smooth over the irregular precision values in the original data. It is
designed to give systems the benefit of the doubt by assigning the maximum preci-
sion value achieved at higher levels of recall from the one being measured. Fig. 23.6
and Fig. 23.7 show the resulting interpolated data points from our example.

Interpolated Precision Recall
1.0 0.0
1.0 .10
.66 .20
.66 .30
.66 .40
.63 .50
.55 .60
.47 .70
.44 .80
.36 .90
.36 1.0

Figure 23.6 Interpolated data points from Fig. 23.4.

Given curves such as that in Fig. 23.7 we can compare two systems or approaches
by comparing their curves. Clearly, curves that are higher in precision across all
recall values are preferred. However, these curves can also provide insight into the
overall behavior of a system. Systems that are higher in precision toward the left
may favor precision over recall, while systems that are more geared towards recall
will be higher at higher levels of recall (to the right).

A second way to evaluate ranked retrieval is mean average precision (MAP),mean average
precision

which provides a single metric that can be used to compare competing systems or
approaches. In this approach, we again descend through the ranked list of items,
but now we note the precision only at those points where a relevant item has been
encountered (for example at ranks 1, 3, 5, 6 but not 2 or 4 in Fig. 23.4). For a single
query, we average these individual precision measurements over the return set (up
to some fixed cutoff). More formally, if we assume that Rr is the set of relevant
documents at or above r, then the average precision (AP) for a single query is

AP =
1
|Rr|

∑

d∈Rr

Precisionr(d) (23.13)
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Interpolated Precision Recall Curve
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Figure 23.7 An 11 point interpolated precision-recall curve. Precision at each of the 11
standard recall levels is interpolated for each query from the maximum at any higher level of
recall. The original measured precision recall points are also shown.

where Precisionr(d) is the precision measured at the rank at which document d was
found. For an ensemble of queries Q, we then average over these averages, to get
our final MAP measure:

MAP =
1
|Q|
∑

q∈Q

AP(q) (23.14)

The MAP for the single query (hence = AP) in Fig. 23.4 is 0.6.

23.1.5 IR with Dense Vectors
The classic tf-idf or BM25 algorithms for IR have long been known to have a con-
ceptual flaw: they work only if there is exact overlap of words between the query
and document. In other words, the user posing a query (or asking a question) needs
to guess exactly what words the writer of the answer might have used to discuss the
issue. As Lin et al. (2020) put it, the user might decide to search for a tragic love
story but Shakespeare writes instead about star-crossed lovers. This is called the
vocabulary mismatch problem (Furnas et al., 1987).

The solution to this problem is to use an approach that can handle synonymy:
instead of (sparse) word-count vectors, using (dense) embeddings. This idea was
proposed quite early with the LSI approach (Deerwester et al., 1990), but modern
methods all make use of encoders like BERT. In what is sometimes called a bi-
encoder we use two separate encoder models, one to encode the query and one to
encode the document, and use the dot product between these two vectors as the score
(Fig. 23.8. For example, if we used BERT, we would have two encoders BERTQ and
BERTD and we could represent the query and document as the [CLS] token of the
respective encoders (Karpukhin et al., 2020):

hq = BERTQ(q)[CLS]
hd = BERTD(d)[CLS]

score(d,q) = hq ·hd (23.15)



23.2 • IR-BASED FACTOID QUESTION ANSWERING 473

ENCODERquery

q1 … qn

ENCODERdocument

d1 … dn

dot-product
hq hd

Figure 23.8 BERT bi-encoder for computing relevance of a document to a query.

More complex versions can use other ways to represent the encoded text, such as
using average pooling over the BERT outputs of all tokens instead of using the CLS
token, or can add extra weight matrices after the encoding or dot product steps (Liu
et al. 2016, Lee et al. 2019).

Using dense vectors for IR or the retriever component of question answerers is
still an open area of research. Among the many areas of active research are how to
do the fine-tuning of the encoder modules on the IR task (generally by fine-tuning on
query-document combinations, with various clever ways to get negative examples),
and how to deal with the fact that documents are often longer than encoders like
BERT can process (generally by breaking up documents into passages).

Efficiency is also an issue. At the core of every IR engine is the need to rank ev-
ery possible document for its similarity to the query. For sparse word-count vectors,
the inverted index allows this very efficiently. For dense vector algorithms like those
based on BERT or other Transformer encoders, finding the set of dense document
vectors that have the highest dot product with a dense query vector is an example of
nearest neighbor search. Modern systems therefore make use of approximate nearest
neighbor vector search algorithms like Faiss (Johnson et al., 2017).Faiss

23.2 IR-based Factoid Question Answering

The goal of IR-based QA (sometimes called open domain QA) is to answer a user’sIR-based QA

question by finding short text segments from the web or some other large collection
of documents. Figure 23.9 shows some sample factoid questions and their answers.

Question Answer
Where is the Louvre Museum located? in Paris, France
What are the names of Odin’s ravens? Huginn and Muninn
What kind of nuts are used in marzipan? almonds
What instrument did Max Roach play? drums
What’s the official language of Algeria? Arabic

Figure 23.9 Some factoid questions and their answers.

The dominant paradigm for IR-based QA is the retrieve and read model shownretrieve and
read

in Fig. 23.10. In the first stage of this 2-stage model we retrieve relevant passages
from a text collection, usually using a search engines of the type we saw in the
previous section. In the second stage, a neural reading comprehension algorithm
passes over each passage and finds spans that are likely to answer the question.

Some question answering systems focus only on the second task, the reading
comprehension task. Reading comprehension systems are given a factoid questionreading

comprehension
q and a passage p that could contain the answer, and return an answer s (or perhaps
declare that there is no answer in the passage, or in some setups make a choice from
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Q: When was
the premiere of

The Magic Flute?
Relevant

Docs

Reader

BERT
[CLS] q1 q2 [SEP]  d1 d2

start   end

A:  1791

Retriever

Indexed Docs

query

docs

Figure 23.10 IR-based factoid question answering has two stages: retrieval, which returns relevant doc-
uments from the collection, and reading, in which a neural reading comprehension system extracts answer
spans.

a set of possible answers). Of course this setup does not match the information need
of users who have a question they need answered (after all, if a user knew which pas-
sage contained the answer, they could just read it themselves). Instead, this task was
originally modeled on children’s reading comprehension tests—pedagogical instru-
ments in which a child is given a passage to read and must answer questions about
it—as a way to evaluate natural language understanding performance (Hirschman
et al., 1999). Reading comprehension systems are still used that way, but have also
evolved to function as the second stage of the modern retrieve and read model.

Other question answering systems address the entire retrieve and read task; they
are given a factoid question and a large document collection (such as Wikipedia or
a crawl of the web) and return an answer, usually a span of text extracted from a
document. This task is often called open domain QA.

In the next few sections we’ll lay out the various pieces of IR-based QA, starting
with some commonly used datasets for both the reading comprehension and full QA
tasks.

23.2.1 IR-based QA: Datasets
Datasets for IR-based QA are most commonly created by first developing reading
comprehension datasets containing tuples of (passage, question, answer). Reading
comprehension systems can use the datasets to train a reader that is given a passage
and a question, and predicts a span in the passage as the answer. Including the
passage from which the answer is to be extracted eliminates the need for reading
comprehension systems to deal with IR.

For example the Stanford Question Answering Dataset (SQuAD) consists ofSQuAD

passages from Wikipedia and associated questions whose answers are spans from
the passage (Rajpurkar et al. 2016). Squad 2.0 in addition adds some questions
that are designed to be unanswerable (Rajpurkar et al. 2018), with a total of just
over 150,000 questions. Fig. 23.11 shows a (shortened) excerpt from a SQUAD 2.0
passage together with three questions and their gold answer spans.

SQuAD was built by having humans read a given Wikipedia passage, write ques-
tions about the passage, and choose a specific answer span.

Other datasets are created by similar techniques but try to make the questions
more complex. The HotpotQA dataset (Yang et al., 2018) was created by showingHotpotQA

crowd workers multiple context documents and asked to come up with questions
that require reasoning about all of the documents.

The fact that questions in datasets like SQuAD or HotpotQA are created by an-
notators who have first read the passage may make their questions easier to answer,



23.2 • IR-BASED FACTOID QUESTION ANSWERING 475

Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer, songwriter,
record producer and actress. Born and raised in Houston, Texas, she performed in various
singing and dancing competitions as a child, and rose to fame in the late 1990s as lead singer
of R&B girl-group Destiny’s Child. Managed by her father, Mathew Knowles, the group became
one of the world’s best-selling girl groups of all time. Their hiatus saw the release of Beyoncé’s
debut album, Dangerously in Love (2003), which established her as a solo artist worldwide, earned
five Grammy Awards and featured the Billboard Hot 100 number-one singles “Crazy in Love” and
“Baby Boy”.
Q: “In what city and state did Beyoncé grow up?”
A: “Houston, Texas”
Q: “What areas did Beyoncé compete in when she was growing up?”
A: “singing and dancing”
Q: “When did Beyoncé release Dangerously in Love?”
A: “2003”

Figure 23.11 A (Wikipedia) passage from the SQuAD 2.0 dataset (Rajpurkar et al., 2018) with 3 sample
questions and the labeled answer spans.

since the annotator may (subconsciously) make use of words from the answer text.
A common solution to this possible bias is to make datasets from questions that

were not written with a passage in mind. The TriviaQA dataset (Joshi et al., 2017)
contains 94K questions written by trivia enthusiasts, together with supporting doc-
uments from Wikipedia and the web resulting in 650K question-answer-evidence
triples.

The Natural Questions dataset (Kwiatkowski et al., 2019) incorporates realNatural
Questions

anonymized queries to the Google search engine. Annotators are presented a query,
along with a Wikipedia page from the top 5 search results, and annotate a paragraph-
length long answer and a short span answer, or mark null if the text doesn’t contain
the paragraph. For example the question “When are hops added to the brewing
process?” has the short answer the boiling process and a long answer which the
surrounding entire paragraph from the Wikipedia page on Brewing. In using this
dataset, a reading comprehension model is given a question and a Wikipedia page
and must return a long answer, short answer, or ’no answer’ response.

The above datasets are all in English. The TyDi QA dataset contains 204KTyDi QA

question-answer pairs from 11 typologically diverse languages, including Arabic,
Bengali, Kiswahili, Russian, and Thai (Clark et al., 2020). In the TYDI QA task,
a system is given a question and the passages from a Wikipedia article and must
(a) select the passage containing the answer (or NULL if no passage contains the
answer), and (b) mark the minimal answer span (or NULL). Many questions have
no answer. The various languages in the dataset bring up challenges for QA systems
like morphological variation between the question and the answer, or complex issue
with word segmentation or multiple alphabets.

In the reading comprehension task, a system is given a question and the passage
in which the answer should be found. In the full two-stage QA task, however, sys-
tems are not given a passage, but are required to do their own retrieval from some
document collection. A common way to create open-domain QA datasets is to mod-
ify a reading comprehension dataset. For research purposes this is most commonly
done by using QA datasets that annotate Wikipedia (like SQuAD or HotpotQA). For
training, the entire (question, passage, answer) triple is used to train the reader. But
at inference time, the passages are removed and system is given only the question,
together with access to the entire Wikipedia corpus. The system must then do IR to
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find a set of pages and then read them.

23.2.2 IR-based QA: Reader (Answer Span Extraction)
The first stage of IR-based QA is a retriever, for example of the type we saw in
Section 23.1. The second stage of IR-based question answering is the reader. The
reader’s job is to take a passage as input and produce the answer. In the extractive
QA we discuss here, the answer is a span of text in the passage.5 For example givenextractive QA

a question like “How tall is Mt. Everest?” and a passage that contains the clause
Reaching 29,029 feet at its summit, a reader will output 29,029 feet.

The answer extraction task is commonly modeled by span labeling: identifying
in the passage a span (a continuous string of text) that constitutes an answer. Neuralspan

algorithms for reading comprehension are given a question q of n tokens q1, ...,qn
and a passage p of m tokens p1, ..., pm. Their goal is thus to compute the probability
P(a|q, p) that each possible span a is the answer.

If each span a starts at position as and ends at position ae, we make the simplify-
ing assumption that this probability can be estimated as P(a|q, p)=Pstart(as|q, p)Pend(ae|q, p).
Thus for for each token pi in the passage we’ll compute two probabilities: pstart(i)
that pi is the start of the answer span, and pend(i) that pi is the end of the answer
span.

A standard baseline algorithm for reading comprehension is to pass the ques-
tion and passage to any encoder like BERT (Fig. 23.12), as strings separated with a
[SEP] token, resulting in an encoding token embedding for every passage token pi.

Encoder (BERT)

… …

Question Passage

i
S E

Pstarti

. . …

[CLS] [SEP] p1

…

Pendi

pmq1 qn

Figure 23.12 An encoder model (using BERT) for span-based question answering from
reading-comprehension-based question answering tasks.

For span-based question answering, we represent the question as the first se-
quence and the passage as the second sequence. We’ll also need to add a linear layer
that will be trained in the fine-tuning phase to predict the start and end position of the
span. We’ll add two new special vectors: a span-start embedding S and a span-end
embedding E, which will be learned in fine-tuning. To get a span-start probability
for each output token p′i, we compute the dot product between S and p′i and then use

5 Here we skip the more difficult task of abstractive QA, in which the system can write an answer
which is not drawn exactly from the passage.
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a softmax to normalize over all tokens p′i in the passage:

Pstarti =
exp(S · p′i)∑
j exp(S · p′j)

(23.16)

We do the analogous thing to compute a span-end probability:

Pendi =
exp(E · p′i)∑
j exp(E · p′j)

(23.17)

The score of a candidate span from position i to j is S · p′i +E · p′j, and the highest
scoring span in which j ≥ i is chosen is the model prediction.

The training loss for fine-tuning is the negative sum of the log-likelihoods of the
correct start and end positions for each instance:

L =− logPstarti − logPendi (23.18)

Many datasets (like SQuAD 2.0 and Natural Questions) also contain (question,
passage) pairs in which the answer is not contained in the passage. We thus also
need a way to estimate the probability that the answer to a question is not in the
document. This is standardly done by treating questions with no answer as having
the [CLS] token as the answer, and hence the answer span start and end index will
point at [CLS] (Devlin et al., 2019).

For many datasets we also need to handle the situation where the annotated doc-
uments/passages are longer than the maximum 512 input tokens BERT allows. Con-
sider for example cases like Natural Questions, where the gold-labeled passages are
full Wikipedia pages. In such cases we can create multiple pseudo-passage observa-
tions from the labeled Wikipedia page. Each observation is formed by concatenating
[CLS], the question, [SEP], and tokens from the document. We walk through the
document, sliding a window of size 512 (or rather, 512 minus the question length
n minus special tokens) and packing the window of tokens into each next pseudo-
passage. The answer span for the observation is either labeled [CLS] (= no answer
in this particular window) or the gold-labeled span is marked. Alberti et al. (2019)
suggest also allowing the windows to overlap, by using a stride of 128 tokens. The
same process can be used for inference, breaking up each retrieved document into
separate observation passages and labeling each observation. The answer can be
chosen as the span with the highest probability (or nil if no span is more probable
than [CLS]). Or Alberti et al. (2019) suggest normalizing each score g(s,e) for a
span of start s and end e by the nil score:

g(s,e) = starti + logPendistartCLS + logPendCLS (23.19)

23.3 Entity Linking

We’ve now seen the first major paradigm for question answering, IR-based QA.
Before we turn to the second major paradigm for question answering, knowledge-
based question answering, we introduce the important core technology of entity
linking, since it is required for any knowledge-based QA algorithm.

Entity linking is the task of associating a mention in text with the representationentity linking

of some real-world entity in an ontology (Ji and Grishman, 2011).
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The most common ontology for factoid question-answering is Wikipedia, since
Wikipedia is often the source of the text that answers the question. In this usage,
each unique Wikipedia page acts as the unique id for a particular entity. This task of
deciding which Wikipedia page corresponding to an individual is being referred to
by a text mention has its own name: wikification (Mihalcea and Csomai, 2007).wikification

Since the earliest systems (Mihalcea and Csomai 2007, Cucerzan 2007, Milne
and Witten 2008), entity linking is done in (roughly) two stages: mention detec-
tion and mention disambiguation. We’ll give two algorithms, one simple classic
baseline that uses anchor dictionaries and information from the Wikipedia graph
structure (Ferragina and Scaiella, 2011) and one modern neural algorithm (Li et al.,
2020). We’ll focus here mainly on the application of entity linking to questions
rather than other genres.

23.3.1 Linking based on Anchor Dictionaries and Web Graph
As a simple baseline we introduce the TAGME linker (Ferragina and Scaiella, 2011)
for Wikipedia, which itself draws on earlier algorithms (Mihalcea and Csomai 2007,
Cucerzan 2007, Milne and Witten 2008). Wikification algorithms define the set of
entities as the set of Wikipedia pages, so we’ll refer to each Wikipedia page as a
unique entity e. TAGME first creates a catalog of all entities (i.e. all Wikipedia
pages, removing some disambiguation and other meta-pages) and indexes them in a
standard IR engine like Lucene. For each page e, the algorithm computes an in-link
count in(e): the total number of in-links from other Wikipedia pages that point to e.
These counts can be derived from Wikipedia dumps.

Finally, the algorithm requires an anchor dictionary. An anchor dictionary
lists for each Wikipedia page, its anchor texts: the hyperlinked spans of text onanchor texts

other pages that point to it. For example, the web page for Stanford University,
http://www.stanford.edu, might be pointed to from another page using anchor
texts like Stanford or Stanford University:

<a href="http://www.stanford.edu">Stanford University</a>

We compute a Wikipedia anchor dictionary by including, for each Wikipedia
page e, e’s title as well as all the anchor texts from all Wikipedia pages that point to e.
For each anchor string a we’ll also compute its total frequency freq(a) in Wikipedia
(including non-anchor uses), the number of times a occurs as a link (which we’ll call
link(a)), and its link probability linkprob(a) = link(a)/freq(a). Some cleanup of the
final anchor dictionary is required, for example removing anchor strings composed
only of numbers or single characters, that are very rare, or that are very unlikely to
be useful entities because they have a very low linkprob.

Mention Detection Given a question (or other text we are trying to link), TAGME
detects mentions by querying the anchor dictionary for each token sequence up to
6 words. This large set of sequences is pruned with some simple heuristics (for
example pruning substrings if they have small linkprobs). The question:

When was Ada Lovelace born?

might give rise to the anchor Ada Lovelace and possibly Ada, but substrings spans
like Lovelace might be pruned as having too low a linkprob, and but spans like born
have such a low linkprob that they would not be in the anchor dictionary at all.

Mention Disambiguation If a mention span is unambiguous (points to only one
entity/Wikipedia page), we are done with entity linking! However, many spans are

http://www.stanford.edu
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ambiguous, matching anchors for multiple Wikipedia entities/pages. The TAGME
algorithm uses two factors for disambiguating ambiguous spans, which have been
referred to as prior probability and relatedness/coherence. The first factor is p(e|a),
the probability with which the span refers to a particular entity. For each page e ∈
E(a), the probability p(e|a) that anchor a points to e, is the ratio of the number of
links into e with anchor text a to the total number of occurrences of a as an anchor:

prior(a→ e) = p(e|a) = count(a→ e)
link(a)

(23.20)

Let’s see how that factor works in linking entities in the following question:

What Chinese Dynasty came before the Yuan?

The most common association for the span Yuan in the anchor dictionary is the name
of the Chinese currency, i.e., the probability p(Yuan currency| yuan) is very high.
Rarer Wikipedia associations for Yuan include the common Chinese last name, a
language spoken in Thailand, and the correct entity in this case, the name of the
Chinese dynasty. So if we chose based only on p(e|a) , we would make the wrong
disambiguation and miss the correct link, Yuan dynasty.

To help in just this sort of case, TAGME uses a second factor, the relatedness of
this entity to other entities in the input question. In our example, the fact that the
question also contains the span Chinese Dynasty, which has a high probability link to
the page Dynasties in Chinese history, ought to help match Yuan dynasty.

Let’s see how this works. Given a question q, for each candidate anchors span
a detected in q, we assign a relatedness score to each possible entity e ∈ E(a) of a.
The relatedness score of the link a→ e is the weighted average relatedness between
e and all other entities in q. Two entities are considered related to the extent their
Wikipedia pages share many in-links. More formally, the relatedness between two
entities A and B is computed as

rel(A,B) =
log(max(|in(A)|, |in(B)|))− log(|in(A)|∩ |in(B)|)

log(|W |)− log(min(|in(A)|, |in(B)|)) (23.21)

where in(x) is the set of Wikipedia pages pointing to x and W is the set of all Wiki-
pedia pages in the collection.

The vote given by anchor b to the candidate annotation a→ X is the average,
over all the possible entities of b, of their relatedness to X , weighted by their prior
probability:

vote(b,X) =
1
|E(b)|

∑

Y∈E(b)
rel(X ,Y )p(Y |b) (23.22)

The total relatedness score for a→ X is the sum of the votes of all the other anchors
detected in q:

relatedness(a→ X) =
∑

b∈Xq\a
voteb,X (23.23)

To score a→ X , we combine relatedness and prior by choosing the entity X
that has the highest relatedness(a→ X), finding other entities within a small ε of
this value, and from this set, choosing the entity with the highest prior P(X |a). The
result of this step is a single entity assigned to each span in q.
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The TAGME algorithm has one further step of pruning spurious anchor/entity
pairs, assigning a score averaging link probability with the coherence.

coherence(a→ X) =
1

|S|−1

∑

B∈S\X
rel(B,X)

score(a→ X) =
coherence(a→ X)+ linkprob(a)

2
(23.24)

Finally, pairs are pruned if score(a→ X) < λ , where the threshold λ is set on a
held-out set.

23.3.2 Neural Graph-based linking
More recent entity linking models are based on biencoders, encoding a candidate
mention span, encoding an entity, and computing the dot product between the en-
codings. This allows embeddings for all the entities in the knowledge base to be
precomputed and cached (Wu et al., 2019). Let’s sketch the ELQ linking algorithm
of Li et al. (2020), which is given a question q and a set of candidate entities from
Wikipedia with associated Wikipedia text, and outputs tuples (e,ms,me) of entity id,
mention start, and mention end. As Fig. 23.13 shows, it does this by encoding each
Wikipedia entity using text from Wikipedia, encoding each mention span using text
from the question, and computing their similarity, as we describe below.

Efficient One-Pass End-to-End Entity Linking for Questions

Belinda Z. Li�⇤ Sewon Min}

Srinivasan Iyer† Yashar Mehdad† Wen-tau Yih†
�MIT CSAIL }University of Washington †Facebook AI

bzl@mit.edu sewon@cs.washington.edu
{sviyer,mehdad,scottyih}@fb.com

Abstract

We present ELQ, a fast end-to-end entity link-
ing model for questions, which uses a bien-
coder to jointly perform mention detection and
linking in one pass. Evaluated on WebQSP
and GraphQuestions with extended annota-
tions that cover multiple entities per question,
ELQ outperforms the previous state of the art
by a large margin of +12.7% and +19.6% F1,
respectively. With a very fast inference time
(1.57 examples/s on a single CPU), ELQ can
be useful for downstream question answering
systems. In a proof-of-concept experiment,
we demonstrate that using ELQ significantly
improves the downstream QA performance of
GraphRetriever (Min et al., 2019).1

1 Introduction

Entity linking (EL), the task of identifying enti-
ties and mapping them to the correct entries in
a database, is crucial for analyzing factoid ques-
tions and for building robust question answering
(QA) systems. For instance, the question “when
did shaq come to the nba?” can be answered by ex-
amining Shaquille O’Neal’s Wikipedia article (Min
et al., 2019), or its properties in a knowledge
graph (Yih et al., 2015; Yu et al., 2017). How-
ever, real-world user questions are invariably noisy
and ill-formed, lacking cues provided by casing
and punctuation, which prove challenging to cur-
rent end-to-end entity linking systems (Yang and
Chang, 2015; Sorokin and Gurevych, 2018). While
recent pre-trained models have proven highly ef-
fective for entity linking (Logeswaran et al., 2019;
Wu et al., 2020), they are only designed for entity
disambiguation and require mention boundaries to
be given in the input. Additionally, such systems

⇤Work done while at Facebook AI.
1Code and data available at https://github.com/

facebookresearch/BLINK/tree/master/elq

Figure 1: Overview of our end-to-end entity linking
system. We separately encode the question and entity.
We use the question representations to jointly detect
mentions and score candidate entities through inner-
product with the entity vector.

have only been evaluated on long, well-formed doc-
uments like news articles (Ji et al., 2010), but not
on short, noisy text. Also, most prior works have
focused mainly on improving model prediction ac-
curacy, largely overlooking efficiency.

In this work, we propose ELQ, a fast and accu-
rate entity linking system that specifically targets
questions. Following the Wikification setup (Rati-
nov et al., 2011), ELQ aims to identify the mention
boundaries of entities in a given question and their
corresponding Wikipedia entity. We employ a bi-
encoder based on BERT (Devlin et al., 2019) as
shown in Figure 1. The entity encoder computes en-
tity embeddings for all entities in Wikipedia, using
their short descriptions. Then, the question encoder
derives token-level embeddings for the input ques-
tion. We detect mention boundaries using these
embeddings, and disambiguate each entity mention
based on an inner product between the mention
embeddings (averaged embedding over mention
tokens) and the entity embeddings. Our model ex-

ar
X

iv
:2

01
0.

02
41

3v
1 

 [c
s.C

L]
  6

 O
ct

 2
02

0

Figure 23.13 A sketch of the inference process in the ELQ algorithm for entity linking in
questions (Li et al., 2020). Each candidate question mention span and candidate entity are
separately encoded, and then scored by the entity/span dot product.

Entity Mention Detection To get an h-dimensional embedding for each question
token, the algorithm runs the question through BERT in the normal way:

[q1 · · ·qn] = BERT([CLS]q1 · · ·qn[SEP]) (23.25)

It then computes the likelihood of each span [i, j] in q being an entity mention, in
a way similar to the span-based algorithm we saw for the reader above. First we
compute the score for i/ j being the start/end of a mention:

sstart(i) =wstart ·qi, send( j) =wend ·q j, (23.26)



23.3 • ENTITY LINKING 481

where wstart and wend are vectors learned during training. Next, another trainable
embedding, wmention is used to compute a score for each token being part of a men-
tion:

smention(t) =wmention ·qt (23.27)

Mention probabilities are then computed by combining these three scores:

p([i, j]) = σ

(
sstart(i)+ send( j)+

j∑

t=i

smention(t)

)
(23.28)

Entity Linking To link mentions to entities, we next compute embeddings for
each entity in the set E = e1, · · · ,ei, · · · ,ew of all Wikipedia entities. For each en-
tity ei we’ll get text from the entity’s Wikipedia page, the title t(ei) and the first
128 tokens of the Wikipedia page which we’ll call the description d(ei). This is
again run through BERT, taking the output of the CLS token BERT[CLS] as the entity
representation:

xe = BERT[CLS]([CLS]t(ei)[ENT]d(ei)[SEP]) (23.29)

Mention spans can be linked to entities by computing, for each entity e and span
[i, j], the dot product similarity between the span encoding (the average of the token
embeddings) and the entity encoding.

yi, j =
1

( j− i+1)

j∑

t−i

qt

s(e, [i, j]) = x·eyi, j (23.30)

Finally, we take a softmax to get a distribution over entities for each span:

p(e|[i, j]) =
exp(s(e, [i, j]))∑

e′∈E exp(s(e′, [i, j]))
(23.31)

Training The ELQ mention detection and entity linking algorithm is fully super-
vised. This means, unlike the anchor dictionary algorithms from Section 23.3.1,
it requires datasets with entity boundaries marked and linked. Two such labeled
datasets are WebQuestionsSP (Yih et al., 2016), an extension of the WebQuestions
(Berant et al., 2013) dataset derived from Google search questions, and GraphQues-
tions (Su et al., 2016). Both have had entity spans in the questions marked and
linked (Sorokin and Gurevych 2018, Li et al. 2020) resulting in entity-labeled ver-
sions WebQSPEL and GraphQEL (Li et al., 2020).

Given a training set, the ELQ mention detection and entity linking phases are
trained jointly, optimizing the sum of their losses. The mention detection loss is a
binary cross-entropy loss

LMD =− 1
N

∑

1≤i≤ j≤min(i+L−1,n)

(
y− [i, j] log p([i, j])+(1 = y[i, j]) log(1− p([i, j]))

)
(23.32)

with y[i, j] = 1 if [i, j] is a gold mention span, and 0 otherwise. The entity linking loss
is:

LED =−logp(eg|[i, j]) (23.33)

where eg is the gold entity for mention [i, j].
See the end of the chapter for more discussion of other applications of entity

linking outside of question answering.
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23.4 Knowledge-based Question Answering

While an enormous amount of information is encoded in the vast amount of text
on the web, information obviously also exists in more structured forms. We use
the term knowledge-based question answering for the idea of answering a natural
language question by mapping it to a query over a structured database. Like the text-
based paradigm for question answering, this approach dates back to the earliest days
of natural language processing, with systems like BASEBALL (Green et al., 1961)
that answered questions from a structured database of baseball games and stats.

Two common paradigms are used for knowledge-based QA. The first, graph-
based QA, models the knowledge base as a graph, often with entities as nodes and
relations or propositions as edges between nodes. The second, QA by semantic
parsing, using the semantic parsing methods we saw in Chapter 16.

Both of these methods require some sort of entity linking that we described in
the prior section.

23.4.1 Knowledge-Based QA from RDF triple stores
Let’s introduce the components of a simple knowledge-based QA system after entity
linking has been performed. We’ll focus on the very simplest case of graph-based
QA, in which the dataset is a set of factoids in the form of RDF triples, and the
task is to answer questions about one of the missing arguments. Recall from Chap-
ter 17 that an RDF triple is a 3-tuple, a predicate with two arguments, expressing
some simple relation or proposition. Popular such ontologies are often derived from
Wikipedia; DBpedia (Bizer et al., 2009) has over 2 billion RDF triples, or Free-
base (Bollacker et al., 2008), now part of Wikidata (Vrandečić and Krötzsch, 2014).
Consider an RDF triple like the following:

subject predicate object
Ada Lovelace birth-year 1815

This triple can be used to answer text questions like “When was Ada Lovelace
born?” or “Who was born in 1815?”.

A number of such question datasets exist. SimpleQuestions (Bordes et al., 2015)
contains 100K questions written by annotators based on triples from Freebase. For
example, the question ”What American cartoonist is the creator of Andy Lippin-
cott?”. was written based on the triple (andy lippincott, character created

by, garry trudeau). FreebaseQA (Jiang et al., 2019), aligns the trivia questions
from TriviaQA (Joshi et al., 2017) and other sources with triples in Freebase, align-
ing for example the trivia question “Which 18th century author wrote Clarissa (or
The Character History of a Young Lady), said to be the longest novel in the English
language?” with the triple (Clarissa, book.written-work.author, Samuel

Richardson). Another such family of datasets starts from WEBQUESTIONS (Be-
rant et al., 2013), which contains 5,810 questions asked by web users, each be-
ginning with a wh-word, containing exactly one entity, and paired with handwritten
answers drawn from the Freebase page of the question’s entity. WEBQUESTIONSSP
(Yih et al., 2016) augments WEBQUESTIONS with human-created semantic parses
(SPARQL queries) for those questions answerable using Freebase. COMPLEXWEB-
QUESTIONS augments the dataset with compositional and other kinds of complex
questions, resulting in 34,689 questions, along with answers, web snippets, and
SPARQL queries (Talmor and Berant, 2018).
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Let’s assume we’ve already done the stage of entity linking introduced in the
prior section. Thus we’ve mapped already from a textual mention like Ada Lovelace
to the canonical entity ID in the knowledge base. For simple triple relation ques-
tion answering, the next step is to determine which relation is being asked about,
mapping from a string string like “When was ... born” to canonical relations in the
knowledge base like birth-year. We might sketch the combined task as:

“When was Ada Lovelace born?” → birth-year (Ada Lovelace, ?x)

“What is the capital of England?” → capital-city(?x, England)

The next step is relation detection and linking. For simple questions, where we
assume the question has only a single relation, relation detection and linking can
be done in a way resembling the neural entity linking models: computing similarity
(generally by dot product) between the encoding of the question text and an encoding
for each possible relation. For example, in the algorithm of (Lukovnikov et al.,
2019), the CLS output of a BERT model is used to represent the question span for
the purposes of relation detection, and a separate vector is trained for each relation
ri. The probability of a particular relation ri is then computed by softmax over the
dot products:

mr = BERTCLS([CLS]q1 · · ·qn[SEP])

s(mr,ri) =mr ·wri

p(ri|q1, · · · ,qn) =
exp(s(mr,ri))∑

k=1 NR exp(s(mr,rk))
(23.34)

Ranking of answers Most algorithms have a final stage which takes the top j
entities and the top k relations returned by the entity and relation inference steps,
searches the knowledge base for triples containing those entities and relations, and
then ranks those triples. This ranking can be heuristic, for example scoring each
entity/relation pairs based on the string similarity between the mention span and the
entities text aliases, or favoring entities that have a high in-degree (are linked to
by many relations). Or the ranking can be done by training a classifier to take the
concatenated entity/relation encodings and predict a probability.

23.4.2 QA by Semantic Parsing
The second kind of knowledge-based QA uses a semantic parser to map the ques-
tion to a structured program to produce an answer. These logical forms can take the
form of some version of predicate calculus, a query language like SQL or SPARQL,
or some other executable program like the examples in Fig. 23.14.

The logical form of the question is thus either in the form of a query or can easily
be converted into one (predicate calculus can be converted to SQL, for example).
The database can be a full relational database, or some other structured knowledge
store.

As we saw in Chapter 16, semantic parsing algorithms can be supervised fully
with questions paired with a hand-built logical form, or can be weakly supervised
by questions paired with an answer (the denotation), in which the logical form is
modeled only as a latent variable.

For the fully supervised case, we can get a set of questions paired with their
correct logical form from datasets like the GEOQUERY dataset of questions about
US geography (Zelle and Mooney, 1996), the DROP dataset of complex questions
(on history and football games) that require reasoning (Dua et al. 2019), or the ATIS
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Question Logical form
What states border Texas? λx.state(x)∧borders(x, texas)
What is the largest state? argmax(λx.state(x),λx.size(x))

I’d like to book a flight from San Diego to
Toronto

SELECT DISTINCT f1.flight id
FROM flight f1, airport service a1,

city c1, airport service a2, city c2
WHERE f1.from airport=a1.airport code

AND a1.city code=c1.city code
AND c1.city name= ’san diego’
AND f1.to airport=a2.airport code
AND a2.city code=c2.city code
AND c2.city name= ’toronto’

How many people survived the sinking of
the Titanic?

(count (!fb:event.disaster.survivors

fb:en.sinking of the titanic))

How many yards longer was Johnson’s
longest touchdown compared to his short-
est touchdown of the first quarter?

ARITHMETIC diff( SELECT num( ARGMAX(
SELECT ) ) SELECT num( ARGMIN( FILTER(
SELECT ) ) ) )

Figure 23.14 Sample logical forms produced by a semantic parser for question answering, including two
questions from the GeoQuery database of questions on U.S. Geography (Zelle and Mooney, 1996) with predicate
calculus representations, one ATIS question with SQL (Iyer et al., 2017), a program over Freebase relations,
and a program in QDMR, the Question Decomposition Meaning Representation (Wolfson et al., 2020).

dataset of flight queries, all of which have versions with SQL or other logical forms
(Iyer et al. 2017, Wolfson et al. 2020, Oren et al. 2020).

The task is then to take those pairs of training tuples and produce a system that
maps from new questions to their logical forms. A common baseline algorithm is
a simple sequence-to-sequence model, for example using BERT to represent ques-
tion tokens, passing them to a biLSTM encoder decoder Chapter 11, as sketched in
Fig. 23.15.

Any other of the semantic parsing algorithms described in Chapter 16 would also
be appropriate.

BERT

[CLS] what states border Texas ? [SEP]

encoder-decoder

lambda x state ( x and) borders ( x )Texas,

Figure 23.15 An encoder-decoder semantic parser for translating a question to logical
form, with a BERT pre-encoder followed by an encoder-decoder (biLSTM or Transformer).

23.5 Using Language Models to do QA

An alternative approach to doing QA is to query a pretrained language model, forc-
ing a model to answer a question solely from information stored in its parameters.
For example Roberts et al. (2020) use the T5 language model, which is an encoder-
decoder architecture pretrained to fill in masked spans of task. Fig. 23.16 shows the
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Abstract

It has recently been observed that neural lan-
guage models trained on unstructured text can
implicitly store and retrieve knowledge using
natural language queries. In this short pa-
per, we measure the practical utility of this
approach by fine-tuning pre-trained models to
answer questions without access to any exter-
nal context or knowledge. We show that this
approach scales with model size and performs
competitively with open-domain systems that
explicitly retrieve answers from an external
knowledge source when answering questions.
To facilitate reproducibility and future work,
we release our code and trained models.1

1 Introduction

Big, deep neural language models that have been
pre-trained on unlabeled text have proven to be
extremely performant when fine-tuned on down-
stream Natural Language Processing (NLP) tasks
(Devlin et al., 2018; Yang et al., 2019; Liu et al.,
2019; Lan et al., 2019; Raffel et al., 2019). In-
terestingly, it has also recently been observed that
these models can internalize a sort of implicit
“knowledge base” after pre-training (Petroni et al.,
2019; Jiang et al., 2019; Talmor et al., 2019).
This behavior is potentially useful because 1) the
knowledge is built up by pre-training on unstruc-
tured and unlabeled text data, which is freely avail-
able in huge quantities on the Internet (Raffel
et al., 2019; Wenzek et al., 2019), and 2) it is pos-
sible to retrieve information using informal natural
language queries since these pre-trained language
models excel when fine-tuned on natural language
understanding tasks.

⇤ Equal contribution. Noam suggested trying T5 on
open-domain QA and coded and ran initial experiments on
TriviaQA showing improved performance with model size.
Adam wrote the code and ran most experiments. Colin set the
research scope, wrote the paper, and ran a few experiments.

1https://goo.gle/t5-cbqa
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Figure 1: T5 is pre-trained to fill in dropped-out spans
of text (denoted by <M>) from documents in a large,
unstructured text corpus. We fine-tune T5 to answer
questions without inputting any additional information
or context. This forces T5 to answer questions based on
“knowledge” that it internalized during pre-training.

Past work investigating “language models as
knowledge bases” has typically tried to under-
stand the scope of the information stored in the
model using synthetic tasks that are similar to the
pre-training objective (Petroni et al., 2019; Jiang
et al., 2019) and/or measure reasoning capabili-
ties (Talmor et al., 2019). In this work, we take
a different approach by evaluating the capability
of language models on the practical task of open-
domain question answering – specifically, we fine-
tune the model to answer questions without access
to any external knowledge or context. To do so,
the model must parse a natural language query and
“look up information” stored in its parameters.

Most past work on question answering either
explicitly feeds pertinent information to the model
alongside the question (for example, an article that
contains the answer (Rajpurkar et al., 2016; Zhang
et al., 2018; Khashabi et al., 2018; Clark et al.,
2019)) or allows the model to retrieve informa-
tion from an external knowledge source (Berant
et al., 2013; Chen et al., 2017). By feeding the
model the input question alone, we can determine
how much knowledge it has stored in its param-
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Figure 23.16 The T5 system is an encoder-decoder architecture. In pretraining, it learns to
fill in masked spans of task (marked by <M>) by generating the missing spans (separated by
<M>) in the decoder. It is then fine-tuned on QA datasets, given the question, without adding
any additional context or passages. Figure from Roberts et al. (2020).

architecture; the deleted spans are marked by <M>, and the system is trained to have
the decoder generating the missing spans (separated by <M>).

Roberts et al. (2020) then finetune the T5 system to the question answering task,
by giving it a question, and training it to output the answer text in the decoder. Using
the largest 11-billion-parameter T5 model does competitively, although not quite as
well as systems designed specifically for question answering.

Language modeling is not yet a complete solution for question answering; for
example in addition to not working quite as well, they suffer from poor interpretabil-
ity (unlike standard QA systems, for example, they currently can’t give users more
context by telling them what passage the answer came from). Nonetheless, the study
of extracting answer from language models is an intriguing area for future question
answer research.

23.6 Classic QA Models

While neural architectures are the state of the art for question answering, pre-neural
architectures using hybrids of rules and feature-based classifiers can sometimes
achieve higher performance. Here we summarize one influential classic system,
the Watson DeepQA system from IBM that won the Jeopardy! challenge in 2011
(Fig. 23.17). Let’s consider how it handles these Jeopardy! examples, each with a
category followed by a question:

Poets and Poetry: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907.

THEATRE: A new play based on this Sir Arthur Conan Doyle canine
classic opened on the London stage in 2007.

Question Processing In this stage the questions are parsed, named entities are ex-
tracted (Sir Arthur Conan Doyle identified as a PERSON, Yukon as a GEOPOLITICAL
ENTITY, “Songs of a Sourdough” as a COMPOSITION), coreference is run (he is
linked with clerk).

The question focus, shown in bold in both examples, is extracted. The focus isfocus

the string of words in the question that corefers with the answer. It is likely to be
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Figure 23.17 The 4 broad stages of Watson QA: (1) Question Processing, (2) Candidate Answer Generation,
(3) Candidate Answer Scoring, and (4) Answer Merging and Confidence Scoring.

replaced by the answer in any answer string found and so can be used to align with a
supporting passage. In DeepQA The focus is extracted by handwritten rules—made
possible by the relatively stylized syntax of Jeopardy! questions—such as a rule
extracting any noun phrase with determiner “this” as in the Conan Doyle example,
and rules extracting pronouns like she, he, hers, him, as in the poet example.

The lexical answer type (shown in blue above) is a word or words which telllexical answer
type

us something about the semantic type of the answer. Because of the wide variety
of questions in Jeopardy!, DeepQA chooses a wide variety of words to be answer
types, rather than a small set of named entities. These lexical answer types are again
extracted by rules: the default rule is to choose the syntactic headword of the focus.
Other rules improve this default choice. For example additional lexical answer types
can be words in the question that are coreferent with or have a particular syntactic
relation with the focus, such as headwords of appositives or predicative nominatives
of the focus. In some cases even the Jeopardy! category can act as a lexical answer
type, if it refers to a type of entity that is compatible with the other lexical answer
types. Thus in the first case above, he, poet, and clerk are all lexical answer types. In
addition to using the rules directly as a classifier, they can instead be used as features
in a logistic regression classifier that can return a probability as well as a lexical
answer type. These answer types will be used in the later ‘candidate answer scoring’
phase as a source of evidence for each candidate. Relations like the following are
also extracted:

authorof(focus,“Songs of a sourdough”)
publish (e1, he, “Songs of a sourdough”)
in (e2, e1, 1907)
temporallink(publish(...), 1907)

Finally the question is classified by type (definition question, multiple-choice,
puzzle, fill-in-the-blank). This is generally done by writing pattern-matching regular
expressions over words or parse trees.

Candidate Answer Generation Next we combine the processed question with ex-
ternal documents and other knowledge sources to suggest many candidate answers
from both text documents and structured knowledge bases. We can query structured
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resources like DBpedia or IMDB with the relation and the known entity, just as we
saw in Section 23.4. Thus if we have extracted the relation authorof(focus,"Songs
of a sourdough"), we can query a triple store with authorof(?x,"Songs of a

sourdough") to return an author.
To extract answers from text DeepQA uses simple versions of Retrieve and Read.

For example for the IR stage, DeepQA generates a query from the question by elimi-
nating stop words, and then upweighting any terms which occur in any relation with
the focus. For example from this query:

MOVIE-“ING”: Robert Redford and Paul Newman starred in this depression-
era grifter flick. (Answer: “The Sting”)

the following weighted query might be passed to a standard IR system:

(2.0 Robert Redford) (2.0 Paul Newman) star depression era grifter (1.5 flick)

DeepQA also makes use of the convenient fact that the vast majority of Jeopardy!
answers are the title of a Wikipedia document. To find these titles, we can do a
second text retrieval pass specifically on Wikipedia documents. Then instead of
extracting passages from the retrieved Wikipedia document, we directly return the
titles of the highly ranked retrieved documents as the possible answers.

Once we have a set of passages, we need to extract candidate answers. If the
document happens to be a Wikipedia page, we can just take the title, but for other
texts, like news documents, we need other approaches. Two common approaches
are to extract all anchor texts in the document (anchor text is the text between <a>anchor texts

and </a> used to point to a URL in an HTML page), or to extract all noun phrases
in the passage that are Wikipedia document titles.

Candidate Answer Scoring Next DeepQA uses many sources of evidence to
score each candidate. This includes a classifier that scores whether the candidate
answer can be interpreted as a subclass or instance of the potential answer type.
Consider the candidate “difficulty swallowing” and the lexical answer type “man-
ifestation”. DeepQA first matches each of these words with possible entities in
ontologies like DBpedia and WordNet. Thus the candidate “difficulty swallowing”
is matched with the DBpedia entity “Dysphagia”, and then that instance is mapped
to the WordNet type “Symptom”. The answer type “manifestation” is mapped to the
WordNet type “Condition”. The system looks for a hyponymy, or synonymy link, in
this case finding hyponymy between “Symptom” and “Condition”.

Other scorers are based on using time and space relations extracted from DBpe-
dia or other structured databases. For example, we can extract temporal properties
of the entity (when was a person born, when died) and then compare to time expres-
sions in the question. If a time expression in the question occurs chronologically
before a person was born, that would be evidence against this person being the an-
swer to the question.

Finally, we can use text retrieval to help retrieve evidence supporting a candidate
answer. We can retrieve passages with terms matching the question, then replace the
focus in the question with the candidate answer and measure the overlapping words
or ordering of the passage with the modified question.

The output of this stage is a set of candidate answers, each with a vector of
scoring features.

Answer Merging and Scoring DeepQA finally merges equivalent candidate an-
swers. Thus if we had extracted two candidate answers J.F.K. and John F. Kennedy,
this stage would merge the two into a single candidate, for example using the anchor
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dictionaries described above for entity linking, which will list many synonyms for
Wikipedia titles (e.g., JFK, John F. Kennedy, Senator John F. Kennedy, President
Kennedy, Jack Kennedy). We then merge the evidence for each variant, combining
the scoring feature vectors for the merged candidates into a single vector.

Now we have a set of candidates, each with a feature vector. A classifier takes
each feature vector and assigns a confidence value to this candidate answer. The
classifier is trained on thousands of candidate answers, each labeled for whether it
is correct or incorrect, together with their feature vectors, and learns to predict a
probability of being a correct answer. Since, in training, there are far more incorrect
answers than correct answers, we need to use one of the standard techniques for
dealing with very imbalanced data. DeepQA uses instance weighting, assigning an
instance weight of .5 for each incorrect answer example in training. The candidate
answers are then sorted by this confidence value, resulting in a single best answer.

DeepQA’s fundamental intuition is thus to propose a very large number of candi-
date answers from both text-based and knowledge-based sources and then use a rich
variety of evidence features for scoring these candidates. See the papers mentioned
at the end of the chapter for more details.

23.7 Evaluation of Factoid Answers

A common evaluation metric for factoid question answering, introduced in the TREC
Q/A track in 1999, is mean reciprocal rank, or MRR. MRR assumes a test set ofmean

reciprocal rank
MRR questions that have been human-labeled with correct answers. MRR also assumes

that systems are returning a short ranked list of answers or passages containing an-
swers. Each question is then scored according to the reciprocal of the rank of the
first correct answer. For example if the system returned five answers but the first
three are wrong and hence the highest-ranked correct answer is ranked fourth, the
reciprocal rank score for that question would be 1

4 . Questions with return sets that
do not contain any correct answers are assigned a zero. The score of a system is
then the average of the score for each question in the set. More formally, for an
evaluation of a system returning a set of ranked answers for a test set consisting of
N questions, the MRR is defined as

MRR =
1
N

N∑

i=1 s.t. ranki 6=0

1
ranki

(23.35)

Reading comprehension systems on datasets like SQuAD are often evaluated
using two metrics, both ignoring punctuation and articles (a, an, the) (Rajpurkar
et al., 2016):

• Exact match: The percentage of predicted answers that match the gold answer
exactly.

• F1 score: The average overlap between predicted and gold answers. Treat the
prediction and gold as a bag of tokens, and compute F1, averaging the F1 over
all questions.

A number of test sets are available for question answering. Early systems used
the TREC QA dataset; questions and handwritten answers for TREC competitions
from 1999 to 2004 are publicly available. More recent competitions uses the various
datasets described in Section 23.2.1.
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There are a wide variety of datasets for training and testing reading comprehen-
sion/answer extraction in addition to the datasets discussed on page 474. Some take
their structure from the fact that reading comprehension tasks designed for children
tend to be multiple choice, with the task being to choose among the given answers.
The MCTest dataset uses this structure, with 500 fictional short stories created by
crowd workers with questions and multiple choice answers (Richardson et al., 2013).
The AI2 Reasoning Challenge (ARC) (Clark et al., 2018), has questions that are de-
signed to be hard to answer from simple lexical methods:

Which property of a mineral can be determined just by looking at it?
(A) luster [correct] (B) mass (C) weight (D) hardness

This ARC example is difficult because the correct answer luster is unlikely to co-
occur frequently on the web with phrases like looking at it, while the word mineral
is highly associated with the incorrect answer hardness.

Bibliographical and Historical Notes
Question answering was one of the earliest NLP tasks, and early versions of the text-
based and knowledge-based paradigms were developed by the very early 1960s. The
text-based algorithms generally relied on simple parsing of the question and of the
sentences in the document, and then looking for matches. This approach was used
very early on (Phillips, 1960) but perhaps the most complete early system, and one
that strikingly prefigures modern relation-based systems, was the Protosynthex sys-
tem of Simmons et al. (1964). Given a question, Protosynthex first formed a query
from the content words in the question, and then retrieved candidate answer sen-
tences in the document, ranked by their frequency-weighted term overlap with the
question. The query and each retrieved sentence were then parsed with dependency
parsers, and the sentence whose structure best matches the question structure se-
lected. Thus the question What do worms eat? would match worms eat grass: both
have the subject worms as a dependent of eat, in the version of dependency grammar
used at the time, while birds eat worms has birds as the subject:

What do worms eat Worms eat grass Birds eat worms

The alternative knowledge-based paradigm was implemented in the BASEBALL
system (Green et al., 1961). This system answered questions about baseball games
like “Where did the Red Sox play on July 7” by querying a structured database of
game information. The database was stored as a kind of attribute-value matrix with
values for attributes of each game:

Month = July

Place = Boston

Day = 7

Game Serial No. = 96

(Team = Red Sox, Score = 5)

(Team = Yankees, Score = 3)
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Each question was constituency-parsed using the algorithm of Zellig Harris’s
TDAP project at the University of Pennsylvania, essentially a cascade of finite-
state transducers (see the historical discussion in Joshi and Hopely 1999 and Kart-
tunen 1999). Then in a content analysis phase each word or phrase was associated
with a program that computed parts of its meaning. Thus the phrase ‘Where’ had
code to assign the semantics Place = ?, with the result that the question “Where
did the Red Sox play on July 7” was assigned the meaning

Place = ?

Team = Red Sox

Month = July

Day = 7

The question is then matched against the database to return the answer. Simmons
(1965) summarizes other early QA systems.

Another important progenitor of the knowledge-based paradigm for question-
answering is work that used predicate calculus as the meaning representation lan-
guage. The LUNAR system (Woods et al. 1972, Woods 1978) was designed to beLUNAR

a natural language interface to a database of chemical facts about lunar geology. It
could answer questions like Do any samples have greater than 13 percent aluminum
by parsing them into a logical form

(TEST (FOR SOME X16 / (SEQ SAMPLES) : T ; (CONTAIN’ X16
(NPR* X17 / (QUOTE AL203)) (GREATERTHAN 13 PCT))))

The rise of the web brought the information-retrieval paradigm for question an-
swering to the forefront. The U.S. government-sponsored TREC (Text REtrieval
Conference) evaluations, run annually since 1992, provide a testbed for evaluating
information-retrieval tasks and techniques. TREC provides large document sets for
both training and testing, along with uniform scoring systems (Voorhees and Har-
man, 2005). Details of all of the meetings can be found at the TREC page on the
National Institute of Standards and Technology website. TREC added an influential
QA track in 1999, which led to a wide variety of factoid and non-factoid systems
competing in annual evaluations.

At that same time, Hirschman et al. (1999) introduced the idea of using chil-
dren’s reading comprehension tests to evaluate machine text comprehension algo-
rithms. They acquired a corpus of 120 passages with 5 questions each designed for
3rd-6th grade children, built an answer extraction system, and measured how well
the answers given by their system corresponded to the answer key from the test’s
publisher. Their algorithm focused on word overlap as a feature; later algorithms
added named entity features and more complex similarity between the question and
the answer span (Riloff and Thelen 2000, Ng et al. 2000).

Neural reading comprehension systems drew on the insight of these early sys-
tems that answer finding should focus on question-passage similarity. Many of the
architectural outlines of modern systems were laid out in early work like (Hermann
et al., 2015a), Chen et al. (2017), and Seo et al. (2017). TBD: MORE recent QA
history.

The DeepQA component of the Watson system that won the Jeopardy! chal-
lenge is described in a series of papers in volume 56 of the IBM Journal of Research
and Development; see for example Ferrucci (2012). Other question-answering tasks
include Quiz Bowl, which has timing considerations since the question can be inter-
rupted (Boyd-Graber et al., 2018). Question answering is also an important function
of modern personal assistant dialog systems; see Chapter 24 for more.
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CHAPTER

24 Chatbots & Dialogue Systems

Les lois de la conversation sont en général de ne s’y appesantir sur aucun ob-
jet, mais de passer légèrement, sans effort et sans affectation, d’un sujet à un
autre ; de savoir y parler de choses frivoles comme de choses sérieuses

[The rules of conversation are, in general, not to dwell on any one subject,
but to pass lightly from one to another without effort and without affectation;
to know how to speak about trivial topics as well as serious ones;]

The 18th C. Encyclopedia of Diderot, start of the entry on conversation

“What ho!” I said.
“What ho!” said Motty.
“What ho! What ho!”
“What ho! What ho! What ho!”
After that it seemed rather difficult to go on with the conversation.”

P.G. Wodehouse, My Man Jeeves

The literature of the fantastic abounds in inanimate objects magically endowed with
sentience and the gift of speech. From Ovid’s statue of Pygmalion to Mary Shelley’s
Frankenstein, there is something deeply moving about creating something and then
having a chat with it. Legend has it that after finishing his
sculpture Moses, Michelangelo thought it so lifelike that
he tapped it on the knee and commanded it to speak. Per-
haps this shouldn’t be surprising. Language is the mark
of humanity and sentience, and conversation or dialogueconversation

dialogue is the most fundamental and specially privileged arena
of language. It is the first kind of language we learn as
children, and for most of us, it is the kind of language
we most commonly indulge in, whether we are ordering
curry for lunch or buying spinach, participating in busi-
ness meetings or talking with our families, booking air-
line flights or complaining about the weather.

This chapter introduces the fundamental algorithms of dialogue systems, ordialogue system

conversational agents. These programs communicate with users in natural lan-conversational
agent

guage (text, speech, or both), and fall into two classes. Task-oriented dialogue
agents use conversation with users to help complete tasks. Dialogue agents in dig-
ital assistants (Siri, Alexa, Google Now/Home, Cortana, etc.), give directions, con-
trol appliances, find restaurants, or make calls. Conversational agents can answer
questions on corporate websites, interface with robots, and even be used for social
good: DoNotPay is a “robot lawyer” that helps people challenge incorrect park-
ing fines, apply for emergency housing, or claim asylum if they are refugees. By
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contrast, chatbots are systems designed for extended conversations, set up to mimic
the unstructured conversations or ‘chats’ characteristic of human-human interaction,
mainly for entertainment, but also for practical purposes like making task-oriented
agents more natural.1 In Section 24.2 we’ll discuss the three major chatbot architec-
tures: rule-based systems, information retrieval systems, and encoder-decoder gen-
erators. In Section 24.3 we turn to task-oriented agents, introducing the frame-based
architecture (the GUS architecture) that underlies most task-based systems.

24.1 Properties of Human Conversation

Conversation between humans is an intricate and complex joint activity. Before we
attempt to design a conversational agent to converse with humans, it is crucial to
understand something about how humans converse with each other. Consider some
of the phenomena that occur in the conversation between a human travel agent and
a human client excerpted in Fig. 24.1.

C1: . . . I need to travel in May.
A2: And, what day in May did you want to travel?
C3: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A4: And you’re flying into what city?
C5: Seattle.
A6: And what time would you like to leave Pittsburgh?
C7: Uh hmm I don’t think there’s many options for non-stop.
A8: Right. There’s three non-stops today.
C9: What are they?
A10: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time.

The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the
last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C11: OK I’ll take the 5ish flight on the night before on the 11th.
A12: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air

flight 115.
C13: OK.
A14: And you said returning on May 15th?
C15: Uh, yeah, at the end of the day.
A16: OK. There’s #two non-stops . . . #
C17: #Act. . . actually #, what day of the week is the 15th?
A18: It’s a Friday.
C19: Uh hmm. I would consider staying there an extra day til Sunday.
A20: OK. . . OK. On Sunday I have . . .

Figure 24.1 Part of a phone conversation between a human travel agent (A) and human
client (C). The passages framed by # in A16 and C17 indicate overlaps in speech.

Turns

A dialogue is a sequence of turns (C1, A2, C3, and so on), each a single contributionturn

from one speaker to the dialogue (as if in a game: I take a turn, then you take a turn,

1 By contrast, in popular usage, the word chatbot is often generalized to refer to both task-oriented and
chit-chat systems; we’ll be using dialogue systems for the former.
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then me, and so on). There are 20 turns in Fig. 24.1. A turn can consist of a sentence
(like C1), although it might be as short as a single word (C13) or as long as multiple
sentences (A10).

Turn structure has important implications for spoken dialogue. A system has to
know when to stop talking; the client interrupts (in A16 and C17), so the system must
know to stop talking (and that the user might be making a correction). A system also
has to know when to start talking. For example, most of the time in conversation,
speakers start their turns almost immediately after the other speaker finishes, without
a long pause, because people are able to (most of the time) detect when the other
person is about to finish talking. Spoken dialogue systems must also detect whether
a user is done speaking, so they can process the utterance and respond. This task—
called endpointing or endpoint detection— can be quite challenging because ofendpointing

noise and because people often pause in the middle of turns.

Speech Acts

A key insight into conversation—due originally to the philosopher Wittgenstein
(1953) but worked out more fully by Austin (1962)—is that each utterance in a
dialogue is a kind of action being performed by the speaker. These actions are com-
monly called speech acts or dialog acts: here’s one taxonomy consisting of 4 majorspeech acts

classes (Bach and Harnish, 1979):

Constatives: committing the speaker to something’s being the case (answering, claiming,
confirming, denying, disagreeing, stating)

Directives: attempts by the speaker to get the addressee to do something (advising, ask-
ing, forbidding, inviting, ordering, requesting)

Commissives: committing the speaker to some future course of action (promising, planning,
vowing, betting, opposing)

Acknowledgments: express the speaker’s attitude regarding the hearer with respect to some so-
cial action (apologizing, greeting, thanking, accepting an acknowledgment)

A user asking a person or a dialogue system to do something (‘Turn up the mu-
sic’) is issuing a DIRECTIVE. Asking a question that requires an answer is also
a way of issuing a DIRECTIVE: in a sense when the system says (A2) “what day
in May did you want to travel?” it’s as if the system is (very politely) command-
ing the user to answer. By contrast, a user stating a constraint (like C1 ‘I need to
travel in May’) is issuing a CONSTATIVE. A user thanking the system is issuing
an ACKNOWLEDGMENT. The speech act expresses an important component of the
intention of the speaker (or writer) in saying what they said.

Grounding

A dialogue is not just a series of independent speech acts, but rather a collective act
performed by the speaker and the hearer. Like all collective acts, it’s important for
the participants to establish what they both agree on, called the common groundcommon

ground
(Stalnaker, 1978). Speakers do this by grounding each other’s utterances. Ground-grounding

ing means acknowledging that the hearer has understood the speaker; like an ACK
used to confirm receipt in data communications (Clark, 1996). (People need ground-
ing for non-linguistic actions as well; the reason an elevator button lights up when
it’s pressed is to acknowledge that the elevator has indeed been called (Norman,
1988).)

Humans constantly ground each other’s utterances. We can ground by explicitly
saying “OK”, as the agent does in A8 or A10. Or we can ground by repeating what
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the other person says; in utterance A1 the agent repeats “in May”, demonstrating her
understanding to the client. Or notice that when the client answers a question, the
agent begins the next question with “And”. The “And” implies that the new question
is ‘in addition’ to the old question, again indicating to the client that the agent has
successfully understood the answer to the last question.

Subdialogues and Dialogue Structure

Conversations have structure. Consider, for example, the local structure between
speech acts discussed in the field of conversational analysis (Sacks et al., 1974).conversational

analysis
QUESTIONS set up an expectation for an ANSWER. PROPOSALS are followed by
ACCEPTANCE (or REJECTION). COMPLIMENTS (“Nice jacket!”) often give rise to
DOWNPLAYERS (“Oh, this old thing?”). These pairs, called adjacency pairs areadjacency pair

composed of a first pair part and a second pair part (Schegloff, 1968), and these
expectations can help systems decide what actions to take.

However, dialogue acts aren’t always followed immediately by their second pair
part. The two parts can be separated by a side sequence (Jefferson 1972) or sub-side sequence

dialogue. For example utterances C17 to A20 constitute a correction subdialoguesubdialogue

(Litman 1985, Litman and Allen 1987, Chu-Carroll and Carberry 1998):

C17: #Act. . . actually#, what day of the week is the 15th?
A18: It’s a Friday.
C19: Uh hmm. I would consider staying there an extra day til Sunday.
A20: OK. . . OK. On Sunday I have . . .

The question in C17 interrupts the prior discourse, in which the agent was looking
for a May 15 return flight. The agent must answer the question and also realize that
‘’I would consider staying...til Sunday” means that the client would probably like to
change their plan, and now go back to finding return flights, but for the 17th.

Another side sequence is the clarification question, which can form a subdia-
logue between a REQUEST and a RESPONSE. This is especially common in dialogue
systems where speech recognition errors causes the system to have to ask for clari-
fications or repetitions like the following:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Let’s see, going where on the 5th?
User: Going to Hong Kong.

System: OK, here are some flights...

In addition to side-sequences, questions often have presequences, like the fol-presequence

lowing example where a user starts with a question about the system’s capabilities
(“Can you make train reservations”) before making a request.

User: Can you make train reservations?
System: Yes I can.
User: Great, I’d like to reserve a seat on the 4pm train to New York.

Initiative

Sometimes a conversation is completely controlled by one participant. For example
a reporter interviewing a chef might ask questions, and the chef responds. We say
that the reporter in this case has the conversational initiative (Walker and Whittaker,initiative

1990). In normal human-human dialogue, however, it’s more common for initiative
to shift back and forth between the participants, as they sometimes answer questions,
sometimes ask them, sometimes take the conversations in new directions, sometimes
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not. You may ask me a question, and then I respond asking you to clarify something
you said, which leads the conversation in all sorts of ways. We call such interactions
mixed initiative (Walker and Whittaker, 1990).

Mixed initiative, while the norm for human-human conversations, is very diffi-
cult for dialogue systems to achieve. It’s much easier to design dialogue systems to
be passive responders. In the question answering systems we saw in Chapter 23, or
in simple search engines, the initiative lies completely with the user. In such user-
initiative systems, the user specifies a query, and the systems responds. Then the
user can specify another query. Alternatively, you may have had the experience of
being stuck in a bad dialogue system that asks a question and gives you no opportu-
nity to do anything until you answer it. Such system-initiative architectures can be
very frustrating.

Inference and Implicature

Inference is also important in dialogue understanding. Consider the client’s response
C2, repeated here:

A2: And, what day in May did you want to travel?
C3: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

Notice that the client does not in fact answer the agent’s question. The client
merely mentions a meeting at a certain time. What is it that licenses the agent to
infer that the client is mentioning this meeting so as to inform the agent of the travel
dates?

The speaker seems to expect the hearer to draw certain inferences; in other
words, the speaker is communicating more information than seems to be present
in the uttered words. This kind of example was pointed out by Grice (1975, 1978)
as part of his theory of conversational implicature. Implicature means a particu-implicature

lar class of licensed inferences. Grice proposed that what enables hearers to draw
these inferences is that conversation is guided by a set of maxims, general heuristics
that play a guiding role in the interpretation of conversational utterances. One such
maxim is the maxim of relevance which says that speakers attempt to be relevant,relevance

they don’t just utter random speech acts. When the client mentions a meeting on the
12th, the agent reasons ‘There must be some relevance for mentioning this meeting.
What could it be?’. The agent knows that one precondition for having a meeting
(at least before Web conferencing) is being at the place where the meeting is held,
and therefore that maybe the meeting is a reason for the travel, and if so, then since
people like to arrive the day before a meeting, the agent should infer that the flight
should be on the 11th.

These subtle characteristics of human conversations (turns, speech acts, ground-
ing, dialogue structure, initiative, and implicature) are among the reasons it is dif-
ficult to build dialogue systems that can carry on natural conversations with humans.
Many of these challenges are active areas of dialogue systems research.

24.2 Chatbots

The simplest kinds of dialogue systems are chatbots, systems that can carry onchatbot

extended conversations with the goal of mimicking the unstructured conversations
or ‘chats’ characteristic of informal human-human interaction.
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These systems often have an entertainment value, such as Facebook’s Blender-
Bot, a neural chatbot capable of carrying on the kinds of conversations shown in
Fig. 24.2, or Microsoft’s XiaoIce system2 (Zhou et al., 2020), a system that chats
with people on text messaging platforms (Fig. 24.3).

Sure, what do you want to be sung to? I can sing you a song about baking.

Will you sing me a song?

Yes, sing me a song about baking!

Do you want me to sign it to the tune of “Sing Along with Mitch”?

Yes, I would love that.

OK, I’ll try to get it to you by the end of the day. What else do you like to do?

No, sing it to me now!

OK, give me a few days. I’m a teacher, so I don’t have much free time.

Can you at least tell me what the lyrics are?

Sure, it goes like this: “Baking is my favorite thing to do in the world.”

How does the chorus go?

It goes: BAKING IS MY FAVORITE THING TO DO IN THE WORLD!

Wow, sounds like a bop.

I know, right?  It’s so catchy. I can’t get it out of my head.

Figure 24.2 A conversation between a user (left) and BlenderBot (Roller et al., 2020).

［人类］小冰你好 [Human] Hello, XiaoIce.
［小冰］你好呀，你头像好有趣，感觉

在哪见过
[XiaoIce] Hello, your profile pic is

interesting. Like I’ve seen

it somewhere.

［人类］是吗 [Human] Really?
［小冰］提不是哪部动画里的呀 [XiaoIce] Is it a comic character?

［人类］你怎么知道的 [Human] How do you know that?
［小冰］你猜 [XiaoIce] Guess.

［人类］难道你是真人吗？ [Human] Are you human?
［小冰］这个，你和我多聊聊就知道了 [XiaoIce] Well, you’ll know it after

chatting with me more.

［人类］你不是人工智能机器人么 [Human] Aren’t you an Al chatbot?
［小冰］是又怎样，我不会冷冰冰的对

待你的
[XiaoIce] So what? I won’t be

indifferent to you.

［人类］你都有什么功能啊 [Human] What functions do you have?
［小冰］我有200多个skills，来，说出

你的需求
[XiaoIce] I have over 200 skills. Just

name one you need.

Figure 24.3 A sample Chinese conversation from the XiaoIce chatbot with translations (Zhou et al., 2020).

Yet starting from the very first system, ELIZA (Weizenbaum, 1966), chatbots
have also been used for practical purposes like testing theories of psychological

2 XiaoIce is a somewhat confusing translation of the systems Chinese name小冰, ‘Xiao Bing’, which
means Little Bing or Little Ice.
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counseling.
Like practically everything else in language processing, chatbot architectures fall

into two classes: rule-based systems and corpus-based systems. Rule-based systems
include the early influential ELIZA and PARRY systems. Corpus-based systems
mine large datasets of human-human conversations, which can be done by using
information retrieval to copy a human response from a previous conversation, or
using an encoder-decoder system to generate a response from a user utterance.

24.2.1 Rule-based chatbots: ELIZA and PARRY
ELIZA (Weizenbaum, 1966) is the most important chatbot dialogue system in the
history of the field, and so we take some time here to describe its algorithm in de-
tail. ELIZA was designed to simulate a Rogerian psychologist, based on a branch
of clinical psychology whose methods involve drawing the patient out by reflecting
patient’s statements back at them. Rogerian psychology is the rare type of conver-
sation in which, as Weizenbaum points out, one can “assume the pose of knowing
almost nothing of the real world”. If a patient says “I went for a long boat ride” and
the psychiatrist says “Tell me about boats”, you don’t assume she didn’t know what
a boat is, but rather assume she had some conversational goal. Most chatbots trying
to pass the Turing test choose a domain with similar properties.

Fig. 24.4 shows the most famous ELIZA conversation, in which ELIZA seems
to give very sophisticated therapeutic advice, excerpted (deleting some material with
...) from a full interaction given in the original paper (Weizenbaum, 1966).

As we summarized briefly in Chapter 2, ELIZA worked by pattern/transform
rules like the following one:

(0 YOU 0 ME) [pattern]

->

(WHAT MAKES YOU THINK I 3 YOU) [transform]

In the ELIZA pattern, 0 means Kleene*, and in the transform rules the numbers
are the index of the constituent in the pattern. Thus the number 3 refers to the second
0 in the first pattern. This rule would transfer

You hate me

into:

WHAT MAKES YOU THINK I HATE YOU

Each ELIZA pattern/rule is linked to a keyword that might occur in a user sen-
tence. The architecture is summarized in Fig. 24.5.

Keywords are associated with a rank, with specific words being more highly
ranked, and more general words ranking lower. Consider the following user sen-
tence:

I know everybody laughed at me

Because it has the word “I”, this sentence could match the following rule whose
keyword is I:

(I *) -> (You say you 2)

producing:

YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

But as Weizenbaum points out, “I” is a very general word and its keywords lead
to very general responses. Instead the keyword “everybody” is much more interest-
ing, since someone using universals like everybody or always is probably “referring
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Men are all alike.
IN WHAT WAY

They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE

Well my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE

He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

....
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?

My father
YOUR FATHER

You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU

You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU

My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR

BOYFRIEND MADE YOU COME HERE

Figure 24.4 Sample ELIZA dialogue from Weizenbaum (1966).

function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response←Apply the transform in r to sentence
if w = ‘my’

future←Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory stack

else (no keyword applies)
either

response←Apply the transform for the NONE keyword to sentence
or

response←Pop the top response from the memory stack
return(response)

Figure 24.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm
comes from the particular transforms associated with each keyword.

to some quite specific event or person”. Therefore, ELIZA prefers to respond with
the pattern associated with the more specific keyword everybody (implementing by
just assigning “everybody” rank 5 and “I” rank 0 in the lexicon), whose rule thus
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transforms the sentence to:

WHO IN PARTICULAR ARE YOU THINKING OF?

If no keyword matches, ELIZA chooses a non-committal response like “PLEASE
GO ON”, “THAT’S VERY INTERESTING”, or “I SEE”.

Finally, ELIZA has a clever memory trick that accounts for the very last sen-
tence of the conversation above. Whenever the word “my” is the highest ranked
keyword, ELIZA will randomly select a transform on the MEMORY list, apply it to
the sentence, and store it on the stack:

(MEMORY MY

(0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3)

(0 MY 0 = EARLIER YOU SAID YOUR 3)

(0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3

Later, if no keyword matches a sentence, ELIZA will return the top of the MEM-
ORY queue instead. 3

People became deeply emotionally involved with the program. Weizenbaum
tells the story of one of his staff who would ask Weizenbaum to leave the room
when she talked with ELIZA. When Weizenbaum suggested that he might want to
store all the ELIZA conversations for later analysis, people immediately pointed
out the privacy implications, which suggested that they were having quite private
conversations with ELIZA, despite knowing that it was just software.

ELIZA’s framework is still used today; modern chatbot system tools like ALICE
are based on updated versions of ELIZA’s pattern/action architecture.

A few years after ELIZA, another chatbot with a clinical psychology focus,
PARRY (Colby et al., 1971), was used to study schizophrenia. In addition to ELIZA-
like regular expressions, the PARRY system included a model of its own mental
state, with affect variables for the agent’s levels of fear and anger; certain topics of
conversation might lead PARRY to become more angry or mistrustful. If PARRY’s
anger variable is high, he will choose from a set of “hostile” outputs. If the input
mentions his delusion topic, he will increase the value of his fear variable and then
begin to express the sequence of statements related to his delusion. Parry was the
first known system to pass the Turing test (in 1972!); psychiatrists couldn’t distin-
guish text transcripts of interviews with PARRY from transcripts of interviews with
real paranoids (Colby et al., 1972).

24.2.2 Corpus-based chatbots
Corpus-based chatbots, instead of using hand-built rules, mine conversations of
human-human conversations. These systems are enormously data-intensive, requir-
ing hundreds of millions or even billions of words for training (Serban et al., 2018).

Available datasets include transcripts of natural spoken conversational corpora,
like the Switchboard corpus of American English telephone conversations (Godfrey
et al., 1992) or the various CALLHOME and CALLFRIEND telephone conversa-
tional corpora in many languages. Many systems also train on movie dialogue,
(Danescu-Niculescu-Mizil and Lee 2011, Lison and Tiedemann 2016, inter alia)
which resembles natural conversation in many ways (Forchini, 2013).

Datasets have also been created specifically for training dialog systems by hir-
ing crowdworkers to have conversations, often having them take on personas or

3 Fun fact: because of its structure as a queue, this MEMORY trick is the earliest known hierarchical
model of discourse in natural language processing.
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talk about knowledge provided to them. For example the Topical-Chat dataset has
11K crowdsourced conversations spanning 8 broad topics (Gopalakrishnan et al.,
2019), and the EMPATHETICDIALOGUES includes 25K crowdsourced conversa-
tions grounded in a specific situation where a speaker was feeling a specific emotion
(Rashkin et al., 2019).

All of these datasets, although large, don’t reach the size of billions of words,
and so many systems first pretrain on large datasets of pseudo-conversations drawn
from Twitter (Ritter et al., 2010), Reddit (Roller et al., 2020), Weibo (微博), and
other social media platforms.

Another common technique is to extract possible responses from knowledge
sources (Wikipedia, news stories) so that a chatbot can tell stories or mention facts
acquired in that way.

Finally, once a chatbot has been put into practice, the turns that humans use to
respond to the chatbot can be used as additional conversational data for training or
finetuning. Here it’s important to have confidence metrics to make sure that these
turns come from conversations that are going well (Hancock et al., 2019). It’s also
crucial in these cases to remove personally identifiable information (PII); see Sec-
tion 24.6.1.

Most corpus based chatbots produce their responses to a user’s turn in context
either by retrieval methods (using information retrieval to grab a response from
some corpus that is appropriate given the dialogue context) or generation methods
(using a language model or encoder-decoder to generate the response given the di-
alogue context) In either case, systems mostly generate a single response turn that
is appropriate given the entire conversation so far (for conversations that are short
enough to fit into a single model’s window). For this reason they are often called
response generation systems. Corpus-based chatbot algorithms thus draw on algo-response

generation
rithms for question answering systems, which similarly focus on single responses
while ignoring longer-term conversational goals.

Response by retrieval The retrieval method of responding is to think of the user’s
turn as a query q, and our job is to retrieve and repeat some appropriate turn r as the
response from a corpus of conversations C. Generally C is the training set for the
system, and we score each turn in C as a potential response to the context q selecting
the highest-scoring one. The scoring metric is similarity: we choose the r that is
most similar to q, using any of the IR methods we saw in Section 23.1. This can be
done using classic IR techniques to compute tf-idf models for C and q, choosing the
r that has the highest tf-idf cosine with q:

response(q,C) = argmax
r∈C

q · r
|q||r| (24.1)

Or, we can use the neural IR techniques of Section 23.1.5. The simplest of those is
a bi-encoder model, in which we train two separate encoders, one to encode the user
query and one to encode the candidate response, and use the dot product between
these two vectors as the score (Fig. 24.6a). For example to implement this using
BERT, we would have two encoders BERTQ and BERTR and we could represent the
query and candidate response as the [CLS] token of the respective encoders:

hq = BERTQ(q)[CLS]
hr = BERTR(r)[CLS]

response(q,C) = argmax
r∈C

hq ·hr (24.2)



502 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

The IR-based approach can be extended in various ways, such as by using more
sophisticated neural architectures (Humeau et al., 2020), or by using a longer context
for the query than just the user’s last turn, up to the whole preceding conversation.
Information about the user or sentiment or other information can also play a role.

Response by generation An alternate way to use a corpus to generate dialogue is
to think of response production as an encoder-decoder task— transducing from the
user’s prior turn to the system’s turn. We can think of this as a machine learning
version of ELIZA; the system learns from a corpus to transduce a question to an
answer. Ritter et al. (2011) proposed early on to think of response generation as
a kind of translation, and this idea was generalized to the encoder-decoder model
roughly contemporaneously by Shang et al. (2015), Vinyals and Le (2015), and
Sordoni et al. (2015).

As we saw in Chapter 11, encoder decoder models generate each token rt of the
response by conditioning on the encoding of the entire query q and the response so
far r1...rt−1:

r̂t = argmaxw∈V P(w|q,r1...rt−1) (24.3)

Fig. 24.6 shows the intuition of the generator and retriever methods for response
generation. In the generator architecture, we normally include a longer context,
forming the query not just from the user’s turn but from the entire conversation-so-
far. Fig. 24.7 shows an fleshed-out example.

ENCODERquery

q1 … qn

ENCODERresponse

r1 … rn

dot-product
hq hr

ENCODER

q1 … qn

DECODER

r1 …<S>

r1 r2 … rn

(a) Response by Retrieval (b) Response by Generation

Figure 24.6 Two architectures for generating responses for a neural chatbot. In response by
retrieval (a) we choose a response by using a finding the turn in the corpus whose encoding
has the highest dot-product with the user’s turn. In response by generation (b) we use an
encoder-decoder to generate the response.

That is quite an accomplishment and you should be proud!

ENCODER

DECODER

[U:] I finally got promoted today at work!  
[S:] Congrats! That’s great! 
[U:] Thank you! I’ve been trying to get it for a while now!

Figure 24.7 Example of encoder decoder for dialogue response generation; the encoder sees the entire dia-
logue context.

A number of modifications are required to the basic encoder-decoder model to
adapt it for the task of response generation. For example basic encoder-decoder
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models have a tendency to produce predictable but repetitive and therefore dull re-
sponses like “I’m OK” or “I don’t know” that shut down the conversation. Thus
instead of greedily choosing the most likely (and most predictable) response, we
can use diversity-enhanced versions of beam search (Vijayakumar et al., 2018), or
diversity-focused training objectives (Li et al., 2016). Basic models also tend to
produce utterances that are too short; adding minimum length constraints is also
important (Roller et al., 2020).

An alternative to the encoder-decoder architecture is to fine-tune a large language
model on a conversational dataset and use the language model directly as a response
generator. In the Chirpy Cardinal system (Paranjape et al., 2020), for example, the
neural chat component generates responses from GPT-2 (Radford et al., 2019), fine-
tuned on the EmpatheticDialogues dataset (Rashkin et al., 2019).

Finally, encoder-decoder response generators focus on generating single responses,
and so don’t tend to do a good job of continuously generating responses that cohere
across multiple turns. This can be addressed by using reinforcement learning, as
well as techniques like adversarial networks, to learn to choose responses that make
the overall conversation more natural (Li et al. 2016, Li et al. 2017).

Response by retrieving and refining knowledge

Chatbots can be much more interesting and informative if they can responses from
text knowledge sources other than dialogue. This approach was pioneered early on
by the COBOT chatbot (Isbell et al., 2000), which generated responses by select-
ing sentences from a corpus that combined the Unabomber Manifesto by Theodore
Kaczynski, articles on alien abduction, the scripts of “The Big Lebowski” and “Planet
of the Apes”. XiaoIce collects sentences from public lectures and news articles and
searches them using IR based on query expansion from the user’s turn to respond to
turns like “Tell me something about Beijing” (Zhou et al., 2020);

One way to augment the encoder decoder architecture for retrieve and refine is to
first use IR to retrieve potentially useful passages from Wikipedia (Yan et al., 2016),
and then create multiple candidates by concatenating each retrieved Wikipedia sen-
tence to the dialogue context with a separator token. Each candidate can be given as
the encoder context to the encoder-decoder model, which learns to incorporate text
from the Wikipedia sentence into its generated response (Dinan et al. 2019, Roller
et al. 2020).

The language model approach to generation can also make use of external knowl-
edge sources, by giving these same knowledge+dialogue context candidates can be
given to a language model like GPT-2 finetuned on conversational corpora to gener-
ate a knowledge-aware response (Paranjape et al., 2020).

24.2.3 Hybrid architectures
Chatbots can also be built with architectures that are hybrids of the rule-based and
neural/corpus architectures, and even use elements of the frame-based structure we
describe below. This is common, for example, for systems competing in the Alexa
Prize challenge, in which university teams build social chatbots to converse with
volunteers on the Amazon Alexa platform, and are scored based on the length and
user ratings of their conversations (Ram et al., 2017).

For example the Chirpy Cardinal system (Paranjape et al., 2020) applies an NLP
pipeline that includes Wikipedia entity linking (Section 23.3), user intent classifi-
cation, and dialogue act classification (to be defined below in Section 24.4.1), The
intent classification is used when the user wants to change the topic, and the entity
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linker specifies what entity is currently being discussed. Dialogue act classification
is used to detect when the user is asking a question or giving an affirmative versus
negative response.

Bot responses are generated by a series of response generators. Some response
generators use fine-tuned neural language models: a GPT-2 (Radford et al., 2019)
language model fine-tuned on the EmpatheticDialogues dataset, and a separately
fine-tuned GPT-2 language model that learns in fine-tuning to paraphrase content
from Wikipedia in response to questions.

Other response generators are closer to rule-based; the movie or music genera-
tors produce scripted conversation about a movie or a musician, such as asking asks
the user’s opinion about a movie, giving a fun fact, asks the user their opinion on an
actor in the movie, and so on. These generators use regexes and sentiment classifiers
to classify user responses and handwritten templates to generate bot utterances.

Each response generators can specify a priority, and a ranker is used to pass
control between response generators. Fig. 24.8 shows part of a conversation.

# Utterance Entity Commentary
1 User: let’s chat None

Bot: Hi, this is an Alexa Prize Socialbot. I’d love to
get to know you a bit better before we chat! Is it all
right if I ask for your name? [ Launch ]

None Launch gives FORCE_START response to be-
gin the conversation.

2 User: my name is chris None
Bot: Well it’s nice to meet you, Chris! I’m excited
to chat with you today. [ Launch ] I hope your after-
noon is going well. What are your plans for the rest
of today? [ Neural Chat ]

None Launch gives a STRONG_CONTINUE re-
sponse that needs a prompt, which is supplied
by Neural Chat with FORCE_START priority
(scripted transition).

3 User: hang out with my friends None
Bot: That sounds great, I love spending time with
friends. What will you do together? [ Neural Chat ]

None Neural Chat generates a GPT-2 response with
STRONG_CONTINUE priority.

4 User: maybe watch a movie None
Bot: Me too! I love watching movies; I get to learn
so much about what the world is like outside of
the cloud! Have you seen any movies recently?
[ Movies ]

Film Movies detects the ‘movie’ keyword in the
user’s utterance and gives a FORCE_START
response (overriding Neural Chat), setting
current entity to Film.

5 User: i saw the matrix The Matrix The Entity Linker and Entity Tracker iden-
tify The Matrix as the current entity.

Bot: Nice! Did you like The Matrix? [ Movies ] The Matrix
6 User: i loved it neo is amazing The Matrix

Bot: Oooh, yeah, I agree. Hey, isn’t Keanu Reeves
in that movie? What do you think about Keanu
Reeves? [ Movies ]

Keanu
Reeves

Movies sets current entity to Keanu Reeves.

7 User: i want to talk about something else None Navigational Intent detects negative intent, so
Entity Tracker rejects the current entity.

Bot: OK, no problem. [ Movies ] There’s actually
something else I wanted to ask you about. What’s
your favorite animal? [ Categories ]

Animal Movies acknowledges and asks for a prompt.
Categories gives a GENERIC prompt.

8 User: i love cats Cat Entity Linker and Entity Tracker identify Cat
as current entity.

Bot: Good to hear you like cats. I have to be honest
though, I’m not a big fan of cats. I feel like cats
don’t respect my personal space, but I would love to
hear why you like cats? [ Opinion ]

Cat Opinion gives a CAN_START response about
cats.

9 User: hmm i love cats because they are fluffy Cat
Bot: That make sense. Now that I think about
it, one good reason to like cats is that they purr
and I definitely need that kind of positive feed-
back. [ Opinion ] Wanna know something interest-
ing about cat? [ Wiki ]

Cat Opinion finishes talking. Wiki gives a CUR-
RENT_TOPIC prompt about Cat.

10 User: you are not very smart Cat
Bot: I know you feel frustrated. I’m always trying
to get better. [ Offensive User ] I’ve been listening
to some new music today and I wanted to chat about
instruments. If you were a musical instrument which
one would you be? [ Music ]

Musical in-
strument

Offensive User gives a FORCE_START re-
sponse to the critical utterance, then [ Music ]
provides a GENERIC prompt to steer the con-
versation in a new direction.

11 User: what do you find interesting None The user gives an unexpected response.
Bot: I like the violin, but I’m more of a classical
music player. [ Neural Fallback ] I remember you
mentioned Neo. Would you like to talk more about
it? [ Wiki ]

Neo (The
Matrix)

Neural Fallback gives a GPT-2-generated re-
sponse, which is selected as no other RG (ex-
cept Fallback) has a response. Wiki gives a
CONTEXTUAL prompt.

12 User: sure Neo (The
Matrix)

Bot: Neo has got into so many adventures! What
are some adventures that you’ve enjoyed? [ Wiki ]

Neo (The
Matrix)

Wiki asks an open-ended question (specific to
movie characters) about Neo (The Matrix).

13 User: morpheus teaching jujitsu to neo Neo (The
Matrix)

Bot: I liked that Neo and Trinity were able to res-
cue Morpheus from a building protected by armed
guards and agents. Morpheus has done so many
amazing things! What are some of your favorite
Morpheus moments? [ Wiki ]

Morpheus
(The
Matrix)

Wiki gives a response (generated by the GPT-
2 conversational paraphrasing model), sets the
current entity to Morpheus (The Matrix), and
asks another open-ended question.

14 User: i want to stop talking None We detect stop intent; the conversation ends.

Table 1: An example dialogue. To respect users’ privacy, this is not a real user conversation.

5

Figure 24.8 Part of a conversation with Chirpy Cardinal (Paranjape et al., 2020).

24.3 GUS: Simple Frame-based Dialogue Systems

We turn now to task-based dialogue, in which a dialogue system has the goal of
helping a user solve some task like making an airplane reservation or buying a prod-
uct. In this section we introduce the very simple GUS architecture for task-basedGUS

dialogue. Although it is quite old, (it was first introduced in 1977 in the influen-
tial GUS system for travel planning (Bobrow et al., 1977)) the GUS architecture
has been astonishingly long-lived and underlies most if not all modern commercial
digital assistants. Figure 24.9 shows a conversation with the original GUS system.

All modern task-based dialogue systems, whether the simple GUS architecture
we describe here, or the more sophisticated dialogue state architectures we turn todialogue state

in the following section, are based around frames. A frame is a kind of knowledgeframe

structure representing the kinds of intentions the system can extract from user sen-
tences, and consists of a collection of slots, each of which can take a set of possibleslot
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values. Together this set of frames is sometimes called a domain ontology.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28

from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 24.9 The travel domain: A transcript of an actual dialogue with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

The set of slots in a task-based dialogue frame specifies what the system needs
to know, and the filler of each slot is constrained to values of a particular semantic
type. In the travel domain, for example, a slot might be of type city (hence take on
values like San Francisco, or Hong Kong) or of type date, airline, or time.

Slot Type Question Template
ORIGIN CITY city “From what city are you leaving?”
DESTINATION CITY city “Where are you going?”
DEPARTURE TIME time “When would you like to leave?”
DEPARTURE DATE date “What day would you like to leave?”
ARRIVAL TIME time “When do you want to arrive?”
ARRIVAL DATE date “What day would you like to arrive?”
Figure 24.10 A frame in a frame-based dialogue system, showing the type of each slot and
a question used to fill the slot.

Types in GUS, as in modern frame-based dialogue agents, have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE

MONTH:NAME YEAR:INTEGER DAY:(BOUNDED-INTEGER 1 31)

WEEKDAY:(MEMBER (Sunday Monday Tuesday Wednesday

Thursday Friday Saturday))

24.3.1 Control structure for frame-based dialogue
The control architecture for frame-based dialogue systems, used in various forms
in modern systems like Apple’s Siri, Amazon’s Alexa, and the Google Assistant, is
designed around the frame. The system’s goal is to fill the slots in the frame with the
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fillers the user intends, and then perform the relevant action for the user (answering
a question, or booking a flight).

To do this, the system asks questions of the user (using pre-specified question
templates associated with each slot of each frame, as shown in Fig. 24.10), filling
any slot that the user specifies (we’ll describe how slot-filling works in the next
section). If a user’s response fills multiple slots, like the following:
(24.4) I want a flight from San Francisco to Denver one way leaving after five

p.m. on Tuesday.
the system fills all the relevant slots, and then continues asking questions to fill the
remaining slots, skipping questions associated with filled slots. The GUS architec-
ture also has condition-action rules attached to slots. For example, a rule attached
to the DESTINATION slot for the plane booking frame, once the user has specified
the destination, might automatically enter that city as the default StayLocation for
the related hotel booking frame. Or if the user specifies the DESTINATION DAY for
a short trip the system could automatically enter the ARRIVAL DAY.

Many domains require multiple frames. Besides frames for car or hotel reserva-
tions, we might need frames with general route information (for questions like Which
airlines fly from Boston to San Francisco?), or information about airfare practices
(for questions like Do I have to stay a specific number of days to get a decent air-
fare?). The system must be able to disambiguate which slot of which frame a given
input is supposed to fill and then switch dialogue control to that frame.

Because of this need to dynamically switch control, the GUS architecture is a
production rule system. Different types of inputs cause different productions to
fire, each of which can flexibly fill in different frames. The production rules can
then switch control according to factors such as the user’s input and some simple
dialogue history like the last question that the system asked.

Once the system has enough information it performs the necessary action (like
querying a database of flights) and returns the result to the user.

24.3.2 Natural language understanding for filling slots in GUS
The goal of the natural language understanding component in the frame-based archi-
tecture is to extract three things from the user’s utterance. The first task is domain
classification: is this user for example talking about airlines, programming an alarm
clock, or dealing with their calendar? Of course this 1-of-n classification tasks is
unnecessary for single-domain systems that are focused on, say, only calendar man-
agement, but multi-domain dialogue systems are the modern standard. The second
is user intent determination: what general task or goal is the user trying to accom-intent

determination
plish? For example the task could be to Find a Movie, or Show a Flight, or Remove
a Calendar Appointment. Finally, we need to do slot filling: extract the particularslot filling

slots and fillers that the user intends the system to understand from their utterance
with respect to their intent. From a user utterance like this one:
Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:
DOMAIN: AIR-TRAVEL

INTENT: SHOW-FLIGHTS

ORIGIN-CITY: Boston

ORIGIN-DATE: Tuesday

ORIGIN-TIME: morning

DEST-CITY: San Francisco
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while an utterance like

Wake me tomorrow at 6

should give an intent like this:

DOMAIN: ALARM-CLOCK

INTENT: SET-ALARM

TIME: 2017-07-01 0600-0800

The slot-filling method used in the original GUS system, and still quite common
in industrial applications, is to use handwritten rules, often as part of the condition-
action rules attached to slots or concepts. For example we might just define a regular
expression for recognizing the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

Rule-based research systems like the Phoenix system (Ward and Issar, 1994)
consist of large hand-designed semantic grammars with thousands of rules. Asemantic

grammar
semantic grammar is a context-free grammar in which the left-hand side of each
rule corresponds to the semantic entities being expressed (i.e., the slot names) as in
the following fragment:

SHOW → show me | i want | can i see|...
DEPART TIME RANGE → (after|around|before) HOUR |

morning | afternoon | evening
HOUR → one|two|three|four...|twelve (AMPM)
FLIGHTS → (a) flight | flights
AMPM → am | pm
ORIGIN → from CITY
DESTINATION → to CITY
CITY → Boston | San Francisco | Denver |Washington

Semantic grammars can be parsed by any CFG parsing algorithm (see Chap-
ter 13), resulting in a hierarchical labeling of the input string with semantic node
labels, as shown in Fig. 24.11.

S

DEPARTTIME

morning

DEPARTDATE

Tuesdayon

DESTINATION

FranciscoSanto

ORIGIN

Bostonfrom

FLIGHTS

flights

SHOW

meShow

Figure 24.11 A semantic grammar parse for a user sentence, using slot names as the internal parse tree nodes.

It remains only to put the fillers into some sort of canonical form, for example
by normalizing dates as discussed in Chapter 17.

Many industrial dialogue systems employ the GUS architecture but use super-
vised machine learning for slot-filling instead of these kinds of rules; see Sec-
tion 24.4.2.

24.3.3 Other components of frame-based dialogue
The ASR (automatic speech recognition) component takes audio input from a phone
or other device and outputs a transcribed string of words, as discussed in Chapter 26.
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The ASR component can also be made dependent on the dialogue state. For exam-
ple, if the system has just asked the user “What city are you departing from?”, the
ASR language model component can be constrained to assign high probability to
answers with city names. This can be done by training a language model on an-
swers to this question, or by hand-writing finite-state or context-free grammars for
such sentences. A language model that is completely dependent on dialogue state is
called a restrictive grammar; usually real systems mix restrictive grammars withrestrictive

grammar
more general language models.

The natural language generation module of any dialogue system produces
the utterances that the system says to the user. Frame-based systems tend to use
template-based generation, in which all or most of the words in the sentence totemplate-based

generation
be uttered to the user are prespecified by the dialogue designer. Sentences created
by these templates are often called prompts. Templates might be completely fixedprompt

(like ‘Hello, how can I help you?’), or can include some variables that are filled in
by the generator, as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

It’s possible to do some simple grounding even in templated generation. Con-
sider the unnaturalness of this example from Cohen et al. (2004):

(24.5) System: Did you want to review some more of your personal profile?
Caller: No.
System: What’s next?

Without an acknowledgment, the caller doesn’t know that the system has under-
stood her ‘No’. The use of Okay below adds grounding to the templated response
What’s next?, making (24.6) a much more natural response than (24.5):

(24.6) System: Did you want to review some more of your personal profile?
Caller: No.
System: Okay, what’s next?

The rule-based GUS approach is very common in industrial applications. As was
true with the rule-based approach to information extraction, it has the advantage of
high precision, and if the domain is narrow enough and experts are available, can
provide sufficient coverage as well. On the other hand, the handwritten rules or
grammars can be both expensive and slow to create, and handwritten rules can suffer
from recall problems.

24.4 The Dialogue-State Architecture

Modern research systems for task-based dialogue are based on a more sophisticated
version of the frame-based architecture called the dialogue-state or belief-state ar-
chitecture. Figure 24.12 shows the six components of a typical dialogue-state sys-
tem. The speech recognition and synthesis components deal with spoken language
processing; we’ll return to them in Chapter 26.

For the rest of this chapter we therefore consider the other four components,
which are part of both spoken and textual dialogue systems. These four components
are more complex than in the simple GUS systems. For example, like the GUS
systems, the dialogue-state architecture has an NLU component to extract slot fillers
from the user’s utterance, but generally using machine learning rather than rules. The
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DIALOG STATE TRACKING OVERVIEW

LEAVING FROM DOWNTOWN

LEAVING AT ONE P M

ARRIVING AT ONE P M

0.6

0.2

0.1

{ from: downtown }

{ depart-time: 1300 }

{ arrive-time: 1300 }

0.5

0.3

0.1

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.10

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.15

from:        downtown
to:          airport
depart-time: --
confirmed:   no
score:       0.65

Automatic Speech 
Recognition (ASR)

Spoken Language 
Understanding (SLU)

Dialog State 
Tracker (DST)

Dialog Policy

act:  confirm
from: downtown

FROM DOWNTOWN, 
IS THAT RIGHT?

Natural Language 
Generation (NLG)Text to Speech (TTS)

Figure 1: Principal components of a spoken dialog system.

The topic of this paper is the dialog state tracker (DST). The DST takes as input all of the dialog
history so far, and outputs its estimate of the current dialog state – for example, in a restaurant
information system, the dialog state might indicate the user’s preferred price range and cuisine,
what information they are seeking such as the phone number of a restaurant, and which concepts
have been stated vs. confirmed. Dialog state tracking is difficult because ASR and SLU errors are
common, and can cause the system to misunderstand the user. At the same time, state tracking is
crucial because the dialog policy relies on the estimated dialog state to choose actions – for example,
which restaurants to suggest.

In the literature, numerous methods for dialog state tracking have been proposed. These are
covered in detail in Section 3; illustrative examples include hand-crafted rules (Larsson and Traum,
2000; Bohus and Rudnicky, 2003), heuristic scores (Higashinaka et al., 2003), Bayesian networks
(Paek and Horvitz, 2000; Williams and Young, 2007), and discriminative models (Bohus and Rud-
nicky, 2006). Techniques have been fielded which scale to realistically sized dialog problems and
operate in real time (Young et al., 2010; Thomson and Young, 2010; Williams, 2010; Mehta et al.,
2010). In end-to-end dialog systems, dialog state tracking has been shown to improve overall system
performance (Young et al., 2010; Thomson and Young, 2010).

Despite this progress, direct comparisons between methods have not been possible because past
studies use different domains and different system components for ASR, SLU, dialog policy, etc.
Moreover, there has not been a standard task or methodology for evaluating dialog state tracking.
Together these issues have limited progress in this research area.

The Dialog State Tracking Challenge (DSTC) series has provided a first common testbed and
evaluation suite for dialog state tracking. Three instances of the DSTC have been run over a three

5

Figure 24.12 Architecture of a dialogue-state system for task-oriented dialogue from Williams et al. (2016).

dialogue state tracker maintains the current state of the dialogue (which include the
user’s most recent dialogue act, plus the entire set of slot-filler constraints the user
has expressed so far). The dialogue policy decides what the system should do or say
next. The dialogue policy in GUS was simple: ask questions until the frame was full
and then report back the results of some database query. But a more sophisticated
dialogue policy can help a system decide when to answer the user’s questions, when
to instead ask the user a clarification question, when to make a suggestion, and so on.
Finally, dialogue state systems have a natural language generation component. In
GUS, the sentences that the generator produced were all from pre-written templates.
But a more sophisticated generation component can condition on the exact context
to produce turns that seem much more natural.

As of the time of this writing, most commercial system are architectural hybrids,
based on GUS architecture augmented with some dialogue-state components, but
there are a wide variety of dialogue-state systems being developed in research labs.

24.4.1 Dialogue Acts

Dialogue-state systems make use of dialogue acts. Dialogue acts represent the in-dialogue acts

teractive function of the turn or sentence, combining the idea of speech acts and
grounding into a single representation. Different types of dialogue systems require
labeling different kinds of acts, and so the tagset—defining what a dialogue act is
exactly— tends to be designed for particular tasks.

Figure 24.13 shows a tagset for a restaurant recommendation system, and Fig. 24.14
shows these tags labeling a sample dialogue from the HIS system (Young et al.,
2010). This example also shows the content of each dialogue acts, which are the slot
fillers being communicated. So the user might INFORM the system that they want
Italian food near a museum, or CONFIRM with the system that the price is reasonable.
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Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialogue and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) χ X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X χ Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X χ Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) χ X Negate and give corrected value a = x
DENY(a = x) χ X Deny that a = x
BYE() X X Close a dialogue

Figure 24.13 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)

S: You are looking for a restaurant. What
type of food do you like?

confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,

food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)

S: Yes, Roma is in the moderate price
range.

affirm(name = "Roma", pricerange =

moderate)

U: What is the phone number? request(phone)

S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")

U: Ok, thank you goodbye. bye()
Figure 24.14 A sample dialogue from the HIS System of Young et al. (2010) using the dialogue acts in
Fig. 24.13.

24.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 16, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:

I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of BIO labels:

O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O

I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 8 that in BIO tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.
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Fig. 24.15 shows the architecture. The input is a series of words w1...wn, which
is passed through a contextual embedding model to get contextual word representa-
tions. This is followed by a feedforward layer and a softmax at each token position
over possible BIO tags, with the output a series of BIO tags s1...sn. We can also
combine the domain-classification and intent-extraction tasks with slot-filling sim-
ply by adding a domain concatenated with an intent as the desired output for the
final EOS token.

San Francisco on Monday

Encodings

Classifier
+softmax

B-DES I-DES O B-DTIME

…

d+i

<EOS>

Encoder (BERT)

Figure 24.15 A simple architecture for slot filling, mapping the words in the input through
contextual embeddings like BERT to an output classifier layer (which can be linear or some-
thing more complex), followed by softmax to generate a series of BIO tags (and including a
final state consisting of a domain concatenated with an intent).

Once the sequence labeler has tagged the user utterance, a filler string can be
extracted for each slot from the tags (e.g., “San Francisco”), and these word strings
can then be normalized to the correct form in the ontology (perhaps the airport code
‘SFO’). This normalization can take place by using homonym dictionaries (specify-
ing, for example, that SF, SFO, and San Francisco are the same place).

In industrial contexts, machine learning-based systems for slot-filling are of-
ten bootstrapped from GUS-style rule-based systems in a semi-supervised learning
manner. A rule-based system is first built for the domain, and a test set is carefully
labeled. As new user utterances come in, they are paired with the labeling provided
by the rule-based system to create training tuples. A classifier can then be trained
on these tuples, using the test set to test the performance of the classifier against
the rule-based system. Some heuristics can be used to eliminate errorful training
tuples, with the goal of increasing precision. As sufficient training samples become
available the resulting classifier can often outperform the original rule-based system
(Suendermann et al., 2009), although rule-based systems may still remain higher-
precision for dealing with complex cases like negation.

24.4.3 Dialogue State Tracking

The job of the dialogue-state tracker is to determine both the current state of the
frame (the fillers of each slot), as well as the user’s most recent dialogue act. The
dialogue-state thus includes more than just the slot-fillers expressed in the current
sentence; it includes the entire state of the frame at this point, summarizing all of
the user’s constraints. The following example from Mrkšić et al. (2017) shows the
required output of the dialogue state tracker after each turn:
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User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown

inform(price=cheap, food=Thai, area=centre)

System: The House serves cheap Thai food
User: Where is it?

inform(price=cheap, food=Thai, area=centre); request(address)

System: The House is at 106 Regent Street

Since dialogue acts place some constraints on the slots and values, the tasks of
dialogue-act detection and slot-filling are often performed jointly. Consider the task
of determining that

I’d like Cantonese food near the Mission District

has the structure

inform(food=cantonese,area=mission).

Dialogue act interpretation—in this example choosing inform from the set of
dialogue acts for this task—is done by supervised classification trained on hand-
labeled dialog acts, predicting the dialogue act tag based on embeddings represent-
ing the current input sentence and the prior dialogue acts.

The simplest dialogue state tracker might just take the output of a slot-filling
sequence-model (Section 24.4.2) after each sentence. Alternatively, a more complex
model can make use of the reading-comprehension architectures from Chapter 23.
For example the model of Gao et al. (2019) trains a classifier for each slot to decide
whether its value is being changed in the current sentence or should be carried over
from the previous sentences. If the slot value is being changed, a span-prediction
model is used to predict the start and end of the span with the slot filler.

A special case: detecting correction acts

Some dialogue acts are important because of their implications for dialogue control.
If a dialogue system misrecognizes or misunderstands an utterance, the user will
generally correct the error by repeating or reformulating the utterance. Detecting
these user correction acts is therefore quite important. Ironically, it turns out thatuser correction

acts
corrections are actually harder to recognize than normal sentences! In fact, correc-
tions in one early dialogue system (the TOOT system) had double the ASR word
error rate of non-corrections (Swerts et al., 2000)! One reason for this is that speak-
ers sometimes use a specific prosodic style for corrections called hyperarticulation,hyperarticula-

tion
in which the utterance contains exaggerated energy, duration, or F0 contours, such
as I said BAL-TI-MORE, not Boston (Wade et al. 1992, Levow 1998, Hirschberg
et al. 2001). Even when they are not hyperarticulating, users who are frustrated
seem to speak in a way that is harder for speech recognizers (Goldberg et al., 2003).

What are the characteristics of these corrections? User corrections tend to be
either exact repetitions or repetitions with one or more words omitted, although they
may also be paraphrases of the original utterance. (Swerts et al., 2000). Detect-
ing these reformulations or correction acts can be part of the general dialogue act
detection classifier. Alternatively, because the cues to these acts tend to appear in
different ways than for simple acts (like INFORM or request), we can make use of
features orthogonal to simple contextual embedding features; some typical features
are shown below (Levow 1998, Litman et al. 1999, Hirschberg et al. 2001, Bulyko
et al. 2005, Awadallah et al. 2015):
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features examples
lexical words like “no”, “correction”, “I don’t”, swear words, utterance length
semantic similarity (word overlap or embedding dot product) between the candidate

correction act and the user’s prior utterance
phonetic phonetic overlap between the candidate correction act and the user’s prior ut-

terance (i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)
prosodic hyperarticulation, increases in F0 range, pause duration, and word duration,

generally normalized by the values for previous sentences
ASR ASR confidence, language model probability

24.4.4 Dialogue Policy
The goal of the dialogue policy is to decide what action the system should take next,dialogue policy

that is, what dialogue act to generate.
More formally, at turn i in the conversation we want to predict which action Ai

to take, based on the entire dialogue state. The state could mean the entire sequence
of dialogue acts from the system (A) and from the user (U), in which case the task
would be to compute:

Âi = argmax
Ai∈A

P(Ai|(A1,U1, ...,Ai−1,Ui−1) (24.7)

We can simplify this by maintaining as the dialogue state mainly just the set of
slot-fillers that the user has expressed, collapsing across the many different conver-
sational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current dialogue state as repre-
sented just by the current state of the frame Framei (which slots are filled and with
what) and the last turn by the system and user:

Âi = argmax
Ai∈A

P(Ai|Framei−1,Ai−1,Ui−1) (24.8)

These probabilities can be estimated by a neural classifier using neural representa-
tions of the slot fillers (for example as spans) and the utterances (for example as
sentence embeddings computed over contextual embeddings)

More sophisticated models train the policy via reinforcement learning. To de-
cide which action to take, a reinforcement learning system gets a reward at the end
of the dialogue, and uses that reward to train a policy to take actions. For example in
the movie-recommendation dialogue system of Fazel-Zarandi et al. (2017), the ac-
tion space has only three actions: EXECUTE, CONFIRM, and ELICIT. The EXECUTE
sends a query to the database and answers the user’s question, CONFIRM clarifies
the intent or slot with the users (e.g., “Do you want movies directed by Christopher
Nolan?”) while ELICIT asks the user for missing information (e.g., “Which movie
are you talking about?”). The system gets a large positive reward if the dialogue sys-
tem terminates with the correct slot representation at the end, a large negative reward
if the slots are wrong, and a small negative reward for confirmation and elicitation
questions to keep the system from re-confirming everything.

Policy Example: Confirmation and Rejection

Modern dialogue systems often make mistakes. It is therefore important for dialogue
systems to make sure that they have achieved the correct interpretation of the user’s
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input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

As we saw in the prior section, most systems introduce particular strategies and
actions related to confirmation and rejection. When using the explicit confirmationexplicit

confirmation
strategy, a system asks the user a direct question to confirm the system’s under-
standing, like the two examples below in which the system asks a (boldface) yes-no
confirmation question:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

When using the implicit confirmation strategy, a system instead can demon-implicit
confirmation

strate its understanding as a grounding strategy, for example repeating back the
system’s understanding as part of asking the next question, as in the two examples
below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialogue fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is
rejected, systems often follow a strategy of progressive prompting or escalatingprogressive

prompting
detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.
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In this example, instead of just repeating “When would you like to leave?”, the
rejection prompt gives the caller more guidance about how to formulate an utter-
ance the system will understand. These you-can-say help messages are important in
helping improve systems’ understanding performance (Bohus and Rudnicky, 2005).
If the caller’s utterance gets rejected yet again, the prompt can reflect this (“I still
didn’t get that”), and give the caller even more guidance.

An alternative strategy for error handling is rapid reprompting, in which therapid
reprompting

system rejects an utterance just by saying “I’m sorry?” or “What was that?” Only
if the caller’s utterance is rejected a second time does the system start applying
progressive prompting. Cohen et al. (2004) summarize experiments showing that
users greatly prefer rapid reprompting as a first-level error prompt.

It is common to use rich features other than just the dialogue state representa-
tion to make policy decisions. For example, the confidence that the ASR system
assigns to an utterance can be used by explicitly confirming low-confidence sen-
tences. Condience is a metric that the speech recognizer can assign to its transcrip-
tion of a sentence to indicate how confident it is in that transcription. Confidence is
often computed from the acoustic log-likelihood of the utterance (greater probabil-
ity means higher confidence), but prosodic features can also be used in confidence
prediction. For example, utterances with large F0 excursions or longer durations,
or those preceded by longer pauses, are likely to be misrecognized (Litman et al.,
2000).

Another common feature in confirmation is the cost of making an error. For ex-
ample, explicit confirmation is common before a flight is actually booked or money
in an account is moved. Systems might have a four-tiered level of confidence with
three thresholds α , β , and γ:

< α low confidence reject
≥ α above the threshold confirm explicitly
≥ β high confidence confirm implictly
≥ γ very high confidence don’t confirm at all

24.4.5 Natural language generation in the dialogue-state model
Finally, once the policy has decided what speech act to generate, the natural language
generation component needs to generate the text of a response to the user.

Once a dialogue act has been decided, we need to generate the text of the re-
sponse to the user. The task of natural language generation (NLG) in the information-
state architecture is often modeled in two stages, content planning (what to say),content

planning
and sentence realization (how to say it).sentence

realization
Here we’ll assume content planning has been done by the dialogue policy, which

has chosen the dialogue act to generate, and chosen some attributes (slots and values)
that the planner wants to say to the user (either to give the user the answer, or as part
of a confirmation strategy).

Fig. 24.16 shows some sample input/outputs for the sentence realization phase.
In the first example, the content planner has chosen the dialogue act RECOMMEND
and some particular slots (name, neighborhood, cuisine) and their fillers. The goal
of the sentence realizer is to generate a sentence like lines 1 or 2 shown in the figure,
by training on many such examples of representation/sentence pairs from a large
corpus of labeled dialogues.

Training data is hard to come by; we are unlikely to see every possible restaurant
with every possible attribute in many possible differently worded sentences. There-
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recommend(restaurant name= Au Midi, neighborhood = midtown,

cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.

recommend(restaurant name= Loch Fyne, neighborhood = city

centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 24.16 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization

words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 24.17 shows the result of delexicalizing the training
sentences in Fig. 24.16.

recommend(restaurant name= Au Midi, neighborhood = midtown,

cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter alia),
trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski et al.,
2018). The input to the encoder is a sequence of tokens xt that represent the dia-
logue act and its arguments. Thus the dialogue act RECOMMEND and the attribute/-
value pairs service:decent, cuisine:null might be represented as a flat sequence of
tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as shown in
Fig. 24.18.

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize

exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service
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Generating Clarification Questions

It’s also possible to design NLG algorithms that are specific to a particular dialogue
act. For example, consider the task of generating clarification questions, in casesclarification

questions
where the speech recognition fails to understand some part of the user’s utterance.
While it is possible to use the generic dialogue act REJECT (“Please repeat”, or “I
don’t understand what you said”), studies of human conversations show that humans
instead use targeted clarification questions that reprise elements of the misunder-
standing (Purver 2004, Ginzburg and Sag 2000, Stoyanchev et al. 2013).

For example, in the following hypothetical example the system reprises the
words “going” and “on the 5th” to make it clear which aspect of the user’s turn
the system needs to be clarified:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Going where on the 5th?

Targeted clarification questions can be created by rules (such as replacing “go-
ing to UNKNOWN WORD” with “going where”) or by building classifiers to guess
which slots might have been misrecognized in the sentence (Chu-Carroll and Car-
penter 1999, Stoyanchev et al. 2014, Stoyanchev and Johnston 2015).

24.5 Evaluating Dialogue Systems

Evaluation is crucial in dialogue system design. Chatbots and task-based systems are
generally evaluated differently, since they have different goals; task-based systems
have to complete a task like booking a flight; chatbots have a different kind of goal,
like being enjoyable to users.

24.5.1 Evaluating Chatbots
Chatbots are evaluated by humans, who assign a score. This can be the human who
talked to the chatbot (participant evaluation) or a third party who reads a transcript
of a human/chatbot conversation (observer evaluation).

In the participant evaluation of See et al. (2019), the human evaluator chats with
the model for six turns and rates the chatbot on 8 dimensions capturing conversa-
tional quality: avoiding repetition, interestingness, making sense, fluency, listening,
inquisitiveness, humanness and engagingness. A few examples:

Engagingness How much did you enjoy talking to this user?
• Not at all • A little • Somewhat • A lot

Avoiding Repetition How repetitive was this user?
• Repeated themselves over and over • Sometimes said the same thing twice
• Always said something new

Making sense How often did this user say something which did NOT make sense?
• Never made any sense • Most responses didn’t make sense • Some re-
sponses didn’t make sense • Everything made perfect sense

Observer evaluations use third party annotators to look at the text of a complete
conversation. Sometimes we’re interested in having raters assign a score to each
system turn; for example (Artstein et al., 2009) have raters mark how coherent each
turn is. Often, however, we just want a single high-level score to know if system A
is better than system B The acute-eval metric (Li et al., 2019) is such an observeracute-eval
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evaluation in which annotators look at two separate human-computer conversations
(A and B) and choose the one in which the dialogue system participant performed
better (interface shown in Fig. 24.19). They answer the following 4 questions (with
these particular wordings shown to lead to high agreement):
Engagingness Who would you prefer to talk to for a long conversation?
Interestingness If you had to say one of these speakers is interesting and one is

boring, who would you say is more interesting?
Humanness Which speaker sounds more human?
Knowledgeable If you had to say that one speaker is more knowledgeable and one

is more ignorant, who is more knowledgeable?

ACUTE-EVAL: Improved dialogue evaluation with optimized questions and
multi-turn comparisons

Margaret Li
Facebook AI Research
margaretli@fb.com

Jason Weston
Facebook AI Research

jase@fb.com

Stephen Roller
Facebook AI Research
roller@fb.com

Abstract

While dialogue remains an important end-goal of natural lan-
guage research, the difficulty of evaluation is an oft-quoted
reason why it remains troublesome to make real progress to-
wards its solution. Evaluation difficulties are actually two-fold:
not only do automatic metrics not correlate well with human
judgments, but also human judgments themselves are in fact
difficult to measure. The two most used human judgment tests,
single-turn pairwise evaluation and multi-turn Likert scores,
both have serious flaws as we discuss in this work.
We instead provide a novel procedure involving comparing
two full dialogues, where a human judge is asked to pay at-
tention to only one speaker within each, and make a pairwise
judgment. The questions themselves are optimized to maxi-
mize the robustness of judgments across different annotators,
resulting in better tests. We also show how these tests work in
self-play model chat setups, resulting in faster, cheaper tests.
We hope these tests become the de facto standard, and will
release open-source code to that end.

Introduction
Dialogue between human and machine is an important end-
goal of natural language research. The open-ended nature of
generating sequences in a multi-turn setup naturally makes
the task difficult to evaluate – with full evaluation pos-
sessing many of the difficulties of the task itself as it re-
quires deep understanding of the content of the conversa-
tion. As in many other natural language generation (NLG)
tasks, automatic metrics have not been shown to have a
clear correlation with human evaluations (Liu et al. 2016;
Lowe et al. 2017). This means the current standard for all
dialogue research involves human trials, which slows down
research and greatly increases the cost of model development.

Unfortunately, human judgments are themselves diffi-
cult to measure. The two most used approaches, single-
turn pairwise evaluation (Vinyals and Le 2015; Li et al.
2016b), and multi-turn Likert scores (Venkatesh et al. 2017;
Zhang et al. 2018; See et al. 2019; Dinan et al. 2019b;
Dinan et al. 2019a) have serious limitations. Single-turn pair-
wise evaluation provides the benefits and simplicity of an
A/B test, allowing for cheap and fast annotations, with com-
parisons that are robust to annotator score bias, but fail to take
into account the multi-turn aspect of conversations. To give
a trivial example, such comparisons fail to capture whether

Figure 1: ACUTE-EVAL asks humans to compare two multi-
turn dialogues, and independent of the gray speakers, choose
between Speaker 1 (light blue) and Speaker 2 (dark blue).

the model would repeat itself in a multi-turn conversation
because they only look at one turn; repetition is a known
issue that humans dislike (See et al. 2019).

Multi-turn Likert scores require the annotator to have a
multi-turn conversation and then provide an integer score,
which is more costly and time-consuming to run but evalu-
ates full conversations more accurately. The integer scores
however suffer from differing bias and variance per annotator,
which researchers have tried to mitigate (Kulikov et al. 2018),
but nevertheless due to its lack of sensitivity often yields com-
parisons that are not statistically significant. Furthermore, due
to strong anchoring effects during model evaluation, i.e. that
annotators are affected by the first systems they evaluate, Lik-
ert comparisons are generally not comparable across multiple
papers. This mandates that evaluations of new models be
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Figure 24.19 The ACUTE-EVAL method asks annotators to compare two dialogues and
choose between Speaker 1 (light blue) and Speaker 2 (dark blue), independent of the gray
speaker. Figure from Li et al. (2019).

Automatic evaluations are generally not used for chatbots. That’s because com-
putational measures of generation performance like BLEU or ROUGE or embed-
ding dot products between a chatbot’s response and a human response correlate very
poorly with human judgments (Liu et al., 2016). These methods perform poorly be-
cause there are so many possible responses to any given turn; simple word-overlap
or semantic similarity metrics work best when the space of responses is small and
lexically overlapping, which is true of generation tasks like machine translation or
possibly summarization, but definitely not dialogue.

However, research continues in ways to do more sophisticated automatic eval-
uations that go beyond word similarity. One novel paradigm is adversarial evalu-
ation (Bowman et al. 2016, Kannan and Vinyals 2016, Li et al. 2017), inspired byadversarial

evaluation
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the Turing test. The idea is to train a “Turing-like” evaluator classifier to distinguish
between human-generated responses and machine-generated responses. The more
successful a response generation system is at fooling this evaluator, the better the
system.

24.5.2 Evaluating Task-Based Dialogue
For task-based dialogue, if the task is unambiguous, we can simply measure absolute
task success (did the system book the right plane flight, or put the right event on the
calendar).

To get a more fine-grained idea of user happiness, we can compute a user sat-
isfaction rating, having users interact with a dialogue system to perform a task and
then having them complete a questionnaire. For example, Fig. 24.20 shows sample
multiple-choice questions (Walker et al., 2001); responses are mapped into the range
of 1 to 5, and then averaged over all questions to get a total user satisfaction rating.

TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 24.20 User satisfaction survey, adapted from Walker et al. (2001).

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason, it is useful to have performance evaluation
heuristics that correlate well with human satisfaction. A number of such factors and
heuristics have been studied, often grouped into two kinds of criteria: how well the
system allows users to accomplish their goals (maximizing task success) with the
fewest problems (minimizing costs):

Task completion success: Task success can be measured by evaluating the cor-
rectness of the total solution. For a frame-based architecture, this might be slot
error rate, the percentage of slots that were filled with the correct values:

Slot Error Rate for a Sentence =
# of inserted/deleted/subsituted slots
# of total reference slots for sentence

(24.9)

For example consider a system given this sentence:

(24.10) Make an appointment with Chris at 10:30 in Gates 104

which extracted the following candidate slot structure:

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate,
slot precision, recall, and F-score can also be used. Slot error rate is also sometimes
called concept error rate.

Interestingly, sometimes the user’s perception of whether they completed the
task is a better predictor of user satisfaction than the actual task completion success.
(Walker et al., 2001).
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A perhaps more important, although less fine-grained, measure of success is an
extrinsic metric like task error rate. In this case, the task error rate would quantify
how often the correct meeting was added to the calendar at the end of the interaction.

Efficiency cost: Efficiency costs are measures of the system’s efficiency at helping
users. This can be measured by the total elapsed time for the dialogue in seconds,
the number of total turns or of system turns, or the total number of queries (Polifroni
et al., 1992). Other metrics include the number of system non-responses and the
“turn correction ratio”: the number of system or user turns that were used solely
to correct errors divided by the total number of turns (Danieli and Gerbino 1995,
Hirschman and Pao 1993).

Quality cost: Quality cost measures other aspects of the interactions that affect
user’s perception of the system. One such measure is the number of times the
ASR system failed to return any sentence, or the number of ASR rejection prompts.
Similar metrics include the number of times the user had to barge in (interrupt the
system), or the number of time-out prompts played when the user didn’t respond
quickly enough. Other quality metrics focus on how well the system understood and
responded to the user. The most important is the slot error rate described above,
but other components include the inappropriateness (verbose or ambiguous) of the
system’s questions, answers, and error messages or the correctness of each question,
answer, or error message (Zue et al. 1989, Polifroni et al. 1992).

24.6 Dialogue System Design

The user plays a more important role in dialogue systems than in most other areas of
speech and language processing, and thus the study of dialogue systems is closely
linked with the field of Human-Computer Interaction (HCI). The design of dialogue
strategies, prompts, and error messages, is often called voice user interface design,voice user

interface
and generally follows user-centered design principles (Gould and Lewis, 1985):

1. Study the user and task: Understand the potential users and the nature of the
task by interviews with users, investigation of similar systems, and study of related
human-human dialogues.

2. Build simulations and prototypes: A crucial tool in building dialogue systems
is the Wizard-of-Oz system. In wizard systems, the users interact with what theyWizard-of-Oz

system
think is a software agent but is in fact a human “wizard” disguised by a software
interface (Gould et al. 1983, Good et al. 1984, Fraser and Gilbert 1991). The name
comes from the children’s book The Wizard of Oz (Baum, 1900), in which the wizard
turned out to be just a simulation controlled by a man behind a curtain or screen.

A Wizard-of-Oz system can be used to
test out an architecture before implementa-
tion; only the interface software and databases
need to be in place. The wizard gets input
from the user, has a graphical interface to a
database to run sample queries based on the
user utterance, and then has a way to output
sentences, either by typing them or by some
combination of selecting from a menu and
typing.
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The results of a Wizard-of-Oz system can
also be used as training data to train a pilot di-
alogue system. While Wizard-of-Oz systems
are very commonly used, they are not a per-
fect simulation; it is difficult for the wizard
to exactly simulate the errors, limitations, or
time constraints of a real system; results of
wizard studies are thus somewhat idealized, but still can provide a useful first idea
of the domain issues.

3. Iteratively test the design on users: An iterative design cycle with embedded
user testing is essential in system design (Nielsen 1992, Cole et al. 1997, Yankelovich
et al. 1995, Landauer 1995). For example in a well-known incident in dialogue de-
sign history, an early dialogue system required the user to press a key to interrupt the
system (Stifelman et al., 1993). But user testing showed users barged in, which led
to a redesign of the system to recognize overlapped speech. The iterative method
is also important for designing prompts that cause the user to respond in norma-
tive ways. It’s also important to incorporate value sensitive design, in which wevalue sensitive

design
carefully consider during the design process the benefits, harms and possible stake-
holders of the resulting system (Friedman et al. 2017, Bender and Friedman 2018).

There are a number of good books on conversational interface design (Cohen
et al. 2004, Harris 2005, Pearl 2017).

24.6.1 Ethical Issues in Dialogue System Design

Ethical issues have long been understood to be crucial in the design of artificial
agents, predating the conversational agent itself. Mary Shelley’s classic discussion
of the problems of creating agents without a consideration of ethical and humanistic
concerns lies at the heart of her novel Frankenstein. One
important ethical issue has to do with safety: systems
that directly demean or abuse their users. A related is-
sue is the representational harm (Blodgett et al., 2020)
caused by systems that demean particular social groups.
As we discussed in Section 6.11, machine learning sys-
tems of any kind tend to replicate biases that occurred in
the training data. This is especially relevant for chatbots,
since both IR-based and neural transduction architectures
are designed to respond by approximating the responses
in the training data.

A well-publicized instance of a combination of these problems occurred with
Microsoft’s 2016 Tay chatbot, which was taken offline 16 hours after it went live,Tay

when it began posting messages with racial slurs, conspiracy theories, and personal
attacks on its users. Tay had learned these biases and actions from its training data,
including from users who seemed to be adversarially attacking the system, purposely
teaching it to repeat this kind of language (Neff and Nagy 2016). Wolf et al. (2017)
conclude that systems that interact with users must be designed to be robust to such
adversarial attacks.

Henderson et al. (2017) examined some standard dialogue datasets used to train
corpus-based chatbots (like the Twitter, Reddit, or movie dialogues we mention
above). They found examples of hate speech, offensive language, and bias, espe-
cially in corpora drawn from social media like Twitter and Reddit, both in the orig-
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inal training data, and in the output of chatbots trained on the data. Indeed, Dinan
et al. (2020) found that Transformer-based generator models amplified the gender
bias that existed in the dialogues the model was trained on. Liu et al. (2020) de-
veloped another method for investigating bias, testing how neural dialogue system
responded to pairs of simulated user turns that are identical except for mentioning
different genders or race. They found, for example, that simple changes like using
the word ‘he’ instead ‘she’ in a sentence caused systems to respond more offen-
sively and with more negative sentiment. Addressing these problem by investigating
debiasing methods (for example ways to train systems to detect and respond appro-
priately to toxic contexts) is an important current research goal (Dinan et al. 2020,
Xu et al. 2020).

Another important ethical issue is privacy. Already in the first days of ELIZA,
Weizenbaum pointed out the privacy implications of people’s revelations to the chat-
bot. Henderson et al. (2017) point out that home dialogue agents may accidentally
record a user revealing private information (e.g. “Computer, turn on the lights –
answers the phone – Hi, yes, my password is...”), which may then be used to train a
conversational model. They showed that when an encoder-decoder dialogue model
is trained on a standard corpus augmented with training keypairs representing pri-
vate data like identification numbers or passwords (e.g. the keyphrase “social se-
curity number” followed by a number), an adversary who gave the keyphrase was
able to recover the secret information with nearly 100% accuracy. Chatbots that are
trained on transcripts of human-human or human-machine conversation must there-
fore anonymize personally identifiable information.

Finally, chatbots raise important issues of gender equality in addition to textual
bias. For example current chatbots are overwhelmingly given female names, likely
perpetuating the stereotype of a subservient female servant (Paolino, 2017). And
when users use sexually harassing language, most commercial chatbots evade or give
positive responses rather than responding in clear negative ways (Fessler, 2017).

These ethical issues are an important area of investigation, with the goal of find-
ing ways for any user-facing system like a dialogue system to be able to offer some
sort of guarantees of safety (Henderson et al., 2017). Because dialogue systems by
definition involve human participants, researchers also work on these issues with the
Institutional Review Boards (IRB) at their institutions, who help protect the safetyIRB

of experimental subjects.

24.7 Summary

Conversational agents are crucial speech and language processing applications that
are already widely used commercially.

• In human dialogue, speaking is a kind of action; these acts are referred to
as speech acts or dialogue acts. Speakers also attempt to achieve common
ground by acknowledging that they have understand each other. Conversation
also is characterized by turn structure and dialogue structure.

• Chatbots are conversational agents designed to mimic the appearance of in-
formal human conversation. Rule-based chatbots like ELIZA and its modern
descendants use rules to map user sentences into system responses. Corpus-
based chatbots mine logs of human conversation to learn to automatically map
user sentences into system responses.
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• For task-based dialogue, most commercial dialogue systems use the GUS or
frame-based architecture, in which the designer specifies frames consisting of
slots that the system must fill by asking the user.

• The dialogue-state architecture augments the GUS frame-and-slot architec-
ture with richer representations and more sophisticated algorithms for keeping
track of user’s dialogue acts, policies for generating its own dialogue acts, and
a natural language component.

• Dialogue systems are a kind of human-computer interaction, and general HCI
principles apply in their design, including the role of the user, simulations such
as Wizard-of-Oz systems, and the importance of iterative design and testing
on real users.

Bibliographical and Historical Notes
The earliest conversational systems were chatbots like ELIZA (Weizenbaum, 1966)
and PARRY (Colby et al., 1971). ELIZA had a widespread influence on popular
perceptions of artificial intelligence, and brought up some of the first ethical ques-
tions in natural language processing —such as the issues of privacy we discussed
above as well the role of algorithms in decision-making— leading its creator Joseph
Weizenbaum to fight for social responsibility in AI and computer science in general.

Another early system, the GUS system (Bobrow et al., 1977) had by the late
1970s established the main frame-based paradigm that became the dominant indus-
trial paradigm for dialogue systems for over 30 years.

In the 1990s, stochastic models that had first been applied to natural language
understanding began to be applied to dialogue slot filling (Miller et al. 1994, Pierac-
cini et al. 1991).

By around 2010 the GUS architecture finally began to be widely used commer-
cially in dialogue systems on phones like Apple’s SIRI (Bellegarda, 2013) and other
digital assistants.

The rise of the web and online chatbots brought new interest in chatbots and gave
rise to corpus-based chatbot architectures around the turn of the century, first using
information retrieval models and then in the 2010s, after the rise of deep learning,
with sequence-to-sequence models.

The idea that utterances in a conversation are a kind of action being performed
by the speaker was due originally to the philosopher Wittgenstein (1953) but worked
out more fully by Austin (1962) and his student John Searle. Various sets of speech
acts have been defined over the years, and a rich linguistic and philosophical litera-
ture developed, especially focused on explaining the use of indirect speech acts.

The idea of dialogue acts draws also from a number of other sources, including
the ideas of adjacency pairs, pre-sequences, and other aspects of the international
properties of human conversation developed in the field of conversation analysisconversation

analysis
(see Levinson (1983) for an introduction to the field).

This idea that acts set up strong local dialogue expectations was also prefigured
by Firth (1935, p. 70), in a famous quotation:

Most of the give-and-take of conversation in our everyday life is stereotyped
and very narrowly conditioned by our particular type of culture. It is a sort
of roughly prescribed social ritual, in which you generally say what the other
fellow expects you, one way or the other, to say.
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Another important research thread modeled dialogue as a kind of collaborative
behavior, including the ideas of common ground (Clark and Marshall, 1981), ref-
erence as a collaborative process (Clark and Wilkes-Gibbs, 1986), joint intention
(Levesque et al., 1990), and shared plans (Grosz and Sidner, 1980).

The dialogue-state model was also strongly informed by analytic work on the
linguistic properties of dialogue acts and on methods for their detection (Sag and
Liberman 1975, Hinkelman and Allen 1989, Nagata and Morimoto 1994, Good-
win 1996, Chu-Carroll 1998, Shriberg et al. 1998, Stolcke et al. 2000, Gravano
et al. 2012).

Two important lines of research that we were unable to cover in the chapter fo-
cused on the computational properties of conversational structure. One line, first
suggested by Bruce (1975), suggested that since speech acts are actions, they should
be planned like other actions, and drew on the AI planning literature (Fikes and Nils-
son, 1971). An agent seeking to find out some information can come up with the plan
of asking the interlocutor for the information. An agent hearing an utterance can in-
terpret a speech act by running the planner “in reverse”, using inference rules to infer
from what the interlocutor said what the plan might have been. Plan-based models
of dialogue are referred to as BDI models because such planners model the beliefs,BDI

desires, and intentions (BDI) of the agent and interlocutor. BDI models of dialogue
were first introduced by Allen, Cohen, Perrault, and their colleagues in a number of
influential papers showing how speech acts could be generated (Cohen and Perrault,
1979) and interpreted (Perrault and Allen 1980, Allen and Perrault 1980). At the
same time, Wilensky (1983) introduced plan-based models of understanding as part
of the task of interpreting stories.

Another influential line of research focused on modeling the hierarchical struc-
ture of dialogue. Grosz’s pioneering (1977b) dissertation first showed that “task-
oriented dialogues have a structure that closely parallels the structure of the task
being performed” (p. 27), leading to her work with Sidner and others showing how
to use similar notions of intention and plans to model discourse structure and co-
herence in dialogue. See, e.g., Lochbaum et al. (2000) for a summary of the role of
intentional structure in dialogue.

The idea of applying reinforcement learning to dialogue first came out of AT&T
and Bell Laboratories around the turn of the century with work on MDP dialogue
systems (Walker 2000, Levin et al. 2000, Singh et al. 2002) and work on cue phrases,
prosody, and rejection and confirmation. Reinforcement learning research turned
quickly to the more sophisticated POMDP models (Roy et al. 2000, Lemon et al. 2006,
Williams and Young 2007) applied to small slot-filling dialogue tasks,

Affect has played an important role in dialogue systems since its earliest days.
In more recent work Mairesse and Walker (2008) showed that conversational agents
are received better by users if they match users’ personality expectations. We men-
tioned above the EMPATHETICDIALOGUES dataset of 25k conversations grounded
in emotional situations (Rashkin et al., 2019). Lin et al. (2019) used mixtures of
empathetic listeners (MoEL), each optimized to react to particular emotions, to gen-
erate empathetic responses.

[TBD: History of deep reinforcement learning here.] [TBD: surveys: Tur and
De Mori (2011), Gao et al. (2019)]

[TBD: add recent more history here. including dialogue state tracking, NLG,
end-to-end neural systems, etc]
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Exercises
24.1 Write a finite-state automaton for a dialogue manager for checking your bank

balance and withdrawing money at an automated teller machine.

24.2 A dispreferred response is a response that has the potential to make a persondispreferred
response

uncomfortable or embarrassed in the conversational context; the most com-
mon example dispreferred responses is turning down a request. People signal
their discomfort with having to say no with surface cues (like the word well),
or via significant silence. Try to notice the next time you or someone else
utters a dispreferred response, and write down the utterance. What are some
other cues in the response that a system might use to detect a dispreferred
response? Consider non-verbal cues like eye gaze and body gestures.

24.3 When asked a question to which they aren’t sure they know the answer, peo-
ple display their lack of confidence by cues that resemble other dispreferred
responses. Try to notice some unsure answers to questions. What are some
of the cues? If you have trouble doing this, read Smith and Clark (1993) and
listen specifically for the cues they mention.

24.4 Implement a small air-travel help system based on text input. Your system
should get constraints from users about a particular flight that they want to
take, expressed in natural language, and display possible flights on a screen.
Make simplifying assumptions. You may build in a simple flight database or
you may use a flight information system on the Web as your backend.
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CHAPTER

25 Phonetics

The characters that make up the texts we’ve been discussing in this book aren’t just
random symbols. They are also an amazing scientific invention: a theoretical model
of the elements that make up human speech.

The earliest writing systems we know of (Sumerian, Chinese, Mayan) were
mainly logographic: one symbol representing a whole word. But from the ear-
liest stages we can find, some symbols were also used to represent the sounds
that made up words. The cuneiform sign to the right pro-
nounced ba and meaning “ration” in Sumerian could also
function purely as the sound /ba/. The earliest Chinese char-
acters we have, carved into bones for divination, similarly
contain phonetic elements. Purely sound-based writing systems, whether syllabic
(like Japanese hiragana), alphabetic (like the Roman alphabet), or consonantal (like
Semitic writing systems), trace back to these early logo-syllabic systems, often as
two cultures came together. Thus, the Arabic, Aramaic, Hebrew, Greek, and Roman
systems all derive from a West Semitic script that is presumed to have been modified
by Western Semitic mercenaries from a cursive form of Egyptian hieroglyphs. The
Japanese syllabaries were modified from a cursive form of Chinese phonetic charac-
ters, which themselves were used in Chinese to phonetically represent the Sanskrit
in the Buddhist scriptures that came to China in the Tang dynasty.

This implicit idea that the spoken word is composed of smaller units of speech
underlies algorithms for both speech recognition (transcribing waveforms into text)
and text-to-speech (converting text into waveforms). In this chapter we give a com-
putational perspective on phonetics, the study of the speech sounds used in thephonetics

languages of the world, how they are produced in the human vocal tract, how they
are realized acoustically, and how they can be digitized and processed.

25.1 Speech Sounds and Phonetic Transcription

A letter like ‘p’ or ‘a’ is already a useful model of the sounds of human speech,
and indeed we’ll see in Chapter 26 how to map between letters and waveforms.
Nonetheless, it is helpful to represent sounds slightly more abstractly. We’ll repre-
sent the pronunciation of a word as a string of phones, which are speech sounds,phone

each represented with symbols adapated from the Roman alphabet.
The standard phonetic representation for transcribing the world’s languages is

the International Phonetic Alphabet (IPA), an evolving standard first developed inIPA

1888, But in this chapter we’ll instead represent phones with the ARPAbet (Shoup,
1980), a simple phonetic alphabet (Fig. 25.1) that conveniently uses ASCII symbols
to represent an American-English subset of the IPA.

Many of the IPA and ARPAbet symbols are equivalent to familiar Roman let-
ters. So, for example, the ARPAbet phone [p] represents the consonant sound at the
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ARPAbet IPA ARPAbet ARPAbet IPA ARPAbet
Symbol Symbol Word Transcription Symbol Symbol Word Transcription
[p] [p] parsley [p aa r s l iy] [iy] [i] lily [l ih l iy]
[t] [t] tea [t iy] [ih] [I] lily [l ih l iy]
[k] [k] cook [k uh k] [ey] [eI] daisy [d ey z iy]
[b] [b] bay [b ey] [eh] [E] pen [p eh n]
[d] [d] dill [d ih l] [ae] [æ] aster [ae s t axr]
[g] [g] garlic [g aa r l ix k] [aa] [A] poppy [p aa p iy]
[m] [m] mint [m ih n t] [ao] [O] orchid [ao r k ix d]
[n] [n] nutmeg [n ah t m eh g] [uh] [U] wood [w uh d]
[ng] [N] baking [b ey k ix ng] [ow] [oU] lotus [l ow dx ax s]
[f] [f] flour [f l aw axr] [uw] [u] tulip [t uw l ix p]
[v] [v] clove [k l ow v] [ah] [2] butter [b ah dx axr]
[th] [T] thick [th ih k] [er] [Ç] bird [b er d]
[dh] [D] those [dh ow z] [ay] [aI] iris [ay r ix s]
[s] [s] soup [s uw p] [aw] [aU] flower [f l aw axr]
[z] [z] eggs [eh g z] [oy] [oI] soil [s oy l]
[sh] [S] squash [s k w aa sh]
[zh] [Z] ambrosia [ae m b r ow zh ax]
[ch] [tS] cherry [ch eh r iy]
[jh] [dZ] jar [jh aa r]
[l] [l] licorice [l ih k axr ix sh]
[w] [w] kiwi [k iy w iy]
[r] [r] rice [r ay s]
[y] [j] yellow [y eh l ow]
[h] [h] honey [h ah n iy]

Figure 25.1 ARPAbet and IPA symbols for English consonants (left) and vowels (right).

beginning of platypus, puma, and plantain, the middle of leopard, or the end of an-
telope. In general, however, the mapping between the letters of English orthography
and phones is relatively opaque; a single letter can represent very different sounds
in different contexts. The English letter c corresponds to phone [k] in cougar [k uw
g axr], but phone [s] in cell [s eh l]. Besides appearing as c and k, the phone [k] can
appear as part of x (fox [f aa k s]), as ck (jackal [jh ae k el]) and as cc (raccoon [r ae
k uw n]). Many other languages, for example, Spanish, are much more transparent
in their sound-orthography mapping than English.

25.2 Articulatory Phonetics

Articulatory phonetics is the study of how these phones are produced as the variousarticulatory
phonetics

organs in the mouth, throat, and nose modify the airflow from the lungs.

The Vocal Organs

Figure 25.2 shows the organs of speech. Sound is produced by the rapid movement
of air. Humans produce most sounds in spoken languages by expelling air from the
lungs through the windpipe (technically, the trachea) and then out the mouth or
nose. As it passes through the trachea, the air passes through the larynx, commonly
known as the Adam’s apple or voice box. The larynx contains two small folds of
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Figure 25.2 The vocal organs, shown in side view. (Figure from OpenStax University
Physics, CC BY 4.0)

muscle, the vocal folds (often referred to non-technically as the vocal cords), which
can be moved together or apart. The space between these two folds is called the
glottis. If the folds are close together (but not tightly closed), they will vibrate as airglottis

passes through them; if they are far apart, they won’t vibrate. Sounds made with the
vocal folds together and vibrating are called voiced; sounds made without this vocalvoiced sound

cord vibration are called unvoiced or voiceless. Voiced sounds include [b], [d], [g],unvoiced sound

[v], [z], and all the English vowels, among others. Unvoiced sounds include [p], [t],
[k], [f], [s], and others.

The area above the trachea is called the vocal tract; it consists of the oral tract
and the nasal tract. After the air leaves the trachea, it can exit the body through the
mouth or the nose. Most sounds are made by air passing through the mouth. Sounds
made by air passing through the nose are called nasal sounds; nasal sounds (likenasal

English [m], [n], and [ng]) use both the oral and nasal tracts as resonating cavities.
Phones are divided into two main classes: consonants and vowels. Both kindsconsonant

vowel of sounds are formed by the motion of air through the mouth, throat or nose. Con-
sonants are made by restriction or blocking of the airflow in some way, and can be
voiced or unvoiced. Vowels have less obstruction, are usually voiced, and are gen-
erally louder and longer-lasting than consonants. The technical use of these terms is
much like the common usage; [p], [b], [t], [d], [k], [g], [f], [v], [s], [z], [r], [l], etc.,
are consonants; [aa], [ae], [ao], [ih], [aw], [ow], [uw], etc., are vowels. Semivow-
els (such as [y] and [w]) have some of the properties of both; they are voiced like
vowels, but they are short and less syllabic like consonants.
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Consonants: Place of Articulation

Because consonants are made by restricting airflow, we can group them into classes
by their point of maximum restriction, their place of articulation (Fig. 25.3).place of

articulation

(nasal tract)

dental

bilabial
glottal

palatal velar

alveolar

Figure 25.3 Major English places of articulation.

Labial: Consonants whose main restriction is formed by the two lips coming to-labial

gether have a bilabial place of articulation. In English these include [p] as
in possum, [b] as in bear, and [m] as in marmot. The English labiodental
consonants [v] and [f] are made by pressing the bottom lip against the upper
row of teeth and letting the air flow through the space in the upper teeth.

Dental: Sounds that are made by placing the tongue against the teeth are dentals.dental

The main dentals in English are the [th] of thing and the [dh] of though, which
are made by placing the tongue behind the teeth with the tip slightly between
the teeth.

Alveolar: The alveolar ridge is the portion of the roof of the mouth just behind thealveolar

upper teeth. Most speakers of American English make the phones [s], [z], [t],
and [d] by placing the tip of the tongue against the alveolar ridge. The word
coronal is often used to refer to both dental and alveolar.

Palatal: The roof of the mouth (the palate) rises sharply from the back of thepalatal

palate alveolar ridge. The palato-alveolar sounds [sh] (shrimp), [ch] (china), [zh]
(Asian), and [jh] (jar) are made with the blade of the tongue against the rising
back of the alveolar ridge. The palatal sound [y] of yak is made by placing the
front of the tongue up close to the palate.

Velar: The velum, or soft palate, is a movable muscular flap at the very back of thevelar

roof of the mouth. The sounds [k] (cuckoo), [g] (goose), and [N] (kingfisher)
are made by pressing the back of the tongue up against the velum.

Glottal: The glottal stop [q] is made by closing the glottis (by bringing the vocalglottal

folds together).

Consonants: Manner of Articulation

Consonants are also distinguished by how the restriction in airflow is made, for ex-
ample, by a complete stoppage of air or by a partial blockage. This feature is called
the manner of articulation of a consonant. The combination of place and mannermanner of

articulation
of articulation is usually sufficient to uniquely identify a consonant. Following are
the major manners of articulation for English consonants:

A stop is a consonant in which airflow is completely blocked for a short time.stop

This blockage is followed by an explosive sound as the air is released. The period
of blockage is called the closure, and the explosion is called the release. English
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has voiced stops like [b], [d], and [g] as well as unvoiced stops like [p], [t], and [k].
Stops are also called plosives.

The nasal sounds [n], [m], and [ng] are made by lowering the velum and allow-nasal

ing air to pass into the nasal cavity.
In fricatives, airflow is constricted but not cut off completely. The turbulentfricatives

airflow that results from the constriction produces a characteristic “hissing” sound.
The English labiodental fricatives [f] and [v] are produced by pressing the lower
lip against the upper teeth, allowing a restricted airflow between the upper teeth.
The dental fricatives [th] and [dh] allow air to flow around the tongue between the
teeth. The alveolar fricatives [s] and [z] are produced with the tongue against the
alveolar ridge, forcing air over the edge of the teeth. In the palato-alveolar fricatives
[sh] and [zh], the tongue is at the back of the alveolar ridge, forcing air through a
groove formed in the tongue. The higher-pitched fricatives (in English [s], [z], [sh]
and [zh]) are called sibilants. Stops that are followed immediately by fricatives aresibilants

called affricates; these include English [ch] (chicken) and [jh] (giraffe).
In approximants, the two articulators are close together but not close enough toapproximant

cause turbulent airflow. In English [y] (yellow), the tongue moves close to the roof
of the mouth but not close enough to cause the turbulence that would characterize a
fricative. In English [w] (wood), the back of the tongue comes close to the velum.
American [r] can be formed in at least two ways; with just the tip of the tongue
extended and close to the palate or with the whole tongue bunched up near the palate.
[l] is formed with the tip of the tongue up against the alveolar ridge or the teeth, with
one or both sides of the tongue lowered to allow air to flow over it. [l] is called a
lateral sound because of the drop in the sides of the tongue.

A tap or flap [dx] is a quick motion of the tongue against the alveolar ridge. Thetap

consonant in the middle of the word lotus ([l ow dx ax s]) is a tap in most dialects of
American English; speakers of many U.K. dialects would use a [t] instead.

Vowels

Like consonants, vowels can be characterized by the position of the articulators as
they are made. The three most relevant parameters for vowels are what is called
vowel height, which correlates roughly with the height of the highest part of the
tongue, vowel frontness or backness, indicating whether this high point is toward
the front or back of the oral tract and whether the shape of the lips is rounded or
not. Figure 25.4 shows the position of the tongue for different vowels.

boot [uw]

closed
velum

bat [ae]

palate

beet [iy]

tongue

Figure 25.4 Tongue positions for English high front [iy], low front [ae] and high back [uw].

In the vowel [iy], for example, the highest point of the tongue is toward the
front of the mouth. In the vowel [uw], by contrast, the high-point of the tongue is
located toward the back of the mouth. Vowels in which the tongue is raised toward
the front are called front vowels; those in which the tongue is raised toward theFront vowel
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back are called back vowels. Note that while both [ih] and [eh] are front vowels,back vowel

the tongue is higher for [ih] than for [eh]. Vowels in which the highest point of the
tongue is comparatively high are called high vowels; vowels with mid or low valueshigh vowel

of maximum tongue height are called mid vowels or low vowels, respectively.

front back

low

high

iy

ih

eh

ae

uw

uh

ax

ah
ao

aa

y uw

ey o
w

oy

ay

a
w

Figure 25.5 The schematic “vowel space” for English vowels.

Figure 25.5 shows a schematic characterization of the height of different vowels.
It is schematic because the abstract property height correlates only roughly with ac-
tual tongue positions; it is, in fact, a more accurate reflection of acoustic facts. Note
that the chart has two kinds of vowels: those in which tongue height is represented
as a point and those in which it is represented as a path. A vowel in which the tongue
position changes markedly during the production of the vowel is a diphthong. En-diphthong

glish is particularly rich in diphthongs.
The second important articulatory dimension for vowels is the shape of the lips.

Certain vowels are pronounced with the lips rounded (the same lip shape used for
whistling). These rounded vowels include [uw], [ao], and [ow].rounded vowel

Syllables

Consonants and vowels combine to make a syllable. A syllable is a vowel-like (orsyllable

sonorant) sound together with some of the surrounding consonants that are most
closely associated with it. The word dog has one syllable, [d aa g] (in our dialect);
the word catnip has two syllables, [k ae t] and [n ih p]. We call the vowel at the
core of a syllable the nucleus. Initial consonants, if any, are called the onset. Onsetsnucleus

onset with more than one consonant (as in strike [s t r ay k]), are called complex onsets.
The coda is the optional consonant or sequence of consonants following the nucleus.coda

Thus [d] is the onset of dog, and [g] is the coda. The rime, or rhyme, is the nucleusrime

plus coda. Figure 25.6 shows some sample syllable structures.
The task of automatically breaking up a word into syllables is called syllabifica-

tion. Syllable structure is also closely related to the phonotactics of a language. Thesyllabification

term phonotactics means the constraints on which phones can follow each other inphonotactics

a language. For example, English has strong constraints on what kinds of conso-
nants can appear together in an onset; the sequence [zdr], for example, cannot be a
legal English syllable onset. Phonotactics can be represented by a language model
or finite-state model of phone sequences.
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σ

Rime

Coda

m

Nucleus

ae

Onset

h

σ

Rime

Coda

n

Nucleus

iy

Onset

rg

σ

Rime

Coda

zg

Nucleus

eh

Figure 25.6 Syllable structure of ham, green, eggs. σ=syllable.

25.3 Prosody

Prosody is the study of the intonational and rhythmic aspects of language, andprosody

in particular the use of F0, energy, and duration to convey pragmatic, affective,
or conversation-interactional meanings.1 Prosody can be used to mark discourse
structure, like the difference between statements and questions, or the way that a
conversation is structured. Prosody is used to mark the saliency of a particular word
or phrase. Prosody is heavily used for paralinguistic functions like conveying affec-
tive meanings like happiness, surprise, or anger. And prosody plays an important
role in managing turn-taking in conversation.

25.3.1 Prosodic Prominence: Accent, Stress and Schwa
In a natural utterance of American English, some words sound more prominent thanprominence

others, and certain syllables in these words are also more prominent than others.
What we mean by prominence is that these words or syllables are perceptually more
salient to the listener. Speakers make a word or syllable more salient in English
by saying it louder, saying it slower (so it has a longer duration), or by varying F0
during the word, making it higher or more variable.

Accent We represent prominence via a linguistic marker called pitch accent. Wordspitch accent

or syllables that are prominent are said to bear (be associated with) a pitch accent.
Thus this utterance might be pronounced by accenting the underlined words:

(25.1) I’m a little surprised to hear it characterized as happy.

Lexical Stress The syllables that bear pitch accent are called accented syllables.
Not every syllable of a word can be accented: pitch accent has to be realized on the
syllable that has lexical stress. Lexical stress is a property of the word’s pronuncia-lexical stress

tion in dictionaries; the syllable that has lexical stress is the one that will be louder
or longer if the word is accented. For example, the word surprised is stressed on its
second syllable, not its first. (Try stressing the other syllable by saying SURprised;
hopefully that sounds wrong to you). Thus, if the word surprised receives a pitch
accent in a sentence, it is the second syllable that will be stronger. The following ex-
ample shows underlined accented words with the stressed syllable bearing the accent
(the louder, longer syllable) in boldface:

(25.2) I’m a little surprised to hear it characterized as happy.

1 The word is used in a different but related way in poetry, to mean the study of verse metrical structure.
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Stress is marked in dictionaries. The CMU dictionary (CMU, 1993), for ex-
ample, marks vowels with 0 (unstressed) or 1 (stressed) as in entries for counter:
[K AW1 N T ER0], or table: [T EY1 B AH0 L]. Difference in lexical stress can
affect word meaning; the noun content is pronounced [K AA1 N T EH0 N T], while
the adjective is pronounced [K AA0 N T EH1 N T].

Reduced Vowels and Schwa Unstressed vowels can be weakened even further to
reduced vowels, the most common of which is schwa ([ax]), as in the second vowelreduced vowel

schwa of parakeet: [p ae r ax k iy t]. In a reduced vowel the articulatory gesture isn’t as
complete as for a full vowel. Not all unstressed vowels are reduced; any vowel, and
diphthongs in particular, can retain its full quality even in unstressed position. For
example, the vowel [iy] can appear in stressed position as in the word eat [iy t] or in
unstressed position as in the word carry [k ae r iy].

In summary, there is a continuum of prosodic prominence, for which it is oftenprominence

useful to represent levels like accented, stressed, full vowel, and reduced vowel.

25.3.2 Prosodic Structure
Spoken sentences have prosodic structure: some words seem to group naturally to-
gether, while some words seem to have a noticeable break or disjuncture between
them. Prosodic structure is often described in terms of prosodic phrasing, mean-prosodic

phrasing
ing that an utterance has a prosodic phrase structure in a similar way to it having
a syntactic phrase structure. For example, the sentence I wanted to go to London,
but could only get tickets for France seems to have two main intonation phrases,intonation

phrase
their boundary occurring at the comma. Furthermore, in the first phrase, there seems
to be another set of lesser prosodic phrase boundaries (often called intermediate
phrases) that split up the words as I wanted | to go | to London. These kinds ofintermediate

phrase
intonation phrases are often correlated with syntactic structure constituents (Price
et al. 1991, Bennett and Elfner 2019).

Automatically predicting prosodic boundaries can be important for tasks like
TTS. Modern approaches use sequence models that take either raw text or text an-
notated with features like parse trees as input, and make a break/no-break decision
at each word boundary. They can be trained on data labeled for prosodic structure
like the Boston University Radio News Corpus (Ostendorf et al., 1995).

25.3.3 Tune
Two utterances with the same prominence and phrasing patterns can still differ
prosodically by having different tunes. The tune of an utterance is the rise andtune

fall of its F0 over time. A very obvious example of tune is the difference between
statements and yes-no questions in English. The same words can be said with a final
F0 rise to indicate a yes-no question (called a question rise):question rise

You    know    what    I mean ?

or a final drop in F0 (called a final fall) to indicate a declarative intonation:final fall

You    know        what         I mean .

Languages make wide use of tune to express meaning (Xu, 2005). In English,
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for example, besides this well-known rise for yes-no questions, a phrase containing
a list of nouns separated by commas often has a short rise called a continuation
rise after each noun. Other examples include the characteristic English contours forcontinuation

rise
expressing contradiction and expressing surprise.

Linking Prominence and Tune

Pitch accents come in different varieties that are related to tune; high pitched accents,
for example, have different functions than low pitched accents. There are many
typologies of accent classes in different languages. One such typology is part of the
ToBI (Tone and Break Indices) theory of intonation (Silverman et al. 1992). EachToBI

word in ToBI can be associated with one of five types of pitch accents shown in
in Fig. 25.7. Each utterance in ToBI consists of a sequence of intonational phrases,
each of which ends in one of four boundary tones shown in Fig. 25.7, representingboundary tone

the utterance final aspects of tune. There are version of ToBI for many languages.

Pitch Accents Boundary Tones
H* peak accent L-L% “final fall”: “declarative contour” of American

English
L* low accent L-H% continuation rise
L*+H scooped accent H-H% “question rise”: cantonical yes-no question

contour
L+H* rising peak accent H-L% final level plateau
H+!H* step down

Figure 25.7 The accent and boundary tones labels from the ToBI transcription system for
American English intonation (Beckman and Ayers 1997, Beckman and Hirschberg 1994).

25.4 Acoustic Phonetics and Signals

We begin with a very brief introduction to the acoustic waveform and its digitization
and frequency analysis; the interested reader is encouraged to consult the references
at the end of the chapter.

25.4.1 Waves
Acoustic analysis is based on the sine and cosine functions. Figure 25.8 shows a
plot of a sine wave, in particular the function

y = A∗ sin(2π f t) (25.3)

where we have set the amplitude A to 1 and the frequency f to 10 cycles per second.
Recall from basic mathematics that two important characteristics of a wave are

its frequency and amplitude. The frequency is the number of times a second that afrequency

amplitude wave repeats itself, that is, the number of cycles. We usually measure frequency in
cycles per second. The signal in Fig. 25.8 repeats itself 5 times in .5 seconds, hence
10 cycles per second. Cycles per second are usually called hertz (shortened to Hz),Hertz

so the frequency in Fig. 25.8 would be described as 10 Hz. The amplitude A of a
sine wave is the maximum value on the Y axis. The period T of the wave is the timeperiod

it takes for one cycle to complete, defined as

T =
1
f

(25.4)
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Time (s)
0 0.5

–1.0

1.0

0

0 0.1 0.2 0.3 0.4 0.5

Figure 25.8 A sine wave with a frequency of 10 Hz and an amplitude of 1.

Each cycle in Fig. 25.8 lasts a tenth of a second; hence T = .1 seconds.

25.4.2 Speech Sound Waves
Let’s turn from hypothetical waves to sound waves. The input to a speech recog-
nizer, like the input to the human ear, is a complex series of changes in air pressure.
These changes in air pressure obviously originate with the speaker and are caused
by the specific way that air passes through the glottis and out the oral or nasal cav-
ities. We represent sound waves by plotting the change in air pressure over time.
One metaphor which sometimes helps in understanding these graphs is that of a ver-
tical plate blocking the air pressure waves (perhaps in a microphone in front of a
speaker’s mouth, or the eardrum in a hearer’s ear). The graph measures the amount
of compression or rarefaction (uncompression) of the air molecules at this plate.
Figure 25.9 shows a short segment of a waveform taken from the Switchboard corpus
of telephone speech of the vowel [iy] from someone saying “she just had a baby”.

Time (s)
0 0.03875

–0.01697

0.02283

0

Figure 25.9 A waveform of the vowel [iy] from an utterance shown later in Fig. 25.13 on page 539. The
y-axis shows the level of air pressure above and below normal atmospheric pressure. The x-axis shows time.
Notice that the wave repeats regularly.

The first step in digitizing a sound wave like Fig. 25.9 is to convert the analog
representations (first air pressure and then analog electric signals in a microphone)
into a digital signal. This analog-to-digital conversion has two steps: sampling andsampling

quantization. To sample a signal, we measure its amplitude at a particular time; the
sampling rate is the number of samples taken per second. To accurately measure a
wave, we must have at least two samples in each cycle: one measuring the positive
part of the wave and one measuring the negative part. More than two samples per
cycle increases the amplitude accuracy, but fewer than two samples causes the fre-
quency of the wave to be completely missed. Thus, the maximum frequency wave
that can be measured is one whose frequency is half the sample rate (since every
cycle needs two samples). This maximum frequency for a given sampling rate is
called the Nyquist frequency. Most information in human speech is in frequenciesNyquist

frequency
below 10,000 Hz; thus, a 20,000 Hz sampling rate would be necessary for com-
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plete accuracy. But telephone speech is filtered by the switching network, and only
frequencies less than 4,000 Hz are transmitted by telephones. Thus, an 8,000 Hz
sampling rate is sufficient for telephone-bandwidth speech like the Switchboard
corpus, while 16,000 Hz sampling is often used for microphone speech.

Even an 8,000 Hz sampling rate requires 8000 amplitude measurements for each
second of speech, so it is important to store amplitude measurements efficiently.
They are usually stored as integers, either 8 bit (values from -128–127) or 16 bit
(values from -32768–32767). This process of representing real-valued numbers as
integers is called quantization because the difference between two integers acts asquantization

a minimum granularity (a quantum size) and all values that are closer together than
this quantum size are represented identically.

Once data is quantized, it is stored in various formats. One parameter of these
formats is the sample rate and sample size discussed above; telephone speech is
often sampled at 8 kHz and stored as 8-bit samples, and microphone data is often
sampled at 16 kHz and stored as 16-bit samples. Another parameter is the number of
channels. For stereo data or for two-party conversations, we can store both channelschannel

in the same file or we can store them in separate files. A final parameter is individual
sample storage—linearly or compressed. One common compression format used for
telephone speech is µ-law (often written u-law but still pronounced mu-law). The
intuition of log compression algorithms like µ-law is that human hearing is more
sensitive at small intensities than large ones; the log represents small values with
more faithfulness at the expense of more error on large values. The linear (unlogged)
values are generally referred to as linear PCM values (PCM stands for pulse codePCM

modulation, but never mind that). Here’s the equation for compressing a linear PCM
sample value x to 8-bit µ-law, (where µ=255 for 8 bits):

F(x) =
sgn(x) log(1+µ|x|)

log(1+µ)
−1≤ x≤ 1 (25.5)

There are a number of standard file formats for storing the resulting digitized wave-
file, such as Microsoft’s .wav and Apple’s AIFF all of which have special headers;
simple headerless “raw” files are also used. For example, the .wav format is a subset
of Microsoft’s RIFF format for multimedia files; RIFF is a general format that can
represent a series of nested chunks of data and control information. Figure 25.10
shows a simple .wav file with a single data chunk together with its format chunk.

Figure 25.10 Microsoft wavefile header format, assuming simple file with one chunk. Fol-
lowing this 44-byte header would be the data chunk.

25.4.3 Frequency and Amplitude; Pitch and Loudness
Sound waves, like all waves, can be described in terms of frequency, amplitude, and
the other characteristics that we introduced earlier for pure sine waves. In sound
waves, these are not quite as simple to measure as they were for sine waves. Let’s
consider frequency. Note in Fig. 25.9 that although not exactly a sine, the wave is
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nonetheless periodic, repeating 10 times in the 38.75 milliseconds (.03875 seconds)
captured in the figure. Thus, the frequency of this segment of the wave is 10/.03875
or 258 Hz.

Where does this periodic 258 Hz wave come from? It comes from the speed
of vibration of the vocal folds; since the waveform in Fig. 25.9 is from the vowel
[iy], it is voiced. Recall that voicing is caused by regular openings and closing of
the vocal folds. When the vocal folds are open, air is pushing up through the lungs,
creating a region of high pressure. When the folds are closed, there is no pressure
from the lungs. Thus, when the vocal folds are vibrating, we expect to see regular
peaks in amplitude of the kind we see in Fig. 25.9, each major peak corresponding
to an opening of the vocal folds. The frequency of the vocal fold vibration, or the
frequency of the complex wave, is called the fundamental frequency of the wave-fundamental

frequency
form, often abbreviated F0. We can plot F0 over time in a pitch track. Figure 25.11F0

pitch track shows the pitch track of a short question, “Three o’clock?” represented below the
waveform. Note the rise in F0 at the end of the question.

three o’clock

Time (s)
0 0.544375

0 Hz

500 Hz

Figure 25.11 Pitch track of the question “Three o’clock?”, shown below the wavefile. Note
the rise in F0 at the end of the question. Note the lack of pitch trace during the very quiet part
(the “o’” of “o’clock”; automatic pitch tracking is based on counting the pulses in the voiced
regions, and doesn’t work if there is no voicing (or insufficient sound).

The vertical axis in Fig. 25.9 measures the amount of air pressure variation;
pressure is force per unit area, measured in Pascals (Pa). A high value on the vertical
axis (a high amplitude) indicates that there is more air pressure at that point in time,
a zero value means there is normal (atmospheric) air pressure, and a negative value
means there is lower than normal air pressure (rarefaction).

In addition to this value of the amplitude at any point in time, we also often
need to know the average amplitude over some time range, to give us some idea
of how great the average displacement of air pressure is. But we can’t just take
the average of the amplitude values over a range; the positive and negative values
would (mostly) cancel out, leaving us with a number close to zero. Instead, we
generally use the RMS (root-mean-square) amplitude, which squares each number
before averaging (making it positive), and then takes the square root at the end.

RMS amplitudeN
i=1 =

√√√√ 1
N

N∑

i=1

x2
i (25.6)

The power of the signal is related to the square of the amplitude. If the numberpower
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of samples of a sound is N, the power is

Power =
1
N

N∑

i=1

x2
i (25.7)

Rather than power, we more often refer to the intensity of the sound, whichintensity

normalizes the power to the human auditory threshold and is measured in dB. If P0
is the auditory threshold pressure = 2×10−5 Pa, then intensity is defined as follows:

Intensity = 10log10
1

NP0

N∑

i=1

x2
i (25.8)

Figure 25.12 shows an intensity plot for the sentence “Is it a long movie?” from
the CallHome corpus, again shown below the waveform plot.

is it a long movie?

Time (s)
0 1.1675

Figure 25.12 Intensity plot for the sentence “Is it a long movie?”. Note the intensity peaks
at each vowel and the especially high peak for the word long.

Two important perceptual properties, pitch and loudness, are related to fre-
quency and intensity. The pitch of a sound is the mental sensation, or perceptualpitch

correlate, of fundamental frequency; in general, if a sound has a higher fundamen-
tal frequency we perceive it as having a higher pitch. We say “in general” because
the relationship is not linear, since human hearing has different acuities for different
frequencies. Roughly speaking, human pitch perception is most accurate between
100 Hz and 1000 Hz and in this range pitch correlates linearly with frequency. Hu-
man hearing represents frequencies above 1000 Hz less accurately, and above this
range, pitch correlates logarithmically with frequency. Logarithmic representation
means that the differences between high frequencies are compressed and hence not
as accurately perceived. There are various psychoacoustic models of pitch percep-
tion scales. One common model is the mel scale (Stevens et al. 1937, Stevens andMel

Volkmann 1940). A mel is a unit of pitch defined such that pairs of sounds which
are perceptually equidistant in pitch are separated by an equal number of mels. The
mel frequency m can be computed from the raw acoustic frequency as follows:

m = 1127ln(1+
f

700
) (25.9)

As we’ll see in Chapter 26, the mel scale plays an important role in speech
recognition.
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The loudness of a sound is the perceptual correlate of the power. So sounds with
higher amplitudes are perceived as louder, but again the relationship is not linear.
First of all, as we mentioned above when we defined µ-law compression, humans
have greater resolution in the low-power range; the ear is more sensitive to small
power differences. Second, it turns out that there is a complex relationship between
power, frequency, and perceived loudness; sounds in certain frequency ranges are
perceived as being louder than those in other frequency ranges.

Various algorithms exist for automatically extracting F0. In a slight abuse of ter-
minology, these are called pitch extraction algorithms. The autocorrelation methodpitch extraction

of pitch extraction, for example, correlates the signal with itself at various offsets.
The offset that gives the highest correlation gives the period of the signal. There
are various publicly available pitch extraction toolkits; for example, an augmented
autocorrelation pitch tracker is provided with Praat (Boersma and Weenink, 2005).

25.4.4 Interpretation of Phones from a Waveform

Much can be learned from a visual inspection of a waveform. For example, vowels
are pretty easy to spot. Recall that vowels are voiced; another property of vowels is
that they tend to be long and are relatively loud (as we can see in the intensity plot
in Fig. 25.12). Length in time manifests itself directly on the x-axis, and loudness
is related to (the square of) amplitude on the y-axis. We saw in the previous section
that voicing is realized by regular peaks in amplitude of the kind we saw in Fig. 25.9,
each major peak corresponding to an opening of the vocal folds. Figure 25.13 shows
the waveform of the short sentence “she just had a baby”. We have labeled this wave-
form with word and phone labels. Notice that each of the six vowels in Fig. 25.13,
[iy], [ax], [ae], [ax], [ey], [iy], all have regular amplitude peaks indicating voicing.

she just had a baby

sh iy j ax s h ae dx ax b ey b iy

Time (s)
0 1.059

Figure 25.13 A waveform of the sentence “She just had a baby” from the Switchboard corpus (conversation
4325). The speaker is female, was 20 years old in 1991, which is approximately when the recording was made,
and speaks the South Midlands dialect of American English.

For a stop consonant, which consists of a closure followed by a release, we can
often see a period of silence or near silence followed by a slight burst of amplitude.
We can see this for both of the [b]’s in baby in Fig. 25.13.

Another phone that is often quite recognizable in a waveform is a fricative. Re-
call that fricatives, especially very strident fricatives like [sh], are made when a
narrow channel for airflow causes noisy, turbulent air. The resulting hissy sounds
have a noisy, irregular waveform. This can be seen somewhat in Fig. 25.13; it’s even
clearer in Fig. 25.14, where we’ve magnified just the first word she.
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she

sh iy

Time (s)
0 0.257

Figure 25.14 A more detailed view of the first word “she” extracted from the wavefile in Fig. 25.13. Notice
the difference between the random noise of the fricative [sh] and the regular voicing of the vowel [iy].

25.4.5 Spectra and the Frequency Domain
While some broad phonetic features (such as energy, pitch, and the presence of voic-
ing, stop closures, or fricatives) can be interpreted directly from the waveform, most
computational applications such as speech recognition (as well as human auditory
processing) are based on a different representation of the sound in terms of its com-
ponent frequencies. The insight of Fourier analysis is that every complex wave can
be represented as a sum of many sine waves of different frequencies. Consider the
waveform in Fig. 25.15. This waveform was created (in Praat) by summing two sine
waveforms, one of frequency 10 Hz and one of frequency 100 Hz.

Time (s)
0 0.5

–1

1

0

Figure 25.15 A waveform that is the sum of two sine waveforms, one of frequency 10
Hz (note five repetitions in the half-second window) and one of frequency 100 Hz, both of
amplitude 1.

We can represent these two component frequencies with a spectrum. The spec-spectrum

trum of a signal is a representation of each of its frequency components and their
amplitudes. Figure 25.16 shows the spectrum of Fig. 25.15. Frequency in Hz is
on the x-axis and amplitude on the y-axis. Note the two spikes in the figure, one
at 10 Hz and one at 100 Hz. Thus, the spectrum is an alternative representation of
the original waveform, and we use the spectrum as a tool to study the component
frequencies of a sound wave at a particular time point.

Let’s look now at the frequency components of a speech waveform. Figure 25.17
shows part of the waveform for the vowel [ae] of the word had, cut out from the
sentence shown in Fig. 25.13.

Note that there is a complex wave that repeats about ten times in the figure; but
there is also a smaller repeated wave that repeats four times for every larger pattern
(notice the four small peaks inside each repeated wave). The complex wave has a
frequency of about 234 Hz (we can figure this out since it repeats roughly 10 times
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Figure 25.16 The spectrum of the waveform in Fig. 25.15.

Time (s)
0 0.04275

–0.05554

0.04968

0

Figure 25.17 The waveform of part of the vowel [ae] from the word had cut out from the
waveform shown in Fig. 25.13.

in .0427 seconds, and 10 cycles/.0427 seconds = 234 Hz).
The smaller wave then should have a frequency of roughly four times the fre-

quency of the larger wave, or roughly 936 Hz. Then, if you look carefully, you can
see two little waves on the peak of many of the 936 Hz waves. The frequency of this
tiniest wave must be roughly twice that of the 936 Hz wave, hence 1872 Hz.

Figure 25.18 shows a smoothed spectrum for the waveform in Fig. 25.17, com-
puted with a discrete Fourier transform (DFT).

Frequency (Hz)
0 4000

S
o

u
n

d
 p

re
s
s
u

re
 l
e

v
e

l 
(d

B
/

H
z
)

–20

0

20

0 2000 40000 1000 2000 3000 4000

Figure 25.18 A spectrum for the vowel [ae] from the word had in the waveform of She just
had a baby in Fig. 25.13.

The x-axis of a spectrum shows frequency, and the y-axis shows some mea-
sure of the magnitude of each frequency component (in decibels (dB), a logarithmic
measure of amplitude that we saw earlier). Thus, Fig. 25.18 shows significant fre-
quency components at around 930 Hz, 1860 Hz, and 3020 Hz, along with many
other lower-magnitude frequency components. These first two components are just
what we noticed in the time domain by looking at the wave in Fig. 25.17!

Why is a spectrum useful? It turns out that these spectral peaks that are easily
visible in a spectrum are characteristic of different phones; phones have characteris-
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tic spectral “signatures”. Just as chemical elements give off different wavelengths of
light when they burn, allowing us to detect elements in stars by looking at the spec-
trum of the light, we can detect the characteristic signature of the different phones
by looking at the spectrum of a waveform. This use of spectral information is essen-
tial to both human and machine speech recognition. In human audition, the function
of the cochlea, or inner ear, is to compute a spectrum of the incoming waveform.cochlea

Similarly, the acoustic features used in speech recognition are spectral representa-
tions.

Let’s look at the spectrum of different vowels. Since some vowels change over
time, we’ll use a different kind of plot called a spectrogram. While a spectrum
shows the frequency components of a wave at one point in time, a spectrogram is aspectrogram

way of envisioning how the different frequencies that make up a waveform change
over time. The x-axis shows time, as it did for the waveform, but the y-axis now
shows frequencies in hertz. The darkness of a point on a spectrogram corresponds
to the amplitude of the frequency component. Very dark points have high amplitude,
light points have low amplitude. Thus, the spectrogram is a useful way of visualizing
the three dimensions (time x frequency x amplitude).

Figure 25.19 shows spectrograms of three American English vowels, [ih], [ae],
and [ah]. Note that each vowel has a set of dark bars at various frequency bands,
slightly different bands for each vowel. Each of these represents the same kind of
spectral peak that we saw in Fig. 25.17.
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Figure 25.19 Spectrograms for three American English vowels, [ih], [ae], and [uh]

Each dark bar (or spectral peak) is called a formant. As we discuss below, aformant

formant is a frequency band that is particularly amplified by the vocal tract. Since
different vowels are produced with the vocal tract in different positions, they will
produce different kinds of amplifications or resonances. Let’s look at the first two
formants, called F1 and F2. Note that F1, the dark bar closest to the bottom, is in a
different position for the three vowels; it’s low for [ih] (centered at about 470 Hz)
and somewhat higher for [ae] and [ah] (somewhere around 800 Hz). By contrast,
F2, the second dark bar from the bottom, is highest for [ih], in the middle for [ae],
and lowest for [ah].

We can see the same formants in running speech, although the reduction and
coarticulation processes make them somewhat harder to see. Figure 25.20 shows
the spectrogram of “she just had a baby”, whose waveform was shown in Fig. 25.13.
F1 and F2 (and also F3) are pretty clear for the [ax] of just, the [ae] of had, and the
[ey] of baby.

What specific clues can spectral representations give for phone identification?
First, since different vowels have their formants at characteristic places, the spectrum
can distinguish vowels from each other. We’ve seen that [ae] in the sample waveform
had formants at 930 Hz, 1860 Hz, and 3020 Hz. Consider the vowel [iy] at the
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she just had a baby

sh iy j ax s h ae dx ax b ey b iy

Time (s)
0 1.059

Figure 25.20 A spectrogram of the sentence “she just had a baby” whose waveform was shown in Fig. 25.13.
We can think of a spectrogram as a collection of spectra (time slices), like Fig. 25.18 placed end to end.

beginning of the utterance in Fig. 25.13. The spectrum for this vowel is shown in
Fig. 25.21. The first formant of [iy] is 540 Hz, much lower than the first formant for
[ae], and the second formant (2581 Hz) is much higher than the second formant for
[ae]. If you look carefully, you can see these formants as dark bars in Fig. 25.20 just
around 0.5 seconds.
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Figure 25.21 A smoothed (LPC) spectrum for the vowel [iy] at the start of She just had a
baby. Note that the first formant (540 Hz) is much lower than the first formant for [ae] shown
in Fig. 25.18, and the second formant (2581 Hz) is much higher than the second formant for
[ae].

The location of the first two formants (called F1 and F2) plays a large role in de-
termining vowel identity, although the formants still differ from speaker to speaker.
Higher formants tend to be caused more by general characteristics of a speaker’s
vocal tract rather than by individual vowels. Formants also can be used to identify
the nasal phones [n], [m], and [ng] and the liquids [l] and [r].

25.4.6 The Source-Filter Model
Why do different vowels have different spectral signatures? As we briefly mentioned
above, the formants are caused by the resonant cavities of the mouth. The source-
filter model is a way of explaining the acoustics of a sound by modeling how thesource-filter

model
pulses produced by the glottis (the source) are shaped by the vocal tract (the filter).

Let’s see how this works. Whenever we have a wave such as the vibration in air
caused by the glottal pulse, the wave also has harmonics. A harmonic is anotherharmonic

wave whose frequency is a multiple of the fundamental wave. Thus, for example, a



544 CHAPTER 25 • PHONETICS

115 Hz glottal fold vibration leads to harmonics (other waves) of 230 Hz, 345 Hz,
460 Hz, and so on on. In general, each of these waves will be weaker, that is, will
have much less amplitude than the wave at the fundamental frequency.

It turns out, however, that the vocal tract acts as a kind of filter or amplifier;
indeed any cavity, such as a tube, causes waves of certain frequencies to be amplified
and others to be damped. This amplification process is caused by the shape of the
cavity; a given shape will cause sounds of a certain frequency to resonate and hence
be amplified. Thus, by changing the shape of the cavity, we can cause different
frequencies to be amplified.

When we produce particular vowels, we are essentially changing the shape of
the vocal tract cavity by placing the tongue and the other articulators in particular
positions. The result is that different vowels cause different harmonics to be ampli-
fied. So a wave of the same fundamental frequency passed through different vocal
tract positions will result in different harmonics being amplified.

We can see the result of this amplification by looking at the relationship between
the shape of the vocal tract and the corresponding spectrum. Figure 25.22 shows
the vocal tract position for three vowels and a typical resulting spectrum. The for-
mants are places in the spectrum where the vocal tract happens to amplify particular
harmonic frequencies.
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Figure 25.22 Visualizing the vocal tract position as a filter: the tongue positions for three English vowels and
the resulting smoothed spectra showing F1 and F2.

25.5 Phonetic Resources

A wide variety of phonetic resources can be drawn on for computational work.
On-line pronunciation dictionaries give phonetic transcriptions for words. Thepronunciation

dictionary
LDC distributes pronunciation lexicons for Egyptian Arabic, Dutch, English, Ger-
man, Japanese, Korean, Mandarin, and Spanish. For English, the CELEX dictionary
(Baayen et al., 1995) has pronunciations for 160,595 wordforms, with syllabifica-
tion, stress, and morphological and part-of-speech information. The open-source
CMU Pronouncing Dictionary (CMU, 1993) has pronunciations for about 134,000



25.6 • SUMMARY 545

wordforms, while the fine-grained 110,000 word UNISYN dictionary (Fitt, 2002),
freely available for research purposes, gives syllabifications, stress, and also pronun-
ciations for dozens of dialects of English.

Another useful resource is a phonetically annotated corpus, in which a col-
lection of waveforms is hand-labeled with the corresponding string of phones. The
TIMIT corpus (NIST, 1990), originally a joint project between Texas Instruments
(TI), MIT, and SRI, is a corpus of 6300 read sentences, with 10 sentences each from
630 speakers. The 6300 sentences were drawn from a set of 2342 sentences, some
selected to have particular dialect shibboleths, others to maximize phonetic diphone
coverage. Each sentence in the corpus was phonetically hand-labeled, the sequence
of phones was automatically aligned with the sentence wavefile, and then the au-
tomatic phone boundaries were manually hand-corrected (Seneff and Zue, 1988).
The result is a time-aligned transcription: a transcription in which each phone istime-aligned

transcription
associated with a start and end time in the waveform, like the example in Fig. 25.23.

she had your dark suit in greasy wash water all year
sh iy hv ae dcl jh axr dcl d aa r kcl s ux q en gcl g r iy s ix w aa sh q w aa dx axr q aa l y ix axr

Figure 25.23 Phonetic transcription from the TIMIT corpus, using special ARPAbet features for narrow tran-
scription, such as the palatalization of [d] in had, unreleased final stop in dark, glottalization of final [t] in suit
to [q], and flap of [t] in water. The TIMIT corpus also includes time-alignments (not shown).

The Switchboard Transcription Project phonetically annotated corpus consists
of 3.5 hours of sentences extracted from the Switchboard corpus (Greenberg et al.,
1996), together with transcriptions time-aligned at the syllable level. Figure 25.24
shows an example .

0.470 0.640 0.720 0.900 0.953 1.279 1.410 1.630
dh er k aa n ax v ih m b ix t w iy n r ay n aw

Figure 25.24 Phonetic transcription of the Switchboard phrase they’re kind of in between
right now. Note vowel reduction in they’re and of, coda deletion in kind and right, and re-
syllabification (the [v] of of attaches as the onset of in). Time is given in number of seconds
from the beginning of sentence to the start of each syllable.

The Buckeye corpus (Pitt et al. 2007, Pitt et al. 2005) is a phonetically tran-
scribed corpus of spontaneous American speech, containing about 300,000 words
from 40 talkers. Phonetically transcribed corpora are also available for other lan-
guages, including the Kiel corpus of German and Mandarin corpora transcribed by
the Chinese Academy of Social Sciences (Li et al., 2000).

In addition to resources like dictionaries and corpora, there are many useful pho-
netic software tools. Many of the figures in this book were generated by the Praat
package (Boersma and Weenink, 2005), which includes pitch, spectral, and formant
analysis, as well as a scripting language.

25.6 Summary

This chapter has introduced many of the important concepts of phonetics and com-
putational phonetics.

• We can represent the pronunciation of words in terms of units called phones.
The standard system for representing phones is the International Phonetic
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Alphabet or IPA. The most common computational system for transcription
of English is the ARPAbet, which conveniently uses ASCII symbols.

• Phones can be described by how they are produced articulatorily by the vocal
organs; consonants are defined in terms of their place and manner of articu-
lation and voicing; vowels by their height, backness, and roundness.

• Speech sounds can also be described acoustically. Sound waves can be de-
scribed in terms of frequency, amplitude, or their perceptual correlates, pitch
and loudness.

• The spectrum of a sound describes its different frequency components. While
some phonetic properties are recognizable from the waveform, both humans
and machines rely on spectral analysis for phone detection.

• A spectrogram is a plot of a spectrum over time. Vowels are described by
characteristic harmonics called formants.

Bibliographical and Historical Notes
The major insights of articulatory phonetics date to the linguists of 800–150 B.C.
India. They invented the concepts of place and manner of articulation, worked out
the glottal mechanism of voicing, and understood the concept of assimilation. Eu-
ropean science did not catch up with the Indian phoneticians until over 2000 years
later, in the late 19th century. The Greeks did have some rudimentary phonetic
knowledge; by the time of Plato’s Theaetetus and Cratylus, for example, they distin-
guished vowels from consonants, and stop consonants from continuants. The Stoics
developed the idea of the syllable and were aware of phonotactic constraints on pos-
sible words. An unknown Icelandic scholar of the 12th century exploited the concept
of the phoneme and proposed a phonemic writing system for Icelandic, including
diacritics for length and nasality. But his text remained unpublished until 1818 and
even then was largely unknown outside Scandinavia (Robins, 1967). The modern
era of phonetics is usually said to have begun with Sweet, who proposed what is
essentially the phoneme in his Handbook of Phonetics (1877). He also devised an
alphabet for transcription and distinguished between broad and narrow transcrip-
tion, proposing many ideas that were eventually incorporated into the IPA. Sweet
was considered the best practicing phonetician of his time; he made the first scien-
tific recordings of languages for phonetic purposes and advanced the state of the art
of articulatory description. He was also infamously difficult to get along with, a trait
that is well captured in Henry Higgins, the stage character that George Bernard Shaw
modeled after him. The phoneme was first named by the Polish scholar Baudouin
de Courtenay, who published his theories in 1894.

Introductory phonetics textbooks include Ladefoged (1993) and Clark and Yal-
lop (1995). Wells (1982) is the definitive three-volume source on dialects of English.

Many of the classic insights in acoustic phonetics had been developed by the late
1950s or early 1960s; just a few highlights include techniques like the sound spectro-
graph (Koenig et al., 1946), theoretical insights like the working out of the source-
filter theory and other issues in the mapping between articulation and acoustics
((Fant, 1960), Stevens et al. 1953, Stevens and House 1955, Heinz and Stevens 1961,
Stevens and House 1961) the F1xF2 space of vowel formants (Peterson and Barney,
1952), the understanding of the phonetic nature of stress and the use of duration and
intensity as cues (Fry, 1955), and a basic understanding of issues in phone percep-
tion (Miller and Nicely 1955,Liberman et al. 1952). Lehiste (1967) is a collection
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of classic papers on acoustic phonetics. Many of the seminal papers of Gunnar Fant
have been collected in Fant (2004).

Excellent textbooks on acoustic phonetics include Johnson (2003) and Lade-
foged (1996). Coleman (2005) includes an introduction to computational process-
ing of acoustics and speech from a linguistic perspective. Stevens (1998) lays out
an influential theory of speech sound production. There are a number of software
packages for acoustic phonetic analysis. Probably the most widely used one is Praat
(Boersma and Weenink, 2005).

Exercises
25.1 Find the mistakes in the ARPAbet transcriptions of the following words:

a. “three” [dh r i] d. “study” [s t uh d i] g. “slight” [s l iy t]
b. “sing” [s ih n g] e. “though” [th ow]
c. “eyes” [ay s] f. “planning” [p pl aa n ih ng]

25.2 Ira Gershwin’s lyric for Let’s Call the Whole Thing Off talks about two pro-
nunciations (each) of the words “tomato”, “potato”, and “either”. Transcribe
into the ARPAbet both pronunciations of each of these three words.

25.3 Transcribe the following words in the ARPAbet:

1. dark
2. suit
3. greasy
4. wash
5. water

25.4 Take a wavefile of your choice. Some examples are on the textbook website.
Download the Praat software, and use it to transcribe the wavefiles at the word
level and into ARPAbet phones, using Praat to help you play pieces of each
wavefile and to look at the wavefile and the spectrogram.

25.5 Record yourself saying five of the English vowels: [aa], [eh], [ae], [iy], [uw].
Find F1 and F2 for each of your vowels.



548 CHAPTER 26 • AUTOMATIC SPEECH RECOGNITION AND TEXT-TO-SPEECH

CHAPTER

26 Automatic Speech Recognition
and Text-to-Speech

I KNOW not whether
I see your meaning: if I do, it lies
Upon the wordy wavelets of your voice,
Dim as an evening shadow in a brook,

Thomas Lovell Beddoes, 1851

Understanding spoken language, or at least transcribing the words into writing, is
one of the earliest goals of computer language processing. In fact, speech processing
predates the computer by many decades!
The first machine that recognized speech
was a toy from the 1920s. “Radio Rex”,
shown to the right, was a celluloid dog
that moved (by means of a spring) when
the spring was released by 500 Hz acous-
tic energy. Since 500 Hz is roughly the
first formant of the vowel [eh] in “Rex”,
Rex seemed to come when he was called
(David, Jr. and Selfridge, 1962).

In modern times, we expect more of our automatic systems. The task of auto-
matic speech recognition (ASR) is to map any waveform like this:ASR

to the appropriate string of words:

It’s time for lunch!

Automatic transcription of speech by any speaker in any environment is still far from
solved, but ASR technology has matured to the point where it is now viable for many
practical tasks. Speech is a natural interface for communicating with smart home ap-
pliances, personal assistants, or cellphones, where keyboards are less convenient, in
telephony applications like call-routing (“Accounting, please”) or in sophisticated
dialogue applications (“I’d like to change the return date of my flight”). ASR is also
useful for general transcription, for example for automatically generating captions
for audio or video text (transcribing movies or videos or live discussions). Tran-
scription is important in fields like law where dictation dictation plays an important
role. Finally, ASR is important as part of augmentative communication (interaction
between computers and humans with some disability resulting in difficulties or in-
abilities in typing or audition). The blind Milton famously dictated Paradise Lost
to his daughters, and Henry James dictated his later novels after a repetitive stress
injury.
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What about the opposite problem, going from text to speech? This is a problem
with an even longer history. In Vienna in 1769, Wolfgang von Kempelen built for
the Empress Maria Theresa the famous Mechanical Turk, a chess-playing automaton
consisting of a wooden box filled with gears, behind which sat a robot mannequin
who played chess by moving pieces with his mechanical arm. The Turk toured Eu-
rope and the Americas for decades, defeating Napoleon Bonaparte and even playing
Charles Babbage. The Mechanical Turk might have been one of the early successes
of artificial intelligence were it not for the fact that it was, alas, a hoax, powered by
a human chess player hidden inside the box.

What is less well known is that von Kempelen, an extraordinarily
prolific inventor, also built between
1769 and 1790 what was definitely
not a hoax: the first full-sentence
speech synthesizer, shown partially to
the right. His device consisted of a
bellows to simulate the lungs, a rub-
ber mouthpiece and a nose aperture, a
reed to simulate the vocal folds, var-
ious whistles for the fricatives, and a
small auxiliary bellows to provide the puff of air for plosives. By moving levers
with both hands to open and close apertures, and adjusting the flexible leather “vo-
cal tract”, an operator could produce different consonants and vowels.

More than two centuries later, we no longer build our synthesizers out of wood
and leather, nor do we need human operators. The modern task of speech synthesis,speech

synthesis
also called text-to-speech or TTS, is exactly the reverse of ASR; to map text:text-to-speech

TTS
It’s time for lunch!

to an acoustic waveform:

Modern speech synthesis has a wide variety of applications. TTS is used in
conversational agents that conduct dialogues with people, plays a role in devices
that read out loud for the blind or in games, and can be used to speak for sufferers
of neurological disorders, such as the late astrophysicist Steven Hawking who, after
he lost the use of his voice because of ALS, spoke by manipulating a TTS system.

In the next sections we’ll show how to do ASR with encoder-decoders, intro-
duce the CTC loss functions, the standard word error rate evaluation metric, and
describe how acoustic features are extracted. We’ll then see how TTS can be mod-
eled with almost the same algorithm in reverse, and conclude with a brief mention
of other speech tasks.

26.1 The Automatic Speech Recognition Task

Before describing algorithms for ASR, let’s talk about how the task itself varies.
One dimension of variation is vocabulary size. Some ASR tasks can be solved with
extremely high accuracy, like those with a 2-word vocabulary (yes versus no) or
an 11 word vocabulary like digit recognition (recognizing sequences of digits in-digit

recognition
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cluding zero to nine plus oh). Open-ended tasks like transcribing videos or human
conversations, with large vocabularies of up to 60,000 words, are much harder.

A second dimension of variation is who the speaker is talking to. Humans speak-
ing to machines (either dictating or talking to a dialogue system) are easier to recog-
nize than humans speaking to humans. Read speech, in which humans are readingread speech

out loud, for example in audio books, is also relatively easy to recognize. Recog-
nizing the speech of two humans talking to each other in conversational speech,conversational

speech
for example, for transcribing a business meeting, is the hardest. It seems that when
humans talk to machines, or read without an audience present, they simplify their
speech quite a bit, talking more slowly and more clearly.

A third dimension of variation is channel and noise. Speech is easier to recognize
if its recorded in a quiet room with head-mounted microphones than if it’s recorded
by a distant microphone on a noisy city street, or in a car with the window open.

A final dimension of variation is accent or speaker-class characteristics. Speech
is easier to recognize if the speaker is speaking the same dialect or variety that the
system was trained on. Speech by speakers of regional or ethnic dialects, or speech
by children can be quite difficult to recognize if the system is only trained on speak-
ers of standard dialects, or only adult speakers.

A number of publicly available corpora with human-created transcripts are used
to create ASR test and training sets to explore this variation; we mention a few of
them here since you will encounter them in the literature. LibriSpeech is a largeLibriSpeech

open-source read-speech 16 kHz dataset with over 1000 hours of audio books from
the LibriVox project, with transcripts aligned at the sentence level (Panayotov et al.,
2015). It is divided into an easier (“clean”) and a more difficult portion (“other”)
with the clean portion of higher recording quality and with accents closer to US
English. This was done by running a speech recognizer (trained on read speech from
the Wall Street Journal) on all the audio, computing the WER for each speaker based
on the gold transcripts, and dividing the speakers roughly in half, with recordings
from lower-WER speakers called “clean” and recordings from higher-WER speakers
“other”.

The Switchboard corpus of prompted telephone conversations between strangersSwitchboard

was collected in the early 1990s; it contains 2430 conversations averaging 6 min-
utes each, totaling 240 hours of 8 kHz speech and about 3 million words (Godfrey
et al., 1992). Switchboard has the singular advantage of an enormous amount of
auxiliary hand-done linguistic labeling, including parses, dialogue act tags, phonetic
and prosodic labeling, and discourse and information structure. The CALLHOMECALLHOME

corpus was collected in the late 1990s and consists of 120 unscripted 30-minute
telephone conversations between native speakers of English who were usually close
friends or family (Canavan et al., 1997).

The Santa Barbara Corpus of Spoken American English (Du Bois et al., 2005) is
a large corpus of naturally occurring everyday spoken interactions from all over the
United States, mostly face-to-face conversation, but also town-hall meetings, food
preparation, on-the-job talk, and classroom lectures. The corpus was anonymized by
removing personal names and other identifying information (replaced by pseudonyms
in the transcripts, and masked in the audio).

CORAAL is a collection of over 150 sociolinguistic interviews with AfricanCORAAL

American speakers, with the goal of studying African American Language (AAL),
the many variations of language used in African American communities (Kendall
and Farrington, 2020). The interviews are anonymized with transcripts aligned at
the utterance level. The CHiME Challenge is a series of difficult shared tasks withCHiME
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corpora that deal with robustness in ASR. The CHiME 5 task, for example, is ASR of
conversational speech in real home environments (specifically dinner parties). The
corpus contains recordings of twenty different dinner parties in real homes, each
with four participants, and in three locations (kitchen, dining area, living room),
recorded both with distant room microphones and with body-worn mikes. The
HKUST Mandarin Telephone Speech corpus has 1206 ten-minute telephone con-HKUST

versations between speakers of Mandarin across China, including transcripts of the
conversations, which are between either friends or strangers (Liu et al., 2006). The
AISHELL-1 corpus contains 170 hours of Mandarin read speech of sentences takenAISHELL-1

from various domains, read by different speakers mainly from northern China (Bu
et al., 2017).

Figure 26.1 shows the rough percentage of incorrect words (the word error rate,
or WER, defined on page 562) from state-of-the-art systems on some of these tasks.
Note that the error rate on read speech (like the LibriSpeech audiobook corpus) is
around 2%; this is a solved task, although these numbers come from systems that re-
quire enormous computational resources. By contrast, the error rate for transcribing
conversations between humans is much higher; 5.8 to 11% for the Switchboard and
CALLHOME corpora. The error rate is higher yet again for speakers of varieties
like African American Vernacular English, and yet again for difficult conversational
tasks like transcription of 4-speaker dinner party speech, which can have error rates
as high as 81.3%. Character error rates (CER) are also much lower for read Man-
darin speech than for natural conversation.

English Tasks WER%
LibriSpeech audiobooks 960hour clean 1.4
LibriSpeech audiobooks 960hour other 2.6
Switchboard telephone conversations between strangers 5.8
CALLHOME telephone conversations between family 11.0
Sociolinguistic interviews, CORAAL (AAL) 27.0
CHiMe5 dinner parties with body-worn microphones 47.9
CHiMe5 dinner parties with distant microphones 81.3
Chinese (Mandarin) Tasks CER%
AISHELL-1 Mandarin read speech corpus 6.7
HKUST Mandarin Chinese telephone conversations 23.5

Figure 26.1 Rough Word Error Rates (WER = % of words misrecognized) reported around
2020 for ASR on various American English recognition tasks, and character error rates (CER)
for two Chinese recognition tasks.

26.2 Feature Extraction for ASR: Log Mel Spectrum

The first step in ASR is to transform the input waveform into a sequence of acoustic
feature vectors, each vector representing the information in a small time windowfeature vector

of the signal. Let’s see how to convert a raw wavefile to the most commonly used
features, sequences of log mel spectrum vectors. A speech signal processing course
is recommended for more details.
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26.2.1 Sampling and Quantization
Recall from Section 25.4.2 that the first step is to convert the analog representations
(first air pressure and then analog electric signals in a microphone) into a digital sig-
nal. This analog-to-digital conversion has two steps: sampling and quantization.sampling

A signal is sampled by measuring its amplitude at a particular time; the sampling
rate is the number of samples taken per second. To accurately measure a wave, wesampling rate

must have at least two samples in each cycle: one measuring the positive part of
the wave and one measuring the negative part. More than two samples per cycle in-
creases the amplitude accuracy, but less than two samples will cause the frequency
of the wave to be completely missed. Thus, the maximum frequency wave that
can be measured is one whose frequency is half the sample rate (since every cycle
needs two samples). This maximum frequency for a given sampling rate is called
the Nyquist frequency. Most information in human speech is in frequencies belowNyquist

frequency
10,000 Hz, so a 20,000 Hz sampling rate would be necessary for complete accuracy.
But telephone speech is filtered by the switching network, and only frequencies less
than 4,000 Hz are transmitted by telephones. Thus, an 8,000 Hz sampling rate is
sufficient for telephone-bandwidth speech, and 16,000 Hz for microphone speech.telephone-

bandwidth
Although using higher sampling rates produces higher ASR accuracy, we can’t

combine different sampling rates for training and testing ASR systems. Thus if
we are testing on a telephone corpus like Switchboard (8 KHz sampling), we must
downsample our training corpus to 8 KHz. Similarly, if we are training on mul-
tiple corpora and one of them includes telephone speech, we downsample all the
wideband corpora to 8Khz.

Amplitude measurements are stored as integers, either 8 bit (values from -128–
127) or 16 bit (values from -32768–32767). This process of representing real-valued
numbers as integers is called quantization; all values that are closer together thanquantization

the minimum granularity (the quantum size) are represented identically. We refer to
each sample at time index n in the digitized, quantized waveform as x[n].

26.2.2 Windowing
From the digitized, quantized representation of the waveform, we need to extract
spectral features from a small window of speech that characterizes part of a par-
ticular phoneme. Inside this small window, we can roughly think of the signal as
stationary (that is, its statistical properties are constant within this region). (Bystationary

contrast, in general, speech is a non-stationary signal, meaning that its statisticalnon-stationary

properties are not constant over time). We extract this roughly stationary portion of
speech by using a window which is non-zero inside a region and zero elsewhere, run-
ning this window across the speech signal and multiplying it by the input waveform
to produce a windowed waveform.

The speech extracted from each window is called a frame. The windowing isframe

characterized by three parameters: the window size or frame size of the window
(its width in milliseconds), the frame stride, (also called shift or offset) betweenstride

successive windows, and the shape of the window.
To extract the signal we multiply the value of the signal at time n, s[n] by the

value of the window at time n, w[n]:

y[n] = w[n]s[n] (26.1)

The window shape sketched in Fig. 26.2 is rectangular; you can see the ex-rectangular

tracted windowed signal looks just like the original signal. The rectangular window,
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Figure 26.2 Windowing, showing a 25 ms rectangular window with a 10ms stride.

however, abruptly cuts off the signal at its boundaries, which creates problems when
we do Fourier analysis. For this reason, for acoustic feature creation we more com-
monly use the Hamming window, which shrinks the values of the signal towardHamming

zero at the window boundaries, avoiding discontinuities. Figure 26.3 shows both;
the equations are as follows (assuming a window that is L frames long):

rectangular w[n] =

{
1 0≤ n≤ L−1
0 otherwise (26.2)

Hamming w[n] =

{
0.54−0.46cos( 2πn

L ) 0≤ n≤ L−1
0 otherwise

(26.3)
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0

Figure 26.3 Windowing a sine wave with the rectangular or Hamming windows.

26.2.3 Discrete Fourier Transform
The next step is to extract spectral information for our windowed signal; we need to
know how much energy the signal contains at different frequency bands. The tool
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for extracting spectral information for discrete frequency bands for a discrete-time
(sampled) signal is the discrete Fourier transform or DFT.

Discrete
Fourier

transform
DFT The input to the DFT is a windowed signal x[n]...x[m], and the output, for each of

N discrete frequency bands, is a complex number X [k] representing the magnitude
and phase of that frequency component in the original signal. If we plot the mag-
nitude against the frequency, we can visualize the spectrum that we introduced in
Chapter 25. For example, Fig. 26.4 shows a 25 ms Hamming-windowed portion of
a signal and its spectrum as computed by a DFT (with some additional smoothing).
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Figure 26.4 (a) A 25 ms Hamming-windowed portion of a signal from the vowel [iy]
and (b) its spectrum computed by a DFT.

We do not introduce the mathematical details of the DFT here, except to note
that Fourier analysis relies on Euler’s formula, with j as the imaginary unit:Euler’s formula

e jθ = cosθ + j sinθ (26.4)

As a brief reminder for those students who have already studied signal processing,
the DFT is defined as follows:

X [k] =
N−1∑

n=0

x[n]e− j 2π
N kn (26.5)

A commonly used algorithm for computing the DFT is the fast Fourier transformfast Fourier
transform

or FFT. This implementation of the DFT is very efficient but only works for valuesFFT

of N that are powers of 2.

26.2.4 Mel Filter Bank and Log
The results of the FFT tell us the energy at each frequency band. Human hearing,
however, is not equally sensitive at all frequency bands; it is less sensitive at higher
frequencies. This bias toward low frequencies helps human recognition, since infor-
mation in low frequencies like formants is crucial for distinguishing values or nasals,
while information in high frequencies like stop bursts or fricative noise is less cru-
cial for successful recognition. Modeling this human perceptual property improves
speech recognition performance in the same way.

We implement this intuition by by collecting energies, not equally at each fre-
quency band, but according to the mel scale, an auditory frequency scale (Chap-
ter 25). A mel (Stevens et al. 1937, Stevens and Volkmann 1940) is a unit of pitch.mel

Pairs of sounds that are perceptually equidistant in pitch are separated by an equal
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number of mels. The mel frequency m can be computed from the raw acoustic fre-
quency by a log transformation:

mel( f ) = 1127ln(1+
f

700
) (26.6)

We implement this intuition by creating a bank of filters that collect energy from
each frequency band, spread logarithmically so that we have very fine resolution
at low frequencies, and less resolution at high frequencies. Figure 26.5 shows a
sample bank of triangular filters that implement this idea, that can be multiplied by
the spectrum to get a mel spectrum.

m1 m2 mM...mel spectrum

0 7700
0

0.5

1

Am
pl

itu
de

Frequency (Hz)
8K

Figure 26.5 The mel filter bank (Davis and Mermelstein, 1980). Each triangular filter,
spaced logarithmically along the mel scale, collects energy from a given frequency range.

Finally, we take the log of each of the mel spectrum values. The human response
to signal level is logarithmic (like the human response to frequency). Humans are
less sensitive to slight differences in amplitude at high amplitudes than at low ampli-
tudes. In addition, using a log makes the feature estimates less sensitive to variations
in input such as power variations due to the speaker’s mouth moving closer or further
from the microphone.

26.3 Speech Recognition Architecture

The basic architecture for ASR is the encoder-decoder (implemented with either
RNNs or Transformers), exactly the same architecture introduced for MT in Chap-
ter 11. Generally we start from the log mel spectral features described in the previous
section, and map to letters, although it’s also possible to map to induced morpheme-
like chunks like wordpieces or BPE.

Fig. 26.6 sketches the standard encoder-decoder architecture, which is com-
monly referred to as the attention-based encoder decoder or AED, or listen attendAED

and spell (LAS) after the two papers which first applied it to speech (Chorowskilisten attend
and spell

et al. 2014, Chan et al. 2016). The input is a sequence of t acoustic feature vectors
F = f1, f2, ..., ft , one vector per 10 ms frame. The output can be letters or word-
pieces; we’ll assume letters here. Thus the output sequence Y =(〈SOS〉,y1, ...,ym〈EOS〉),
assuming special start of sequence and end of sequence tokens 〈sos〉 and 〈eos〉. and
each yi is a character; for English we might choose the set:

yi ∈ {a,b,c, ...,z,0, ...,9,〈space〉,〈comma〉,〈period〉,〈apostrophe〉,〈unk〉}

Of course the encoder-decoder architecture is particularly appropriate when in-
put and output sequences have stark length differences, as they do for speech, with
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Figure 26.6 Schematic architecture for an encoder-decoder speech recognizer.

very long acoustic feature sequences mapping to much shorter sequences of letters
or words. A single word might be 5 letters long but, supposing it lasts about 2
seconds, would take 200 acoustic frames (of 10ms each).

Because this length difference is so extreme for speech, encoder-decoder ar-
chitectures for speech need to have a special compression stage that shortens the
acoustic feature sequence before the encoder stage. (Alternatively, we can use a loss
function that is designed to deal well with compression, like the CTC loss function
we’ll introduce in the next section.)

The goal of the subsampling is to produce a shorter sequence X = x1, ...,xn that
will be the input to the encoder. The simplest algorithm is a method sometimes
called low frame rate (Pundak and Sainath, 2016): for time i we stack (concatenate)low frame rate

the acoustic feature vector fi with the prior two vectors fi−1 and fi−2 to make a new
vector three times longer. Then we simply delete fi−1 and fi−2. Thus instead of
(say) a 40-dimensional acoustic feature vector every 10 ms, we have a longer vector
(say 120-dimensional) every 30 ms, with a shorter sequence length n = t

3 .1

After this compression stage, encoder-decoders for speech use the same archi-
tecture as for MT or other text, composed of either RNNs (LSTMs) or Transformers.

For inference, the probability of the output string Y is decomposed as:

p(y1, . . . ,yn) =

n∏

i=1

p(yi|y1, . . . ,yi−1,X) (26.7)

We can produce each letter of the output via greedy decoding:

ŷi = argmaxchar∈ AlphabetP(char|y1...yi−1,X) (26.8)

Alternatively we can use beam search as described in the next section. this is partic-
ularly relevant when we are adding a language model.

Adding a language model Since an encoder-decoder model is essentially a con-
ditional language model, encoder-decoders implicitly learn a language model for the
output domain of letters from their training data. However, the training data (speech

1 There are also more complex alternatives for subsampling, like using a convolutional net that down-
samples with max pooling, or layers of pyramidal RNNs, RNNs where each successive layer has half
the number of RNNs as the previous layer.
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paired with text transcriptions) may not include sufficient text to train a good lan-
guage model. After all, it’s easier to find enormous amounts of pure text training
data than it is to find text paired with speech. Thus we can can usually improve a
model at least slightly by incorporating a very large language model.

The simplest way to do this is to use beam search to get a final beam of hy-
pothesized sentences; this beam is sometimes called an n-best list. We then use an-best list

language model to rescore each hypothesis on the beam. The scoring is doing by in-rescore

terpolating the score assigned by the language model with the encoder-decoder score
used to create the beam, with a weight λ tuned on a held-out set. Also, since most
models prefer shorter sentences, ASR systems normally have some way of adding a
length factor. One way to do this is to normalize the probability by the number of
characters in the hypothesis |Y |c. The following is thus a typical scoring function
(Chan et al., 2016):

score(Y |X) =
1
|Y |c

logP(Y |X)+λ logPLM(Y ) (26.9)

26.3.1 Learning
Encoder-decoders for speech are trained with the normal cross-entropy loss gener-
ally used for conditional language models. At timestep i of decoding, the loss is the
log probability of the correct token (letter) yi:

LCE = − log p(yi|y1, . . . ,yi−1,X) (26.10)

The loss for the entire sentence is the sum of these losses:

LCE = −
m∑

i=1

log p(yi|y1, . . . ,yi−1,X) (26.11)

This loss is then backpropagated through the entire end-to-end model to train the
entire encoder-decoder.

As we described in Chapter 11, we normally use teacher forcing, in which the
decoder history is forced to be the correct gold yi rather than the predicted ŷi. It’s
also possible to use a mixture of the gold and decoder output, for example using
the gold output 90% of the time, but with probability .1 taking the decoder output
instead:

LCE = − log p(yi|y1, . . . , ŷi−1,X) (26.12)

26.4 CTC

We pointed out in the previous section that speech recognition has two particular
properties that make it very appropriate for the encoder-decoder architecture, where
the encoder produces an encoding of the input that the decoder uses attention to
explore. First, in speech we have a very long acoustic input sequence X mapping to
a much shorter sequence of letters Y , and second, it’s hard to know exactly which
part of X maps to which part of Y .

In this section we briefly introduce an alternative to encoder-decoder: an algo-
rithm and loss function called CTC, short for Connectionist Temporal Classifica-CTC
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tion (Graves et al., 2006), that deals with these problems in a very different way. The
intuition of CTC is to output a single character for every frame of the input, so that
the output is the same length as the input, and then to apply a collapsing function
that combines sequences of identical letters, resulting in a shorter sequence.

Let’s imagine inference on someone saying the word dinner, and let’s suppose
we had a function that chooses the most probable letter for each input spectral frame
representation xi. We’ll call the sequence of letters corresponding to each input
frame an alignment, because it tells us where in the acoustic signal each letter alignsalignment

to. Fig. 26.7 shows one such alignment, and what happens if we use a collapsing
function that just removes consecutive duplicate letters.
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Figure 26.7 A naive algorithm for collapsinging an alignment between input and letters.

Well, that doesn’t work; our naive algorithm has transcribed the speech as diner,
not dinner! Collapsing doesn’t handle double letters. There’s also another problem
with our naive function; it doesn’t tell us what symbol to align with silence in the
input. We don’t want to be transcribing silence as random letters!

The CTC algorithm solves both problems by adding to the transcription alphabet
a special symbol for a blank, which we’ll represent as . The blank can be used inblank

the alignment whenever we don’t want to transcribe a letter. Blank can also be used
between letters; since our collapsing function collapses only consecutive duplicate
letters, it won’t collapse across . More formally, let’s define the mapping B : a→ y
between an alignment a and an output y, which collapses all repeated letters and
then removes all blanks. Fig. 26.8 sketches this collapsing function B.
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Figure 26.8 The CTC collapsing function B, showing the space blank character ; repeated
(consecutive) characters in an alignment A are removed to form the output Y .

The CTC collapsing function is many-to-one; lots of different alignments map to
the same output string. For example, the alignment shown in Fig. 26.8 is not the only
alignment that results in the string dinner. Fig. 26.9 shows some other alignments
that would produce the same output.

It’s useful to think of the set of all alignments that might produce the same output
Y . We’ll use the inverse of our B function, called B−1, and represent that set as
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Figure 26.9 Three other legimate alignments producing the transcript dinner.

B−1(Y ).

26.4.1 CTC Inference
Before we see how to compute PCTC(Y |X) let’s first see how CTC assigns a proba-
bility to one particular alignment Â = {â1, . . . , ân}. CTC makes a strong conditional
independence assumption: it assumes that, given the input X , the CTC model output
at at time t is independent of the output labels at any other time ai. Thus:

PCTC(A|X) =

T∏

t=1

p(at |X) (26.13)

Thus to find the best alignment Â = {â1, . . . , âT} we can greedily choose the charac-
ter with the max probability at each time step t:

ât = argmax
c∈C

pt(c|X) (26.14)

We then pass the resulting sequence A to the CTC collapsing function B to get the
output sequence Y .

Let’s talk about how this simple inference algorithm for finding the best align-
ment A would be implemented. Because we are making a decision at each time
point, we can treat CTC as a sequence-modeling task, where we output one letter
ŷt at time t corresponding to each input token xt , eliminating the need for a full de-
coder. Fig. 26.10 sketches this architecture, where we take an encoder, produce a
hidden state ht at each timestep, and decode by taking a softmax over the character
vocabulary at each time step.
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Figure 26.10 Inference with CTC: using an encoder-only model, with decoding done by
simple softmaxes over the hidden state ht at each output step.
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Alas, there is a potential flaw with the inference algorithm sketched in (Eq. 26.14)
and Fig. 26.9. The problem is that we chose the most likely alignment A, but the
most likely alignment may not correspond to the most likely final collapsed output
string Y . That’s because there are many possible alignments that lead to the same
output string, and hence the most likely output string might correspond to the most
probable alignment. For example, imagine the most probable alignment A for an
input X = [x1x2x3] is the string [a b ε] but the next two most probable alignments are
[b ε b] and [ε b b]. The output Y =[b b], summing over those two alignments, might
be more probable than Y =[a b].

For this reason, the most probable output sequence Y is the one that has, not
the single best CTC alignment, but the highest sum over the probability of all its
possible alignments:

PCTC(Y |X) =
∑

A∈B−1(Y )

P(A|X)

=
∑

A∈B−1(Y )

T∏

t=1

p(at |ht)

Ŷ = argmax
Y

PCTC(Y |X) (26.15)

Alas, summing over all alignments is very expensive (there are a lot of alignments),
so we approximate this sum by using a version of Viterbi beam search that cleverly
keeps in the beam the high-probability alignments that map to the same output string,
and sums those as an approximation of (Eq. 26.15). See Hannun (2017) for a clear
explanation of this extension of beam search for CTC.

Because of the strong conditional independence assumption mentioned earlier
(that the output at time t is independent of the output at time t−1, given the input),
CTC does not implicitly learn a language model over the data (unlike the attention-
based encoder-decoder architectures). It is therefore essential when using CTC to
interpolate a language model (and some sort of length factor L(Y )) using interpola-
tion weights that are trained on a dev set:

scoreCTC(Y |X) = logPCTC(Y |X)+λ1 logPLM(Y )λ2L(Y ) (26.16)

26.4.2 CTC Training
To train a CTC-based ASR system, we use negative log-likelihood loss with a special
CTC loss function. Thus the loss for an entire dataset D is the sum of the negative
log-likelihoods of the correct output Y for each input X :

LCTC =
∑

(X ,Y )∈D

− logPCTC(Y |X) (26.17)

To compute CTC loss function for a single input pair (X ,Y ), we need the probability
of the output Y given the input X . As we saw in Eq. 26.15, to compute the probability
of a given output Y we need to sum over all the possible alignments that would
collapse to Y . In other words:

PCTC(Y |X) =
∑

A∈B−1(Y )

T∏

t=1

p(at |ht) (26.18)



26.4 • CTC 561

Naively summing over all possible alignments in not feasible (there are too many
alignments). However, we can efficiently compute the sum by using dynamic pro-
gramming to merge alignments, with a version of the forward-backward algo-
rithm also used to train HMMs (Appendix A) and CRFs. The original dynamic pro-
gramming algorithms for both training and inference are laid out in (Graves et al.,
2006); see (Hannun, 2017) for a detailed explanation of both.

26.4.3 Combining CTC and Encoder-Decoder
It’s also possible to combine the two architectures/loss functions we’ve described,
the cross-entropy loss from the encoder-decoder architecture, and the CTC loss.
Fig. 26.11 shows a sketch. For training, we can can simply weight the two losses
with a λ tuned on a dev set:

L =−λ logPencdec(Y |X)− (1−λ ) logPctc(Y |X) (26.19)

For inference, we can combine the two with the language model (or the length
penalty), again with learned weights:

Ŷ = argmax
Y

[λ logPencdec(Y |X)− (1−λ ) logPCTC(Y |X)+ γ logPLM(Y )] (26.20)
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Figure 26.11 Combining the CTC and encoder-decoder loss functions.

26.4.4 Streaming Models: RNN-T for improving CTC
Because of the strong independence assumption in CTC (assuming that the output
at time t is independent of the output at time t − 1), recognizers based on CTC
don’t achieve as high an accuracy as the attention-based encoder-decoder recog-
nizers. CTC recognizers have the advantage, however, that they can be used for
streaming. Streaming means recognizing words on-line rather than waiting untilstreaming

the end of the sentence to recognize them. Streaming is crucial for many applica-
tions, from commands to dictation, where we want to start recognition while the
user is still talking. Algorithms that use attention need to compute the hidden state
sequence over the entire input first in order to provide the attention distribution con-
text, before the decoder can start decoding. By contrast, a CTC algorithm can input
letters from left to right immediately.

If we want to do streaming, we need a way to improve CTC recognition to re-
move the conditional independent assumption, enabling it to know about output his-
tory. The RNN-Transducer (RNN-T), shown in Fig. 26.12, is just such a modelRNN-T

(Graves 2012, Graves et al. 2013a). The RNN-T has two main components: a CTC
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acoustic model, and a separate language model component called the predictor that
conditions on the output token history. At each time step t, the CTC encoder outputs
a hidden state henc

t given the input x1...xt . The language model predictor takes as in-
put the previous output token (not counting blanks), outputting a hidden state hpred

u .
The two are passed through another network whose output is then passed through a
softmax to predict the next character.

PRNN−T (Y |X) =
∑

A∈B−1(Y )

P(A|X)

=
∑

A∈B−1(Y )

T∏

t=1

p(at |ht ,y<ut )

ENCODER

P ( yt,u | x[1..t] , y[1..u-1] )

xt

PREDICTION
NETWORK

yu-1

JOINT NETWORK

henc
t

hpred
u

SOFTMAX

zt,u
DECODER

Figure 26.12 The RNN-T model computing the output token distribution at time t by inte-
grating the output of a CTC acoustic encoder and a separate ‘predictor’ language model.

26.5 ASR Evaluation: Word Error Rate

The standard evaluation metric for speech recognition systems is the word errorword error

rate. The word error rate is based on how much the word string returned by the
recognizer (the hypothesized word string) differs from a reference transcription.
The first step in computing word error is to compute the minimum edit distance in
words between the hypothesized and correct strings, giving us the minimum num-
ber of word substitutions, word insertions, and word deletions necessary to map
between the correct and hypothesized strings. The word error rate (WER) is then
defined as follows (note that because the equation includes insertions, the error rate
can be greater than 100%):

Word Error Rate = 100× Insertions+Substitutions+Deletions
Total Words in Correct Transcript

Here is a sample alignment between a reference and a hypothesis utterance fromalignment

the CallHome corpus, showing the counts used to compute the error rate:

REF: i *** ** UM the PHONE IS i LEFT THE portable **** PHONE UPSTAIRS last night
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable FORM OF STORES last night
Eval: I I S D S S S I S S

This utterance has six substitutions, three insertions, and one deletion:

Word Error Rate = 100
6+3+1

13
= 76.9%



26.5 • ASR EVALUATION: WORD ERROR RATE 563

The standard method for computing word error rates is a free script called sclite,
available from the National Institute of Standards and Technologies (NIST) (NIST,
2005). Sclite is given a series of reference (hand-transcribed, gold-standard) sen-
tences and a matching set of hypothesis sentences. Besides performing alignments,
and computing word error rate, sclite performs a number of other useful tasks. For
example, for error analysis it gives useful information such as confusion matrices
showing which words are often misrecognized for others, and summarizes statistics
of words that are often inserted or deleted. sclite also gives error rates by speaker
(if sentences are labeled for speaker ID), as well as useful statistics like the sentence
error rate, the percentage of sentences with at least one word error.Sentence error

rate

Statistical significance for ASR: MAPSSWE or MacNemar

As with other language processing algorithms, we need to know whether a particular
improvement in word error rate is significant or not.

The standard statistical tests for determining if two word error rates are different
is the Matched-Pair Sentence Segment Word Error (MAPSSWE) test, introduced in
Gillick and Cox (1989).

The MAPSSWE test is a parametric test that looks at the difference between
the number of word errors the two systems produce, averaged across a number of
segments. The segments may be quite short or as long as an entire utterance; in
general, we want to have the largest number of (short) segments in order to justify
the normality assumption and to maximize power. The test requires that the errors
in one segment be statistically independent of the errors in another segment. Since
ASR systems tend to use trigram LMs, we can approximate this requirement by
defining a segment as a region bounded on both sides by words that both recognizers
get correct (or by turn/utterance boundaries). Here’s an example from NIST (2007)
with four regions:

I II III IV
REF: |it was|the best|of|times it|was the worst|of times| |it was

| | | | | | | |
SYS A:|ITS |the best|of|times it|IS the worst |of times|OR|it was

| | | | | | | |
SYS B:|it was|the best| |times it|WON the TEST |of times| |it was

In region I, system A has two errors (a deletion and an insertion) and system B
has zero; in region III, system A has one error (a substitution) and system B has two.
Let’s define a sequence of variables Z representing the difference between the errors
in the two systems as follows:

Ni
A the number of errors made on segment i by system A

Ni
B the number of errors made on segment i by system B

Z Ni
A−Ni

B, i = 1,2, · · · ,n where n is the number of segments

In the example above, the sequence of Z values is {2,−1,−1,1}. Intuitively, if
the two systems are identical, we would expect the average difference, that is, the
average of the Z values, to be zero. If we call the true average of the differences
muz, we would thus like to know whether muz = 0. Following closely the original
proposal and notation of Gillick and Cox (1989), we can estimate the true average
from our limited sample as µ̂z =

∑n
i=1 Zi/n. The estimate of the variance of the Zi’s

is

σ
2
z =

1
n−1

n∑

i=1

(Zi−µz)
2 (26.21)
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Let

W =
µ̂z

σz/
√

n
(26.22)

For a large enough n (> 50), W will approximately have a normal distribution with
unit variance. The null hypothesis is H0 : µz = 0, and it can thus be rejected if
2 ∗P(Z ≥ |w|) ≤ 0.05 (two-tailed) or P(Z ≥ |w|) ≤ 0.05 (one-tailed), where Z is
standard normal and w is the realized value W ; these probabilities can be looked up
in the standard tables of the normal distribution.

Earlier work sometimes used McNemar’s test for significance, but McNemar’sMcNemar’s test

is only applicable when the errors made by the system are independent, which is not
true in continuous speech recognition, where errors made on a word are extremely
dependent on errors made on neighboring words.

Could we improve on word error rate as a metric? It would be nice, for exam-
ple, to have something that didn’t give equal weight to every word, perhaps valuing
content words like Tuesday more than function words like a or of. While researchers
generally agree that this would be a good idea, it has proved difficult to agree on
a metric that works in every application of ASR. For dialogue systems, however,
where the desired semantic output is more clear, a metric called slot error rate or
concept error rate has proved extremely useful; it is discussed in Chapter 24 on page
519.

26.6 TTS

The goal of text-to-speech (TTS) systems is to map from strings of letters to wave-
forms, a technology that’s important for a variety of applications from dialogue sys-
tems to games to education.

Like ASR systems, TTS systems are generally based on the encoder-decoder
architecture, either using LSTMs or Transformers. There is a general difference in
training. The default condition for ASR systems is to be speaker-independent: they
are trained on large corpora with thousands of hours of speech from many speakers
because they must generalize well to an unseen test speaker. By contrast, in TTS, it’s
less crucial to use multiple voices, and so basic TTS systems are speaker-dependent:
trained to have a consistent voice, on much less data, but all from one speaker. For
example, one commonly used public domain dataset, the LJ speech corpus, consists
of 24 hours of one speaker, Linda Johnson, reading audio books in the LibriVox
project (Ito and Johnson, 2017), much smaller than standard ASR corpora which are
hundreds or thousands of hours.2

We generally break up the TTS task into two components. The first component
is an encoder-decoder model for spectrogram prediction: it maps from strings of
letters to mel spectrographs: sequences of mel spectral values over time. Thus we

2 There is also recent TTS research on the task of multi-speaker TTS, in which a system is trained on
speech from many speakers, and can switch between different voices.
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might map from this string:

It’s time for lunch!

to the following mel spectrogram:

The second component maps from mel spectrograms to waveforms. Generating
waveforms from intermediate representations like spectrograms is called vocodingvocoding

and this second component is called a vocoder:vocoder

These standard encoder-decoder algorithms for TTS are still quite computation-
ally intensive, so a significant focus of modern research is on ways to speed them
up.

26.6.1 TTS Preprocessing: Text normalization
Before either of these two steps, however, TTS systems require text normaliza-
tion preprocessing for handling non-standard words: numbers, monetary amounts,non-standard

words
dates, and other concepts that are verbalized differently than they are spelled. A TTS
system seeing a number like 151 needs to know to verbalize it as one hundred fifty
one if it occurs as $151 but as one fifty one if it occurs in the context 151 Chapulte-
pec Ave.. The number 1750 can be spoken in at least four different ways, depending
on the context:

seventeen fifty: (in “The European economy in 1750”)
one seven five zero: (in “The password is 1750”)
seventeen hundred and fifty: (in “1750 dollars”)
one thousand, seven hundred, and fifty: (in “1750 dollars”)

Often the verbalization of a non-standard word depends on its meaning (what
Taylor (2009) calls its semiotic class). Fig. 26.13 lays out some English non-
standard word types.

Many classes have preferred realizations. A year is generally read as paired
digits (e.g., seventeen fifty for 1750). $3.2 billion must be read out with the
word dollars at the end, as three point two billion dollars, Some abbre-
viations like N.Y. are expanded (to New York), while other acronyms like GPU are
pronounced as letter sequences. In languages with grammatical gender, normal-
ization may depend on morphological properties. In French, the phrase 1 mangue
(‘one mangue’) is normalized to une mangue, but 1 ananas (‘one pineapple’) is
normalized to un ananas. In German, Heinrich IV (‘Henry IV’) can be normalized
to Heinrich der Vierte, Heinrich des Vierten, Heinrich dem Vierten, or
Heinrich den Vierten depending on the grammatical case of the noun (Demberg,
2006).
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semiotic class examples verbalization
abbreviations gov’t, N.Y., mph government
acronyms read as letters GPU, D.C., PC, UN, IBM G P U
cardinal numbers 12, 45, 1/2, 0.6 twelve
ordinal numbers May 7, 3rd, Bill Gates III seventh
numbers read as digits Room 101 one oh one
times 3.20, 11:45 eleven forty five
dates 28/02 (or in US, 2/28) February twenty eighth
years 1999, 80s, 1900s, 2045 nineteen ninety nine
money $3.45, e250, $200K three dollars forty five
money in tr/m/billions $3.45 billion three point four five billion dollars
percentage 75% 3.4% seventy five percent

Figure 26.13 Some types of non-standard words in text normalization; see Sproat et al.
(2001) and (van Esch and Sproat, 2018) for many more.

Modern end-to-end TTS systems can learn to do some normalization themselves,
but TTS systems are only trained on a limited amount of data (like the 220,000 words
we mentioned above for the LJ corpus (Ito and Johnson, 2017)), and so a separate
normalization step is important.

Normalization can be done by rule or by an encoder-decoder model. Rule-based
normalization is done in two stages: tokenization and verbalization. In the tokeniza-
tion stage we hand-write write rules to detect non-standard words. These can be
regular expressions, like the following for detecting years:

/(1[89][0-9][0-9])|(20[0-9][0-9]/

A second pass of rules express how to verbalize each semiotic class. Larger TTS
systems instead use more complex rule-systems, like the Kestral system of (Ebden
and Sproat, 2015), which first classifies and parses each input into a normal form
and then produces text using a verbalization grammar. Rules have the advantage
that they don’t require training data, and they can be designed for high precision, but
can be brittle, and require expert rule-writers so are hard to maintain.

The alternative model is to use encoder-decoder models, which have been shown
to work better than rules for such transduction tasks, but do require expert-labeled
training sets in which non-standard words have been replaced with the appropriate
verbalization; such training sets for some languages are available (Sproat and Gor-
man 2018, Zhang et al. 2019).

In the simplest encoder-decoder setting, we simply treat the problem like ma-
chine translation, training a system to map from:

They live at 224 Mission St.

to

They live at two twenty four Mission Street

While encoder-decoder algorithms are highly accurate, they occasionally pro-
duce errors that are egregious; for example normalizing 45 minutes as forty five mil-
limeters. To address this, more complex systems use mechanisms like lightweight
covering grammars, which enumerate a large set of possible verbalizations but
don’t try to disambiguate, to constrain the decoding to avoid such outputs (Zhang
et al., 2019).

26.6.2 TTS: Spectrogram prediction
The exact same architecture we described for ASR—the encoder-decoder with attention–
can be used for the first component of TTS. Here we’ll give a simplified overview of
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the Tacotron2 architecture (Shen et al., 2018), which extends the earlier TacotronTacotron2

(Wang et al., 2017) architecture and the Wavenet vocoder (van den Oord et al.,Wavenet

2016). Fig. 26.14 sketches out the entire architecture.
The encoder’s job is to take a sequence of letters and produce a hidden repre-

sentation representing the letter sequence, which is then used by the attention mech-
anism in the decoder. The Tacotron2 encoder first maps every input grapheme to
a 512-dimensional character embedding. These are then passed through a stack
of 3 convolutional layers, each containing 512 filters with shape 5× 1, i.e. each
filter spanning 5 characters, to model the larger letter context. The output of the
final convolutional layer is passed through a biLSTM to produce the final encoding.
It’s common to use a slightly higher quality (but slower) version of attention called
location-based attention, in which the computation of the α values (Eq. 11.17 inlocation-based

attention
Chapter 11) makes use of the α values from the prior time-state.

In the decoder, the predicted mel spectrum from the prior time slot is passed
through a small pre-net as a bottleneck. This prior output is then concatenated with
the encoder’s attention vector context and passed through 2 LSTM layers. The out-
put of this LSTM is used in two ways. First, it is passed through a linear layer, and
some output processing, to autoregressively predict one 80-dimensional log-mel fil-
terbank vector frame (50 ms, with a 12.5 ms stride) at each step. Second, it is passed
through another linear layer to a sigmoid to make a “stop token prediction” decision
about whether to stop producing output.

While linear spectrograms discard phase information (and are
therefore lossy), algorithms such as Griffin-Lim [14] are capable of
estimating this discarded information, which enables time-domain
conversion via the inverse short-time Fourier transform. Mel spectro-
grams discard even more information, presenting a challenging in-
verse problem. However, in comparison to the linguistic and acoustic
features used in WaveNet, the mel spectrogram is a simpler, lower-
level acoustic representation of audio signals. It should therefore
be straightforward for a similar WaveNet model conditioned on mel
spectrograms to generate audio, essentially as a neural vocoder. In-
deed, we will show that it is possible to generate high quality audio
from mel spectrograms using a modified WaveNet architecture.

2.2. Spectrogram Prediction Network

As in Tacotron, mel spectrograms are computed through a short-
time Fourier transform (STFT) using a 50 ms frame size, 12.5 ms
frame hop, and a Hann window function. We experimented with a
5 ms frame hop to match the frequency of the conditioning inputs
in the original WaveNet, but the corresponding increase in temporal
resolution resulted in significantly more pronunciation issues.

We transform the STFT magnitude to the mel scale using an 80
channel mel filterbank spanning 125 Hz to 7.6 kHz, followed by log
dynamic range compression. Prior to log compression, the filterbank
output magnitudes are clipped to a minimum value of 0.01 in order
to limit dynamic range in the logarithmic domain.

The network is composed of an encoder and a decoder with atten-
tion. The encoder converts a character sequence into a hidden feature
representation which the decoder consumes to predict a spectrogram.
Input characters are represented using a learned 512-dimensional
character embedding, which are passed through a stack of 3 convolu-
tional layers each containing 512 filters with shape 5 ⇥ 1, i.e., where
each filter spans 5 characters, followed by batch normalization [18]
and ReLU activations. As in Tacotron, these convolutional layers
model longer-term context (e.g., N -grams) in the input character
sequence. The output of the final convolutional layer is passed into a
single bi-directional [19] LSTM [20] layer containing 512 units (256
in each direction) to generate the encoded features.

The encoder output is consumed by an attention network which
summarizes the full encoded sequence as a fixed-length context vector
for each decoder output step. We use the location-sensitive attention
from [21], which extends the additive attention mechanism [22] to
use cumulative attention weights from previous decoder time steps
as an additional feature. This encourages the model to move forward
consistently through the input, mitigating potential failure modes
where some subsequences are repeated or ignored by the decoder.
Attention probabilities are computed after projecting inputs and lo-
cation features to 128-dimensional hidden representations. Location
features are computed using 32 1-D convolution filters of length 31.

The decoder is an autoregressive recurrent neural network which
predicts a mel spectrogram from the encoded input sequence one
frame at a time. The prediction from the previous time step is first
passed through a small pre-net containing 2 fully connected layers
of 256 hidden ReLU units. We found that the pre-net acting as an
information bottleneck was essential for learning attention. The pre-
net output and attention context vector are concatenated and passed
through a stack of 2 uni-directional LSTM layers with 1024 units.
The concatenation of the LSTM output and the attention context
vector is projected through a linear transform to predict the target
spectrogram frame. Finally, the predicted mel spectrogram is passed
through a 5-layer convolutional post-net which predicts a residual
to add to the prediction to improve the overall reconstruction. Each
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Fig. 1. Block diagram of the Tacotron 2 system architecture.

post-net layer is comprised of 512 filters with shape 5 ⇥ 1 with batch
normalization, followed by tanh activations on all but the final layer.

We minimize the summed mean squared error (MSE) from before
and after the post-net to aid convergence. We also experimented
with a log-likelihood loss by modeling the output distribution with
a Mixture Density Network [23, 24] to avoid assuming a constant
variance over time, but found that these were more difficult to train
and they did not lead to better sounding samples.

In parallel to spectrogram frame prediction, the concatenation of
decoder LSTM output and the attention context is projected down
to a scalar and passed through a sigmoid activation to predict the
probability that the output sequence has completed. This “stop token”
prediction is used during inference to allow the model to dynamically
determine when to terminate generation instead of always generating
for a fixed duration. Specifically, generation completes at the first
frame for which this probability exceeds a threshold of 0.5.

The convolutional layers in the network are regularized using
dropout [25] with probability 0.5, and LSTM layers are regularized
using zoneout [26] with probability 0.1. In order to introduce output
variation at inference time, dropout with probability 0.5 is applied
only to layers in the pre-net of the autoregressive decoder.

In contrast to the original Tacotron, our model uses simpler build-
ing blocks, using vanilla LSTM and convolutional layers in the en-
coder and decoder instead of “CBHG” stacks and GRU recurrent
layers. We do not use a “reduction factor”, i.e., each decoder step
corresponds to a single spectrogram frame.

2.3. WaveNet Vocoder

We use a modified version of the WaveNet architecture from [8] to
invert the mel spectrogram feature representation into time-domain
waveform samples. As in the original architecture, there are 30
dilated convolution layers, grouped into 3 dilation cycles, i.e., the
dilation rate of layer k (k = 0 . . . 29) is 2k (mod 10). To work with
the 12.5 ms frame hop of the spectrogram frames, only 2 upsampling
layers are used in the conditioning stack instead of 3 layers.

Instead of predicting discretized buckets with a softmax layer,
we follow PixelCNN++ [27] and Parallel WaveNet [28] and use a 10-
component mixture of logistic distributions (MoL) to generate 16-bit
samples at 24 kHz. To compute the logistic mixture distribution, the
WaveNet stack output is passed through a ReLU activation followed

Encoder

Decoder

Vocoder

Figure 26.14 The Tacotron2 architecture: An encoder-decoder maps from graphemes to
mel spectrograms, followed by a vocoder that maps to wavefiles. Figure modified from Shen
et al. (2018).

The system is trained on gold log-mel filterbank features, using teacher forcing,
that is the decoder is fed the correct log-model spectral feature at each decoder step
instead of the predicted decoder output from the prior step.

26.6.3 TTS: Vocoding
The vocoder for Tacotron 2 is an adaptation of the WaveNet vocoder (van den OordWaveNet

et al., 2016). Here we’ll give a somewhat simplified description of vocoding using
WaveNet.

Recall that the goal of the vocoding process here will be to invert a log mel spec-
trum representations back into a time-domain waveform representation. WaveNet is
an autoregressive network, like the language models we introduced in Chapter 9. It
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takes spectrograms as input and produces audio output represented as sequences of
8-bit mu-law (page 536). The probability of a waveform , a sequence of 8-bit mu-
law values Y = y1, ...,yt , given an intermediate input mel spectrogram h is computed
as:

p(Y ) =
t∏

t=1

P(yt |y1, ...,yt−1,h1, ...,ht) (26.23)

This probability distribution is modeled by a stack of special convolution layers,
which include a specific convolutional structure called dilated convolutions, and a
specific non-linearity function.

A dilated convolution is a subtype of causal convolutional layer. Causal or
masked convolutions look only at the past input, rather than the future; the pre-
diction of yt+1 can only depend on y1, ...,yt , useful for autoregressive left-to-right
processing. In dilated convolutions, at each successive layer we apply the convolu-dilated

convolutions
tional filter over a span longer than its length by skipping input values. Thus at time
t with a dilation value of 1, a convolutional filter of length 2 would see input values
xt and xt−1. But a filter with a distillation value of 2 would skip an input, so would
see input values xt and xt−1. Fig. 26.15 shows the computation of the output at time
t with 4 dilated convolution layers with dilation values, 1, 2, 4, and 8.

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)

ln (1 + µ)
,

3

Figure 26.15 Dilated convolutions, showing one dilation cycle size of 4, i.e., dilation values
of 1, 2, 4, 8. Figure from van den Oord et al. (2016).

The Tacotron 2 synthesizer uses 12 convolutional layers in two cycles with a
dilation cycle size of 6, meaning that the first 6 layers have dilations of 1, 2, 4, 8, 16,
and 32. and the next 6 layers again have dilations of 1, 2, 4, 8, 16, and 32. Dilated
convolutions allow the vocoder to grow the receptive field exponentially with depth.

WaveNet predicts mu-law audio samples. Recall from page 536 that this is a
standard compression for audio in which the values at each sampling timestep are
compressed into 8-bits. This means that we can predict the value of each sample
with a simple 256-way categorical classifier. The output of the dilated convolutions
is thus passed through a softmax which makes this 256-way decision.

The spectrogram prediction encoder-decoder and the WaveNet vocoder are trained
separately. After the spectrogram predictor is trained, the spectrogram prediction
network is run in teacher-forcing mode, with each predicted spectral frame condi-
tioned on the encoded text input and the previous frame from the ground truth spec-
trogram. This sequence of ground truth-aligned spectral features and gold audio
output is then used to train the vocoder.

This has been only a high-level sketch of the TTS process. There are numer-
ous important details that the reader interested in going further with TTS may want
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to look into. For example WaveNet uses a special kind of a gated activation func-
tion as its non-linearity, and contains residual and skip connections. In practice,
predicting 8-bit audio values doesn’t as work as well as 16-bit, for which a simple
softmax is insufficient, so decoders use fancier ways as the last step of predicting
audio sample values, like mixtures of distributions. Finally, the WaveNet vocoder
as we have described it would be so slow as to be useless; many different kinds of
efficiency improvements are necessary in practice, for example by finding ways to
do non-autoregressive generation, avoiding the latency of having to wait to generate
each frame until the prior frame has been generated, and instead making predictions
in parallel. We encourage the interested reader to consult the original papers and
various version of the code.

26.6.4 TTS Evaluation
Speech synthesis systems are evaluated by human listeners. (The development of a
good automatic metric for synthesis evaluation, one that would eliminate the need
for expensive and time-consuming human listening experiments, remains an open
and exciting research topic.)

We evaluate the quality of synthesized utterances by playing a sentence to lis-
teners and ask them to give a mean opinion score (MOS), a rating of how goodMOS

the synthesized utterances are, usually on a scale from 1–5. We can then compare
systems by comparing their MOS scores on the same sentences (using, e.g., paired
t-tests to test for significant differences).

If we are comparing exactly two systems (perhaps to see if a particular change
actually improved the system), we can use AB tests. In AB tests, we play the sameAB tests

sentence synthesized by two different systems (an A and a B system). The human
listeners choose which of the two utterances they like better. We do this for say
50 sentences (presented in random order) and compare the number of sentences
preferred for each system.

26.7 Other Speech Tasks

While we have focused on speech recognition and TTS in this chapter, there are a
wide variety of speech-related tasks.

The task of wake word detection is to detect a word or short phrase, usually inwake word

order to wake up a voice-enable assistant like Alexa, Siri, or the Google Assistant.
The goal with wake words is build the detection into small devices at the computing
edge, to maintain privacy by transmitting the least amount of user speech to a cloud-
based server. Thus wake word detectors need to be fast, small footprint software that
can fit into embedded devices. Wake word detectors usually use the same frontend
feature extraction we saw for ASR, often followed by a whole-word classifier.

Speaker diarization is the task of determining ‘who spoke when’ in a longspeaker
diarization

multi-speaker audio recording, marking the start and end of each speaker’s turns in
the interaction. This can be useful for transcribing meetings, classroom speech, or
medical interactions. Often diarization systems use voice activity detection (VAD) to
find segments of continuous speech, extract speaker embedding vectors, and cluster
the vectors to group together segments likely from the same speaker. More recent
work is investigating end-to-end algorithms to map directly from input speech to a
sequence of speaker labels for each frame.
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Speaker recognition, is the task of identifying a speaker. We generally distin-speaker
recognition

guish the subtasks of speaker verification, where we make a binary decision (is
this speaker X or not?), such as for security when accessing personal information
over the telephone, and speaker identification, where we make a one of N decision
trying to match a speaker’s voice against a database of many speakers . These tasks
are related to language identification, in which we are given a wavefile and mustlanguage

identification
identify which language is being spoken; this is useful for example for automatically
directing callers to human operators that speak appropriate languages.

26.8 Summary

This chapter introduced the fundamental algorithms of automatic speech recognition
(ASR) and text-to-speech (TTS).

• The task of speech recognition (or speech-to-text) is to map acoustic wave-
forms to sequences of graphemes.

• The input to a speech recognizer is a series of acoustic waves. that are sam-
pled, quantized, and converted to a spectral representation like the log mel
spectrum.

• Two common paradigms for speech recognition are the encoder-decoder with
attention model, and models based on the CTC loss function. Attention-
based models have higher accuracies, but models based on CTC more easily
adapt to streaming: outputting graphemes online instead of waiting until the
acoustic input is complete.

• ASR is evaluated using the Word Error Rate; the edit distance between the
hypothesis and the gold transcription.

• TTS systems are also based on the encoder-decoder architecture. The en-
coder maps letters to an encoding, which is consumed by the decoder which
generates mel spectrogram output. A neural vocoder then reads the spectro-
gram and generates waveforms.

• TTS systems require a first pass of text normalization to deal with numbers
and abbreviations and other non-standard words.

• TTS is evaluated by playing a sentence to human listeners and having them
give a mean opinion score (MOS) or by doing AB tests.

Bibliographical and Historical Notes
ASR A number of speech recognition systems were developed by the late 1940s
and early 1950s. An early Bell Labs system could recognize any of the 10 digits
from a single speaker (Davis et al., 1952). This system had 10 speaker-dependent
stored patterns, one for each digit, each of which roughly represented the first two
vowel formants in the digit. They achieved 97%–99% accuracy by choosing the pat-
tern that had the highest relative correlation coefficient with the input. Fry (1959)
and Denes (1959) built a phoneme recognizer at University College, London, that
recognized four vowels and nine consonants based on a similar pattern-recognition
principle. Fry and Denes’s system was the first to use phoneme transition probabili-
ties to constrain the recognizer.
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The late 1960s and early 1970s produced a number of important paradigm shifts.
First were a number of feature-extraction algorithms, including the efficient fast
Fourier transform (FFT) (Cooley and Tukey, 1965), the application of cepstral pro-
cessing to speech (Oppenheim et al., 1968), and the development of LPC for speech
coding (Atal and Hanauer, 1971). Second were a number of ways of handling warp-
ing; stretching or shrinking the input signal to handle differences in speaking ratewarping

and segment length when matching against stored patterns. The natural algorithm for
solving this problem was dynamic programming, and, as we saw in Appendix A, the
algorithm was reinvented multiple times to address this problem. The first applica-
tion to speech processing was by Vintsyuk (1968), although his result was not picked
up by other researchers, and was reinvented by Velichko and Zagoruyko (1970) and
Sakoe and Chiba (1971) (and (1984)). Soon afterward, Itakura (1975) combined
this dynamic programming idea with the LPC coefficients that had previously been
used only for speech coding. The resulting system extracted LPC features from in-
coming words and used dynamic programming to match them against stored LPC
templates. The non-probabilistic use of dynamic programming to match a template
against incoming speech is called dynamic time warping.dynamic time

warping
The third innovation of this period was the rise of the HMM. Hidden Markov

models seem to have been applied to speech independently at two laboratories around
1972. One application arose from the work of statisticians, in particular Baum and
colleagues at the Institute for Defense Analyses in Princeton who applied HMMs
to various prediction problems (Baum and Petrie 1966, Baum and Eagon 1967).
James Baker learned of this work and applied the algorithm to speech processing
(Baker, 1975a) during his graduate work at CMU. Independently, Frederick Jelinek
and collaborators (drawing from their research in information-theoretical models
influenced by the work of Shannon (1948)) applied HMMs to speech at the IBM
Thomas J. Watson Research Center (Jelinek et al., 1975). One early difference was
the decoding algorithm; Baker’s DRAGON system used Viterbi (dynamic program-
ming) decoding, while the IBM system applied Jelinek’s stack decoding algorithm
(Jelinek, 1969). Baker then joined the IBM group for a brief time before founding
the speech-recognition company Dragon Systems.

The use of the HMM, with Gaussian Mixture Models (GMMs) as the phonetic
component, slowly spread through the speech community, becoming the dominant
paradigm by the 1990s. One cause was encouragement by ARPA, the Advanced
Research Projects Agency of the U.S. Department of Defense. ARPA started a
five-year program in 1971 to build 1000-word, constrained grammar, few speaker
speech understanding (Klatt, 1977), and funded four competing systems of which
Carnegie-Mellon University’s Harpy system (Lowerre, 1968), which used a simpli-
fied version of Baker’s HMM-based DRAGON system was the best of the tested sys-
tems. ARPA (and then DARPA) funded a number of new speech research programs,
beginning with 1000-word speaker-independent read-speech tasks like “Resource
Management” (Price et al., 1988), recognition of sentences read from the Wall Street
Journal (WSJ), Broadcast News domain (LDC 1998, Graff 1997) (transcription of
actual news broadcasts, including quite difficult passages such as on-the-street inter-
views) and the Switchboard, CallHome, CallFriend, and Fisher domains (Godfrey
et al. 1992, Cieri et al. 2004) (natural telephone conversations between friends or
strangers). Each of the ARPA tasks involved an approximately annual bakeoff atbakeoff

which systems were evaluated against each other. The ARPA competitions resulted
in wide-scale borrowing of techniques among labs since it was easy to see which
ideas reduced errors the previous year, and the competitions were probably an im-
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portant factor in the eventual spread of the HMM paradigm.
By around 1990 neural alternatives to the HMM/GMM architecture for ASR

arose, based on a number of earlier experiments with neural networks for phoneme
recognition and other speech tasks. Architectures included the time-delay neural
network (TDNN)—the first use of convolutional networks for speech— (Waibel
et al. 1989, Lang et al. 1990), RNNs (Robinson and Fallside, 1991), and the hybridhybrid

HMM/MLP architecture in which a feedforward neural network is trained as a pho-
netic classifier whose outputs are used as probability estimates for an HMM-based
architecture (Morgan and Bourlard 1990, Bourlard and Morgan 1994, Morgan and
Bourlard 1995).

While the hybrid systems showed performance close to the standard HMM/GMM
models, the problem was speed: large hybrid models were too slow to train on the
CPUs of that era. For example, the largest hybrid system, a feedforward network,
was limited to a hidden layer of 4000 units, producing probabilities over only a few
dozen monophones. Yet training this model still required the research group to de-
sign special hardware boards to do vector processing (Morgan and Bourlard, 1995).
A later analytic study showed the performance of such simple feedforward MLPs
for ASR increases sharply with more than 1 hidden layer, even controlling for the
total number of parameters (Maas et al., 2017). But the computational resources of
the time were insufficient for more layers.

Over the next two decades a combination of Moore’s law and the rise of GPUs
allowed deep neural networks with many layers. Performance was getting close to
traditional systems on smaller tasks like TIMIT phone recognition by 2009 (Mo-
hamed et al., 2009), and by 2012, the performance of hybrid systems had surpassed
traditional HMM/GMM systems (Jaitly et al. 2012, Dahl et al. 2012, inter alia).
Originally it seemed that unsupervised pretraining of the networks using a tech-
nique like deep belief networks was important, but by 2013, it was clear that for
hybrid HMM/GMM feedforward networks, all that mattered was to use a lot of data
and enough layers, although a few other components did improve performance: us-
ing log mel features instead of MFCCs, using dropout, and using rectified linear
units (Deng et al. 2013, Maas et al. 2013, Dahl et al. 2013).

Meanwhile early work had proposed the CTC loss function by 2006 (Graves
et al., 2006), and by 2012 the RNN-Transducer was defined and applied to phone
recognition (Graves 2012, Graves et al. 2013a), and then to end-to-end speech recog-
nition rescoring (Graves and Jaitly, 2014), and then recognition (Maas et al., 2015),
with advances such as specialized beam search (Hannun et al., 2014). (Our de-
scription of CTC in the chapter draws on Hannun (2017), which we encourage the
interested reader to follow).

The encoder-decoder architecture was applied to speech at about the same time
by two different groups, in the Listen Attend and Spell system of Chan et al. (2016)
and the attention-based encoder decoder architecture of Chorowski et al. (2014)
and Bahdanau et al. (2016). By 2018 Transformers were included in this encoder-
decoder architecture. Karita et al. (2019) is a nice comparison of RNNs vs Trans-
formers in encoder-architectures for ASR, TTS, and speech-to-speech translation.

Popular toolkits for speech processing include Kaldi (Povey et al., 2011) andKaldi

ESPnet (Watanabe et al. 2018, Hayashi et al. 2020).ESPnet

TTS As we noted at the beginning of the chapter, speech synthesis is one of the
earliest fields of speech and language processing. The 18th century saw a number
of physical models of the articulation process, including the von Kempelen model
mentioned above, as well as the 1773 vowel model of Kratzenstein in Copenhagen
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using organ pipes.
The early 1950s saw the development of three early paradigms of waveform

synthesis: formant synthesis, articulatory synthesis, and concatenative synthesis.
Modern encoder-decoder systems are distant descendants of formant synthesiz-

ers. Formant synthesizers originally were inspired by attempts to mimic human
speech by generating artificial spectrograms. The Haskins Laboratories Pattern
Playback Machine generated a sound wave by painting spectrogram patterns on a
moving transparent belt and using reflectance to filter the harmonics of a wave-
form (Cooper et al., 1951); other very early formant synthesizers include those of
Lawrence (1953) and Fant (1951). Perhaps the most well-known of the formant
synthesizers were the Klatt formant synthesizer and its successor systems, includ-
ing the MITalk system (Allen et al., 1987) and the Klattalk software used in Digital
Equipment Corporation’s DECtalk (Klatt, 1982). See Klatt (1975) for details.

A second early paradigm, concatenative synthesis, seems to have been first pro-
posed by Harris (1953) at Bell Laboratories; he literally spliced together pieces of
magnetic tape corresponding to phones. Soon afterwards, Peterson et al. (1958) pro-
posed a theoretical model based on diphones, including a database with multiple
copies of each diphone with differing prosody, each labeled with prosodic features
including F0, stress, and duration, and the use of join costs based on F0 and for-
mant distance between neighboring units. But such diphone synthesis models were
not actually implemented until decades later (Dixon and Maxey 1968, Olive 1977).
The 1980s and 1990s saw the invention of unit selection synthesis, based on larger
units of non-uniform length and the use of a target cost, (Sagisaka 1988, Sagisaka
et al. 1992, Hunt and Black 1996, Black and Taylor 1994, Syrdal et al. 2000).

A third paradigm, articulatory synthesizers attempt to synthesize speech by
modeling the physics of the vocal tract as an open tube. Representative models
include Stevens et al. (1953), Flanagan et al. (1975), and Fant (1986). See Klatt
(1975) and Flanagan (1972) for more details.

Most early TTS systems used phonemes as input; development of the text anal-
ysis components of TTS came somewhat later, drawing on NLP. Indeed the first
true text-to-speech system seems to have been the system of Umeda and Teranishi
(Umeda et al. 1968, Teranishi and Umeda 1968, Umeda 1976), which included a
parser that assigned prosodic boundaries, as well as accent and stress.

Exercises
26.1 Analyze each of the errors in the incorrectly recognized transcription of “um

the phone is I left the. . . ” on page 562. For each one, give your best guess as
to whether you think it is caused by a problem in signal processing, pronun-
ciation modeling, lexicon size, language model, or pruning in the decoding
search.
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J.-S., Morin, F., and Gauvain, J.-
L. (2006). Neural probabilistic lan-
guage models. Innovations in Machine
Learning, 137–186. Springer.

Bengtson, E. and Roth, D. (2008). Un-
derstanding the value of features for
coreference resolution. EMNLP.

Bennett, R. and Elfner, E. (2019). The
syntax–prosody interface. Annual Re-
view of Linguistics 5, 151–171.

Berant, J., Chou, A., Frostig, R., and
Liang, P. (2013). Semantic parsing on
freebase from question-answer pairs.
EMNLP.

Berg-Kirkpatrick, T., Burkett, D., and
Klein, D. (2012). An empirical in-
vestigation of statistical significance in
NLP. EMNLP.

Berger, A., Della Pietra, S. A., and
Della Pietra, V. J. (1996). A maxi-
mum entropy approach to natural lan-
guage processing. Computational Lin-
guistics 22(1), 39–71.

Bergsma, S. and Lin, D. (2006). Boot-
strapping path-based pronoun resolu-
tion. COLING/ACL.

Bergsma, S., Lin, D., and Goebel, R.
(2008a). Discriminative learning of
selectional preference from unlabeled
text. EMNLP.

Bergsma, S., Lin, D., and Goebel, R.
(2008b). Distributional identification
of non-referential pronouns. ACL.

Bethard, S. (2013). ClearTK-TimeML:
A minimalist approach to TempEval
2013. SemEval-13.

Bhat, I., Bhat, R. A., Shrivastava, M.,
and Sharma, D. (2017). Joining hands:
Exploiting monolingual treebanks for
parsing of code-mixing data. EACL.

Biber, D., Johansson, S., Leech, G.,
Conrad, S., and Finegan, E. (1999).
Longman Grammar of Spoken and
Written English. Pearson.

Bickel, B. (2003). Referential density
in discourse and syntactic typology.
Language 79(2), 708–736.

Bies, A., Ferguson, M., Katz, K., and
MacIntyre, R. (1995). Bracketing
guidelines for Treebank II style Penn
Treebank Project..

Bikel, D. M., Miller, S., Schwartz, R.,
and Weischedel, R. (1997). Nymble:
A high-performance learning name-
finder. ANLP.

Biran, O. and McKeown, K. (2015).
PDTB discourse parsing as a tagging
task: The two taggers approach. SIG-
DIAL.

Bird, S., Klein, E., and Loper, E.
(2009). Natural Language Processing
with Python. O’Reilly.

Bisani, M. and Ney, H. (2004). Boot-
strap estimates for confidence inter-
vals in ASR performance evaluation.
ICASSP.

Bishop, C. M. (2006). Pattern recogni-
tion and machine learning. Springer.

Bisk, Y., Holtzman, A., Thoma-
son, J., Andreas, J., Bengio, Y.,
Chai, J., Lapata, M., Lazaridou, A.,
May, J., Nisnevich, A., Pinto, N.,
and Turian, J. (2020). Experience
grounds language.. arXiv preprint
arXiv:2004.10151.

Bizer, C., Lehmann, J., Kobilarov, G.,
Auer, S., Becker, C., Cyganiak, R.,
and Hellmann, S. (2009). DBpedia—
A crystallization point for the Web of
Data. Web Semantics: science, ser-
vices and agents on the world wide
web 7(3), 154–165.

Björkelund, A. and Kuhn, J. (2014).
Learning structured perceptrons for
coreference resolution with latent an-
tecedents and non-local features. ACL.

Black, A. W. and Taylor, P. (1994).
CHATR: A generic speech synthesis
system. COLING.

Black, E. (1988). An experiment in
computational discrimination of En-
glish word senses. IBM Journal of Re-
search and Development 32(2), 185–
194.

Black, E., Abney, S. P., Flickinger, D.,
Gdaniec, C., Grishman, R., Harrison,
P., Hindle, D., Ingria, R., Jelinek, F.,
Klavans, J. L., Liberman, M. Y., Mar-
cus, M. P., Roukos, S., Santorini, B.,
and Strzalkowski, T. (1991). A proce-
dure for quantitatively comparing the
syntactic coverage of English gram-
mars. Proceedings DARPA Speech and
Natural Language Workshop.

Blei, D. M., Ng, A. Y., and Jordan, M. I.
(2003). Latent Dirichlet allocation.
JMLR 3(5), 993–1022.

Blodgett, S. L., Barocas, S., Daumé III,
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and Milidiú, R. L. (2012). Latent
structure perceptron with feature in-
duction for unrestricted coreference
resolution. CoNLL.

Ferragina, P. and Scaiella, U. (2011).
Fast and accurate annotation of short
texts with wikipedia pages. IEEE Soft-
ware 29(1), 70–75.

Ferro, L., Gerber, L., Mani, I., Sund-
heim, B., and Wilson, G. (2005).
Tides 2005 standard for the annotation
of temporal expressions. Tech. rep.,
MITRE.

Ferrucci, D. A. (2012). Introduction to
“This is Watson”. IBM Journal of Re-
search and Development 56(3/4), 1:1–
1:15.

Fessler, L. (2017). We tested bots
like Siri and Alexa to see who would
stand up to sexual harassment. Quartz.
Feb 22, 2017. https://qz.com/
911681/.

Field, A. and Tsvetkov, Y. (2019).
Entity-centric contextual affective
analysis. ACL.

Fikes, R. E. and Nilsson, N. J. (1971).
STRIPS: A new approach to the appli-
cation of theorem proving to problem
solving. Artificial Intelligence 2, 189–
208.

Fillmore, C. J. (1966). A proposal
concerning English prepositions. Din-
neen, F. P. (Ed.), 17th annual Round
Table, Vol. 17 of Monograph Series
on Language and Linguistics, 19–34.
Georgetown University Press.

https://qz.com/911681/
https://qz.com/911681/


Bibliography 583

Fillmore, C. J. (1968). The case for
case. Bach, E. W. and Harms, R. T.
(Eds.), Universals in Linguistic The-
ory, 1–88. Holt, Rinehart & Winston.

Fillmore, C. J. (1985). Frames and the
semantics of understanding. Quaderni
di Semantica VI(2), 222–254.

Fillmore, C. J. (2003). Valency and
semantic roles: the concept of deep
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A., Akinfaderin, A., and Bashir, A.
(2020). Participatory research for low-
resourced machine translation: A case
study in african languages. Findings
of EMNLP.

Forchini, P. (2013). Using movie
corpora to explore spoken Ameri-
can English: Evidence from multi-
dimensional analysis. Bamford, J.,
Cavalieri, S., and Diani, G. (Eds.),
Variation and Change in Spoken and
Written Discourse: Perspectives from
corpus linguistics, 123–136. Ben-
jamins.

Fox, B. A. (1993). Discourse Structure
and Anaphora: Written and Conversa-
tional English. Cambridge.

Francis, W. N. and Kučera, H. (1982).
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erva, J., Ojala, S., Missilä, A., Man-
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adversarial evaluation, 518
AED, 555
affective, 393
affix, 21
affricate sound, 530
agent, as thematic role, 374
agglomerative clustering,

370
agglutinative

language, 207
AIFF file, 536
AISHELL-1, 551
ALGOL, 257
algorithm

byte-pair encoding, 20
CKY, 261
Kneser-Ney discounting,

45
Lesk, 367
minimum edit distance,

25
naive Bayes classifier, 56
pointwise mutual

information, 109
semantic role labeling,

381
Simplified Lesk, 367
TextTiling, 456
unsupervised word sense

disambiguation, 369
Viterbi, 159

alignment, 22, 558
in ASR, 562
minimum cost, 24
of transcript, 545
string, 22
via minimum edit

distance, 24
all-words task in WSD, 363
Allen relations, 349
allocational harm, 120
alveolar sound, 529
ambiguity

amount of part-of-speech
in Brown corpus,
152

attachment, 260
coordination, 260
in meaning

representations, 306

of referring expressions,
417

part-of-speech, 151
resolution of tag, 152
word sense, 363

American Structuralism,
256

amplitude
of a signal, 534
RMS, 537

anaphor, 416
anaphora, 416
anaphoricity detector, 425
anchor texts, 478, 487
anchors in regular

expressions, 5, 26
antecedent, 416
antonym, 358
AP, 240
Apple AIFF, 536
approximant sound, 530
approximate

randomization, 70
Arabic, 526

Egyptian, 544
Aramaic, 526
ARC, 489
arc eager, 294
arc standard, 287
argumentation mining, 458
argumentation schemes,

459
argumentative relations,

458
argumentative zoning, 460
Aristotle, 148, 322
arity, 319
ARPA, 571
ARPAbet, 546
article (part-of-speech), 150
articulatory phonetics, 527,

527
articulatory synthesis, 573
aspect, 322
ASR, 548

confidence, 515
association, 98
ATIS, 231

corpus, 234, 237
ATN, 391
ATRANS, 389
attachment ambiguity, 260
attention mechanism, 213
Attribution (as coherence

relation), 445
augmentative

communication, 30
authorship attribution, 55
autoregressive generation,

175, 181
Auxiliary, 151

B3, 434
Babbage, C., 549

BabelNet, 368
backoff

in smoothing, 43
backprop, 139
Backpropagation Through

Time, 178
backtrace

in minimum edit
distance, 26

Backtranslation, 221
Backus-Naur Form, 233
backward chaining, 317
backward composition, 253
backward-looking center,

452
bag of words, 57, 58

in IR, 465
bag-of-words, 57
bakeoff, 571

speech recognition
competition, 571

barge-in, 520
baseline

most frequent sense, 364
take the first sense, 364

basic emotions, 394
batch training, 87
Bayes’ rule, 57

dropping denominator,
58, 158

Bayesian inference, 57
BDI, 524
beam search, 215, 295
beam width, 215, 295
bear pitch accent, 532
Berkeley Restaurant

Project, 33
Bernoulli naive Bayes, 74
BERT

for affect, 410
best-worst scaling, 398
bias amplification, 121
bias term, 78, 128
bidirectional RNN, 185
bigram, 31
bilabial, 529
binary branching, 249
binary NB, 62
binary tree, 249
BIO, 154
BIO tagging

for NER, 154
BIOES, 154
bitext, 219
bits for measuring entropy,

49
blank in CTC, 558
BLEU, 222
Bloom filters, 48
BM25, 466, 468
BNF (Backus-Naur Form),

233
bootstrap, 72
bootstrap algorithm, 72

607
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bootstrap test, 70
bootstrapping, 70

in IE, 339
bound pronoun, 418
boundary tones, 534
BPE, 18
BPE, 20
bracketed notation, 234
bridging inference, 420
broadcast news

speech recognition of,
571

Brown corpus, 11
original tagging of, 170

byte-pair encoding, 18

CALLHOME, 550
Candide, 228
canonical form, 307
Cantonese, 207
capture group, 10
cardinal number, 239
cascade, 21

regular expression in
Eliza, 10

case
sensitivity in regular

expression search, 3
case folding, 20
case frame, 375, 390
CAT, 203
cataphora, 418
categorial grammar, 250,

250
CD (conceptual

dependency), 389
CELEX, 544
Centering Theory, 443, 451
centroid, 111
cepstrum

history, 571
CFG, see context-free

grammar
chain rule, 93, 139
channels in stored

waveforms, 536
chart parsing, 261
chatbots, 2, 496
CHiME, 550
Chinese

as verb-framed language,
207

characters, 526
words for brother, 206

Chirpy Cardinal, 503
Chomsky normal form, 249
Chomsky-adjunction, 250
chunking, 270, 270
CIRCUS, 353
citation form, 97
Citizen Kane, 442
CKY algorithm, 259
claims, 458
clarification questions, 517
class-based n-gram, 53
clause, 238
clefts, 421
clitic, 16

origin of term, 148
closed class, 149
closed vocabulary, 40
closure, stop, 529
cluster, 416
clustering

in word sense
disambiguation, 372

CNF, see Chomsky normal
form

coarse senses, 372
cochlea, 542
Cocke-Kasami-Younger

algorithm, see CKY
coda, syllable, 531
code switching, 13
coherence, 442

entity-based, 451
relations, 444

cohesion
lexical, 443, 456

cold languages, 208
collection in IR, 465
collocation, 366
combinatory categorial

grammar, 250
commissive speech act, 494
common ground, 494, 524
Common nouns, 149
complement, 242, 242
complementizers, 150
completeness in FOL, 318
componential analysis, 389
compression, 535
Computational Grammar

Coder (CGC), 170
computational semantics,

305
concatenation, 26
concept error rate, 519
conceptual dependency, 389
concordance, semantic, 363
concrete word, 397
conditional random field,

162
confidence, 226

ASR, 515
in relation extraction, 340

confidence values, 339
configuration, 285
confusion matrix, 65
conjoined phrase, 243
Conjunctions, 150
conjunctions, 243
connectionist, 147
connotation frame, 411
connotation frames, 392
connotations, 99, 394
consonant, 528
constants in FOL, 312
constative speech act, 494
constituency, 232

evidence for, 232
constituent, 232

book titles which are not,
231

Constraint Grammar, 303
Construction Grammar, 257

content planning, 515
context embedding, 117
context-free grammar, 231,

232, 236, 255
Chomsky normal form,

249
invention of, 257
non-terminal symbol,

233
productions, 233
rules, 233
terminal symbol, 233
weak and strong

equivalence, 249
continuation rise, 534
conversation, 492
conversation analysis, 523
conversational agents, 492
conversational analysis, 495
conversational implicature,

496
conversational speech, 550
convex, 84
coordinate noun phrase,

243
coordination ambiguity, 260
copula, 151
CORAAL, 550
corefer, 415
coreference chain, 416
coreference resolution, 416

gender agreement, 422
Hobbs tree search

algorithm, 438
number agreement, 421
person agreement, 422
recency preferences, 422
selectional restrictions,

423
syntactic (“binding”)

constraints, 422
verb semantics, 423

coronal sound, 529
corpora, 11
corpus, 11

ATIS, 234
Broadcast news, 571
Brown, 11, 170
CASS phonetic of

Mandarin, 545
fisher, 571
Kiel of German, 545
LOB, 170
regular expression

searching inside, 3
Switchboard, 11, 500,

535, 536, 550
TimeBank, 349
TIMIT, 545
Wall Street Journal, 571

correction act detection,
512

cosine
as a similarity metric,

105
cost function, 81
count nouns, 149
counters, 26

counts
treating low as zero, 165

CRF, 162
compared to HMM, 162
inference, 166
Viterbi inference, 166

CRFs
learning, 167

cross-brackets, 270
cross-entropy, 51
cross-entropy loss, 82, 137
cross-validation, 68

10-fold, 68
crowdsourcing, 398
CTC, 557
currying, 315
cycles in a wave, 534
cycles per second, 534

datasheet, 14
date

fully qualified, 347
normalization, 507

dative alternation, 376
DBpedia, 482
debiasing, 122
decision boundary, 79, 131
decision tree

use in WSD, 372
declarative sentence

structure, 237
decoding, 157

Viterbi, 157
deduction

in FOL, 317
deep

neural networks, 127
deep learning, 127
deep role, 374
definite reference, 418
degree adverb, 150
delexicalization, 516
denotation, 309
dental sound, 529
dependency

grammar, 280
dependency tree, 283
dependent, 281
derivation

direct (in a formal
language), 236

syntactic, 233, 233, 236,
236

description logics, 323
Det, 233
determiner, 150, 233, 239
Determiners, 150
development test set, 67
development test set

(dev-test), 35
devset, see development

test set (dev-test), 67
DFT, 554
dialogue, 492
dialogue act

correction, 512
dialogue acts, 509
dialogue manager
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design, 520
dialogue policy, 513
dialogue systems, 492

design, 520
evaluation, 517

diathesis alternation, 376
diff program, 27
digit recognition, 549
digitization, 535, 552
dilated convolutions, 568
dimension, 102
diphthong, 531

origin of term, 148
direct derivation (in a

formal language),
236

directional adverb, 150
directive speech act, 494
disambiguation

in parsing, 267
syntactic, 261

discount, 41, 43, 44
discounting, 41
discourse, 442

segment, 445
discourse connectives, 446
discourse deixis, 417
discourse model, 415
discourse parsing, 447
discourse-new, 419
discourse-old, 419
discovery procedure, 256
discrete Fourier transform,

554
discriminative model, 77
disfluency, 12
disjunction, 26

pipe in regular
expressions as, 6

square braces in regular
expression as, 4

dispreferred response, 525
distance

cosine, 105
distant supervision, 340
distributional hypothesis,

96
distributional similarity,

256
divergences between

languages in MT,
205

document
in IR, 465

document frequency, 107
document vector, 111
domain, 309
domination in syntax, 233
dot product, 78, 105
dot-product attention, 213
Dragon Systems, 571
dropout, 142
duration

temporal expression, 344
dynamic programming, 23

and parsing, 261
Viterbi as, 159

dynamic time warping, 571

edge-factored, 296
edit distance

minimum algorithm, 24
EDU, 445
effect size, 69
Elaboration (as coherence

relation), 444
ELIZA, 2

implementation, 11
sample conversation, 10

Elman Networks, 176
ELMo

for affect, 410
EM

for deleted interpolation,
44

embedded verb, 241
embeddings, 100

cosine for similarity, 105
skip-gram, learning, 115
sparse, 104
tf-idf, 107
word2vec, 112

emission probabilities, 156
EmoLex, 396
emotion, 394
empty category, 238
Encoder-decoder, 208
end-to-end training, 184
endpointing, 494
English

lexical differences from
French, 207

simplified grammar
rules, 234

verb-framed, 207
entity dictionary, 165
entity grid, 453
Entity linking, 477
entity linking, 416
entity-based coherence, 451
entropy, 49

and perplexity, 49
cross-entropy, 51
per-word, 50
rate, 50
relative, 387

error backpropagation, 139
ESPnet, 572
ethos, 458
Euclidean distance

in L2 regularization, 89
Eugene Onegin, 52
Euler’s formula, 554
Europarl, 219
evalb, 270
evaluating parsers, 269
evaluation

10-fold cross-validation,
68

AB test, 569
BLEU in MT, 222
comparing models, 37
cross-validation, 68
development test set, 35,

67
devset, 67

devset or development
test set, 35

dialogue systems, 517
extrinsic, 35
fluency in MT, 222
Matched-Pair Sentence

Segment Word Error
(MAPSSWE), 563

mean opinion score, 569
METEOR for MT, 222
most frequent class

baseline, 152
MT, 221
named entity recognition,

167
of n-gram, 35
of n-grams via

perplexity, 36
precision and recall for

MT, 222
pseudoword, 388
relation extraction, 343
TER for MT, 222
test set, 35
training on the test set, 35
training set, 35
TTS, 569
unsupervised WSD, 370
WSD systems, 364

event coreference, 417
Event extraction, 332
event extraction, 348
event variable, 319
events

representation of, 318
Evidence (as coherence

relation), 444
evoking a referent, 415
expansion, 234, 237
expletive, 421
explicit confirmation, 514
expressiveness, of a

meaning
representation, 308

extractive QA, 476
extraposition, 421
extrinsic evaluation, 35

F (for F-measure), 66
F-measure, 66
F-measure

in NER, 167
F0, 537
factoid question, 464
Faiss, 473
false negatives, 8
false positives, 8
Farsi, verb-framed, 207
fast Fourier transform, 554,

571
fasttext, 117
FASTUS, 352
feature cutoff, 165
feature interactions, 81
feature selection

information gain, 74
feature template, 292
feature templates, 81

part-of-speech tagging,
164

feature vectors, 551
Federalist papers, 74
feedforward network, 133
fenceposts, 263
FFT, 554, 571
file format, .wav, 536
filled pause, 12
filler, 12
final fall, 533
First Order Logic, see FOL
first-order co-occurrence,

119
flap (phonetic), 530
fluency, 221

in MT, 222
focus, 485
FOL, 305, 311
∃ (there exists), 313
∀ (for all), 313
=⇒ (implies), 316
∧ (and), 313, 316
¬ (not), 313, 316
∨ (or), 316
and verifiability, 311
constants, 312
expressiveness of, 308,

311
functions, 312
inference in, 311
terms, 312
variables, 312

fold (in cross-validation),
68

forget gate, 187
formal language, 235
formant, 542
formant synthesis, 573
forward chaining, 317
forward composition, 253
forward-looking centers,

452
Fosler, E., see

Fosler-Lussier, E.
fragment of word, 12
frame, 552

semantic, 379
frame elements, 379
FrameNet, 379
frames, 504
free word order, 280
Freebase, 335, 482
FreebaseQA, 482
French, 205
frequency

of a signal, 534
fricative sound, 530
Frump, 353
fully qualified date

expressions, 347
fully-connected, 133
function word, 149, 169
functional grammar, 257
functions in FOL, 312
fundamental frequency, 537
fusion language, 207
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Gaussian
prior on weights, 90

gazetteer, 165
General Inquirer, 63, 395
generalize, 88
generalized semantic role,

376
generation

of sentences to test a
CFG grammar, 234

template-based, 508
generative grammar, 236
generative lexicon, 372
generative model, 77
generative models, 58
generative syntax, 257
generator, 233
generics, 421
genitive NP, 258
German, 205, 544
gerundive postmodifier, 240
Gilbert and Sullivan, 332
given-new, 420
gloss, 360
glosses, 356
Glottal, 529
glottal stop, 529
glottis, 528
Godzilla, speaker as, 384
gold labels, 65
Good-Turing, 45
gradient, 84
Grammar

Constraint, 303
Construction, 257
Head-Driven Phrase

Structure (HPSG),
248, 257

Lexical-Functional
(LFG), 257

Link, 303
Minimalist Program, 257
Tree Adjoining, 257

grammar
binary branching, 249
categorial, 250, 250
CCG, 250
checking, 259
combinatory categorial,

250
equivalence, 249
generative, 236
inversion transduction,

229
strong equivalence, 249
weak equivalence, 249

grammatical function, 281
grammatical relation, 281
grammatical sentences, 235
greedy, 215
greedy RE patterns, 7
Greek, 526
grep, 3, 3, 27
Gricean maxims, 496
grounding, 494
GUS, 504

H* pitch accent, 534

Hamilton, Alexander, 74
Hamming, 553
Hansard, 228
hanzi, 17
harmonic, 543
harmonic mean, 66
Hays, D., 303
head, 248, 281

finding, 248
Head-Driven Phrase

Structure Grammar
(HPSG), 248, 257

Heaps’ Law, 12
Hearst patterns, 336
Hebrew, 526
held out, 35
held-out, 44
Herdan’s Law, 12
hertz as unit of measure,

534
hidden, 156
hidden layer, 133

as representation of
input, 134

hidden units, 133
Hindi, 205
Hindi, verb-framed, 207
HKUST, 551
HMM, 156

formal definition of, 156
history in speech

recognition, 571
initial distribution, 156
observation likelihood,

156
observations, 156
simplifying assumptions

for POS tagging,
158

states, 156
transition probabilities,

156
Hobbs algorithm, 438
Hobbs tree search algorithm

for pronoun
resolution, 438

holonym, 359
homonymy, 355
hot languages, 208
HotpotQA, 474
Hungarian

part-of-speech tagging,
169

hybrid, 572
hyperarticulation, 512
hypernym, 335, 358

lexico-syntactic patterns
for, 336

hyperparameter, 86
hyperparameters, 142
hyponym, 358
Hz as unit of measure, 534

IBM Models, 228
IBM Thomas J. Watson

Research Center,
53, 571

idf, 107

idf term weighting, 107,
466

if then reasoning in FOL,
317

immediately dominates,
233

imperative sentence
structure, 237

implicature, 496
implicit argument, 392
implicit confirmation, 514
implied hierarchy

in description logics, 327
indefinite article, 239
indefinite reference, 418
inference, 308

in FOL, 317
inference-based learning,

301
infinitives, 242
infoboxes, 335
information

structure, 419
status, 419
information extraction (IE),

332
bootstrapping, 339
partial parsing for, 270

information gain, 74
for feature selection, 74

Information retrieval, 103,
465

initiative, 495
inner ear, 542
inner product, 105
instance checking, 326
Institutional Review Board,

522
intensity of sound, 538
intent determination, 506
intercept, 78
Interjections, 150
intermediate phrase, 533
International Phonetic

Alphabet, 526, 546
interpersonal stance, 408
Interpolated Kneser-Ney

discounting, 45, 47
interpolated precision, 471
interpolation

in smoothing, 43
interpretable, 92
interpretation, 309
intonation phrases, 533
intransitive verbs, 242
intrinsic evaluation, 35
inversion transduction

grammar (ITG), 229
inverted index, 469
IO, 154
IOB tagging

for temporal expressions,
345

IPA, 526, 546
IR, 465

idf term weighting, 107,
466

term weighting, 466

vector space model, 101
IR-based QA, 473
IRB, 522
IS-A, 359
is-a, 335
ISO 8601, 346
isolating language, 207
iSRL, 392
ITG (inversion transduction

grammar), 229

Japanese, 205–207, 526,
544

Jay, John, 74
joint intention, 524

Kaldi, 572
Katz backoff, 44
KBP, 354
KenLM, 48, 53
KL divergence, 387
KL-ONE, 329
Klatt formant synthesizer,

573
Kleene *, 5

sneakiness of matching
zero things, 5

Kleene +, 5
Kneser-Ney discounting, 45
knowledge base, 307
knowledge claim, 460
knowledge graphs, 332
knowledge-based, 366
Korean, 544
KRL, 329
Kullback-Leibler

divergence, 387

L* pitch accent, 534
L+H* pitch accent, 534
L1 regularization, 89
L2 regularization, 89
labeled precision, 270
labeled recall, 269
labial place of articulation,

529
labiodental consonants, 529
lambda notation, 315
language

identification, 570
universal, 205

language ID, 63
language id, 55
language model, 30
Laplace smoothing, 41
Laplace smoothing:for

PMI, 111
larynx, 527
lasso regression, 89
latent semantic analysis,

125
lateral sound, 530
LDC, 16
learning rate, 84
lemma, 12, 97

versus wordform, 12
lemmatization, 3
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Lesk algorithm, 366
Simplified, 366

Levenshtein distance, 23
lexical

category, 233
cohesion, 443, 456
database, 360
gap, 206
semantics, 97
stress, 532
trigger, in IE, 344

lexical answer type, 486
lexical sample task in

WSD, 363
Lexical-Functional

Grammar (LFG),
257

lexico-syntactic pattern,
336

lexicon, 233
LibriSpeech, 550
likelihood, 58
linear chain CRF, 162, 163
linear classifiers, 59
linear interpolation for

n-grams, 44
linearly separable, 131
Linguistic Data

Consortium, 16
Linguistic Discourse

model, 461
Link Grammar, 303
List (as coherence relation),

445
listen attend and spell, 555
LIWC, 63, 397
LM, 30
LOB corpus, 170
localization, 203
location-based attention,

567
locative, 150
locative adverb, 150
log

why used for
probabilities, 34

why used to compress
speech, 536

log likelihood ratio, 405
log odds ratio, 405
log probabilities, 34, 34
logical connectives, 313
logical vocabulary, 308
logistic function, 78
logistic regression, 76

conditional maximum
likelihood
estimation, 82

Gaussian priors, 90
learning in, 81
regularization, 90
relation to neural

networks, 135
logos, 458
Long short-term memory,

187
long-distance dependency,

245

traces in the Penn
Treebank, 245

wh-questions, 238
lookahead in RE, 11
loss, 81
loudness, 539
low frame rate, 556
low-resourced languages,

227
LPC (Linear Predictive

Coding), 571
LSI, see latent semantic

analysis
LSTM, 171
LUNAR, 490
Lunar, 329

machine learning
for NER, 168
textbooks, 74, 95

machine translation, 203
macroaveraging, 67
Madison, James, 74
MAE, 13
Mandarin, 205, 544
Manhattan distance

in L1 regularization, 89
manner adverb, 150
manner of articulation, 529
marker passing for WSD,

371
Markov, 32

assumption, 32
Markov assumption, 155
Markov chain, 52, 155

formal definition of, 156
initial distribution, 156
N-gram as, 155
states, 156
transition probabilities,

156
Markov model, 32

formal definition of, 156
history, 53

Marx, G., 259
mass nouns, 149
maxent, 95
maxim, Gricean, 496
maximum entropy, 95
maximum spanning tree,

297
Mayan, 207
McNemar’s test, 564
MCTest, 489
mean average precision,

471
mean opinion score, 569
mean reciprocal rank, 488
meaning representation,

305
as set of symbols, 306
early uses, 329
languages, 306

mechanical indexing, 124
Mechanical Turk, 549
mel, 554

scale, 538
mention detection, 424

mention-pair, 427
mentions, 415
meronym, 359
meronymy, 359
MERT, for training in MT,

229
MeSH (Medical Subject

Headings), 56, 363
Message Understanding

Conference, 352
metarule, 244
METEOR, 222, 230
metonymy, 359, 440
Micro-Planner, 329
microaveraging, 67
Microsoft .wav format, 536
mini-batch, 87
minimum edit distance, 22,

22, 159
example of, 25
for speech recognition

evaluation, 562
MINIMUM EDIT DISTANCE,

25
minimum edit distance

algorithm, 24
Minimum Error Rate

Training, 229
MLE

for n-grams, 32
for n-grams, intuition, 33

MLP, 133
modal verb, 151
model, 308
model card, 73
modified Kneser-Ney, 47
modified n-gram precision,

224
modus ponens, 317
Montague semantics, 329
Monte Carlo search, 221
morpheme, 21
MOS (mean opinion score),

569
Moses, Michelangelo statue

of, 492
Moses, MT toolkit, 229
most frequent sense, 364
MRR, 488
MT, 203

divergences, 205
post-editing, 203

mu-law, 536
MUC, 352, 353
MUC F-measure, 434
multi-layer perceptrons,

133
multihead self-attention

layers, 194
multinomial logistic

regression, 90
multinomial naive Bayes,

56
multinomial naive Bayes

classifier, 56
multiword expressions, 125
MWE, 125

n-best list, 557
N-gram

as Markov chain, 155
n-gram, 30, 32

absolute discounting, 45
add-one smoothing, 41
as approximation, 31
as generators, 38
equation for, 32
example of, 33, 34
for Shakespeare, 38
history of, 53
interpolation, 43
Katz backoff, 44
KenLM, 48, 53
Kneser-Ney discounting,

45
logprobs in, 34
normalizing, 33
parameter estimation, 33
sensitivity to corpus, 37
smoothing, 41
SRILM, 53
test set, 35
training set, 35
unknown words, 40

naive Bayes
multinomial, 56
simplifying assumptions,

58
naive Bayes assumption, 58
naive Bayes classifier

use in text categorization,
56

named entity, 148, 153
list of types, 153

named entity recognition,
153

nasal sound, 528, 530
nasal tract, 528
Natural Questions, 475
negative log likelihood loss,

92, 138
neo-Davidsonian, 319
NER, 153
neural networks

relation to logistic
regression, 135

newline character, 8
NIST for MT evaluation,

222, 230
noisy-or, 340
NomBank, 378
Nominal, 233
non-capturing group, 10
non-finite postmodifier, 240
non-greedy, 7
non-logical vocabulary, 308
non-standard words, 565
non-stationary process, 552
non-terminal symbols, 233,

234
normal form, 249, 249
normalization

dates, 507
temporal, 346
word, 20



612 Subject Index

normalization of
probabilities, 32

normalizing, 135
noun

abstract, 149, 239
common, 149
count, 149
mass, 149, 239
proper, 149

noun phrase, 232
constituents, 233

Nouns, 149
NP, 233, 234
nucleus, 444
nucleus of syllable, 531
null hypothesis, 69
Nyquist frequency, 535,

552

observation likelihood
role in Viterbi, 160

one-hot vector, 144
onset, syllable, 531
ontology, 323
OntoNotes, 372
OOV (out of vocabulary)

words, 40
OOV rate, 40
open class, 149
open information

extraction, 342
open vocabulary system

unknown words in, 40
operation list, 22
operator precedence, 6, 7
optionality

of determiners, 239
use of ? in regular

expressions for, 4
oral tract, 528
ordinal number, 239
orthography

opaque, 527
transparent, 527

output gate, 188
overfitting, 88

p-value, 69
Paired, 70
palatal sound, 529
palate, 529
palato-alveolar sound, 529
parallel corpus, 219
parallel distributed

processing, 147
parallelogram model, 119
parse tree, 233, 235
PARSEVAL, 269
parsing

ambiguity, 259
chunking, 270
CKY, 261
CYK, see CKY
evaluation, 269
history, 278
partial, 270
relation to grammars,

236

shallow, 270
syntactic, 259
well-formed substring

table, 278
part of speech

as used in CFG, 233
part-of-speech

adjective, 150
adverb, 150
closed class, 149
interjection, 150
noun, 149
open class, 149
particle, 150
subtle distinction

between verb and
noun, 150

verb, 150
part-of-speech tagger

PARTS, 170
TAGGIT, 170

Part-of-speech tagging, 151
part-of-speech tagging

ambiguity and, 151
amount of ambiguity in

Brown corpus, 152
and morphological

analysis, 169
feature templates, 164
history of, 170
Hungarian, 169
Turkish, 169
unknown words, 162

part-whole, 359
partial parsing, 270
particle, 150
PARTS tagger, 170
parts of speech, 148
pathos, 458
pattern, regular expression,

3
PCM (Pulse Code

Modulation), 536
PDP, 147
PDTB, 446
Penn Discourse TreeBank,

446
Penn Treebank, 244

tagset, 151, 151
Penn Treebank

tokenization, 16
per-word entropy, 50
perceptron, 130
period of a wave, 534
perplexity, 36, 51, 175

as weighted average
branching factor, 36

defined via
cross-entropy, 51

personal pronoun, 150
personality, 407
persuasion, 459
phone, 526, 545
phonetics, 526

articulatory, 527, 527
phonotactics, 531
phrasal verb, 150

phrase-based translation,
229

phrase-structure grammar,
233, 256

PII, 501
pipe, 6
The Pirates of Penzance,

332
pitch, 538
pitch accent, 532

ToBI, 534
pitch extraction, 539
pitch track, 537
place of articulation, 529
planning

and speech acts, 524
shared plans, 524

pleonastic, 421
plosive sound, 530
plural, 239
Pointwise mutual

information, 109
polysynthetic language, 207
Porter stemmer, 21
POS, 148
positional embeddings, 195
possessive NP, 258
possessive pronoun, 150
post-editing, 203
postdeterminer, 239
postings, 469
postmodifier, 240
postposed constructions,

232
postposition, 205
Potts diagram, 403
power of a signal, 537
PP, 234
PPMI, 109
praat, 539, 540, 545
precedence, 6
precedence, operator, 6
Precision, 66
precision

for MT evaluation, 222,
230

in NER, 167
modified n-gram, in MT,

224
precision-recall curve, 471
predeterminer, 241
predicate, 242
predicate-argument

relations, 242
preference semantics, 371
premises, 458
preposed constructions, 232
prepositional phrase, 240

constituency, 234
preposing, 232

prepositions, 150
presequences, 495
pretraining, 144
primitive decomposition,

389
principle of contrast, 98
prior probability, 58
pro-drop languages, 208

productions, 233
progressive prompting, 514
projection layer, 145
Prolog, 317
prominence, phonetic, 533
prominent word, 532
prompts, 508
pronoun, 150

bound, 418
demonstrative, 419
non-binary, 422
personal, 150
possessive, 150
wh-, 150

pronunciation dictionary,
544

CELEX, 544
CMU, 544

PropBank, 377
proper noun, 149
propositional meaning, 98
prosodic phrasing, 533
Prosody, 532
prosody

accented syllables, 532
reduced vowels, 533

PROTO-AGENT, 376
PROTO-PATIENT, 376
pseudoword, 388
PTRANS, 389
Pullum, G. K., 231
punctuation

for numbers
cross-linguistically,
16

for sentence
segmentation, 22

tokenization, 16
treated as words, 11
treated as words in LM,

39

qualia structure, 372
quantifier

as part of speech, 239
semantics, 313

quantization, 536, 552
query, 465

in IR, 465
question

factoid, 464
rise, 533

question answering
evaluation, 488
factoid questions, 464

Radio Rex, 548
range, regular expression, 4
ranking, 222
rapid reprompting, 515
rarefaction, 535
RDF, 335
RDF triple, 335
RE

regular expression, 3
Read speech, 550
reading comprehension,

473
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Reason (as coherence
relation), 444

Recall, 66
recall

for MT evaluation, 222,
230

in NER, 167
recipe

meaning of, 305
rectangular, 552
reduced vowels, 533
reduction, phonetic, 533
reference

bound pronouns, 418
cataphora, 418
definite, 418
generics, 421
indefinite, 418

reference point, 321
referent, 415

accessing of, 415
evoking of, 415

referential density, 208
reflexive, 422
register in RE, 10
regression

lasso, 89
ridge, 89

regular expression, 3, 26
substitutions, 9

regularization, 89
rejection

conversation act, 514
relatedness, 98
relation extraction, 332
relative

temporal expression, 344
relative entropy, 387
relative frequency, 33
relative pronoun, 241
release, stop, 529
relevance, 496
relexicalize, 516
ReLU, 129
reporting events, 348
representation learning, 96
representational harm, 121
representational harms, 72
rescore, 557
resolution for inference,

318
resolve, 152
Resource Management, 571
response generation, 501
restrictive grammar, 508
restrictive relative clause,

241
retrieve and read, 473
retrofitting, 369
ReVerb, 342
reversives, 358
rewrite, 233
Rhetorical Structure

Theory, see RST
rhyme, syllable, 531
Riau Indonesian, 150
ridge regression, 89
rime

syllable, 531
RMS amplitude, 537
RNN-T, 561
role-filler extraction, 351
Rosebud, sled named, 442
rounded vowels, 531
row vector, 103
RST, 444

TreeBank, 446, 461
rules

context-free, 233
context-free, expansion,

233, 237
context-free, sample, 234

Russian
fusion language, 207
verb-framed, 207

S as start symbol in CFG,
233

salience, in discourse
model, 420

sampling, 552
of analog waveform, 535
rate, 535, 552
used in clustering, 370

satellite, 206, 444
satellite-framed language,

207
saturated, 130
Schönfinkelization, 315
schwa, 533
SCISOR, 353
sclite, 563
sclite package, 27
script

Schankian, 379
scripts, 350
SDRT (Segmented

Discourse
Representation
Theory), 461

search engine, 465
search tree, 215
second-order

co-occurrence, 119
seed pattern in IE, 338
seed tuples, 338
segmentation

sentence, 22
word, 16

selectional association, 387
selectional preference

strength, 387
selectional preferences

pseudowords for
evaluation, 388

selectional restriction, 384
representing with events,

385
violations in WSD, 386

self-attention, 191
self-supervision, 113
semantic concordance, 363
semantic drift in IE, 339
semantic feature, 124
semantic field, 98
semantic frame, 99

semantic grammars, 507
semantic network

for word sense
disambiguation, 371

semantic networks
origins, 329

semantic parsing, 305
semantic relations in IE,

333
table, 334

semantic role, 374, 374,
376

Semantic role labeling, 380
semantics

lexical, 97
semivowel, 528
sense

word, 355, 356
sentence

error rate, 563
segmentation, 22

sentence realization, 515
sentence segmentation, 3
sentential complements,

241
sentiment, 99

origin of term, 413
sentiment analysis, 55
sentiment lexicons, 63
SentiWordNet, 402
sequence labeling, 148
SGNS, 112
Shakespeare

n-gram approximations
to, 38

shallow discourse parsing,
450

shallow parse, 270
shared plans, 524
shift-reduce parsing, 285
SHRDLU, 329
sibilant sound, 530
side sequence, 495
sigmoid, 78, 128
significance test

MAPSSWE for ASR,
563

McNemar’s, 564
similarity, 98
Simple Questions, 482
Simplified Lesk, 366
singleton, 416
singular they, 422
skip-gram, 112
slot filling, 354, 506
slots, 504
smoothing, 41, 41

absolute discounting, 45
add-one, 41
discounting, 41
interpolation, 43
Katz backoff, 44
Kneser-Ney discounting,

45
Laplace, 41
linear interpolation, 44

softmax, 90, 135
source, 209

source-filter model, 543
SOV language, 205
spam detection, 55, 63
span, 267, 476
Spanish, 544
Speaker diarization, 569
speaker identification, 570
speaker recognition, 570
speaker verification, 570
spectrogram, 542
spectrum, 540
speech

telephone bandwidth,
536

speech acts, 494
speech recognition

architecture, 549, 555
history of, 570

speech synthesis, 549
spelling correction

use of n-grams in, 29
split-half reliability, 398
SQuAD, 474
SRILM, 53
SRL, 380
Stacked RNNs, 184
start symbol, 233
state

semantic representation
of, 318

static embeddings, 112
stationary process, 552
stationary stochastic

process, 50
statistical significance

MAPSSWE for ASR,
563

McNemar’s test, 564
statistically significant, 70
stative expressions, 322
stem, 21
Stemming, 3
stemming, 21
stop (consonant), 529
stop list, 468
stop words, 60
streaming, 561
stress

lexical, 532
stride, 552
strong equivalence of

grammars, 249
structural ambiguity, 259
structured polysemy, 359
stupid backoff, 48
subcategorization

tagsets for, 242
subcategorization frame,

242
examples, 242

subcategorize for, 242
subdialogue, 495
subject, syntactic

in wh-questions, 238
subjectivity, 393, 413
substitutability, 256
substitution in TAG, 257
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substitution operator
(regular
expressions), 9

subsumption, 324, 326
subwords, 18
superordinate, 359
supersenses, 361
Supertagging, 273
supervised machine

learning, 56
SVD, 125
SVO language, 205
Swedish, verb-framed, 207
Switchboard, 550
Switchboard Corpus, 11,

500, 535, 536, 550
syllabification, 531
syllable, 531

accented, 532
coda, 531
nucleus, 531
onset, 531
prominent, 532
rhyme, 531
rime, 531

synchronous grammar, 229
synonyms, 97, 358
synset, 360
syntactic disambiguation,

261
syntactic movement, 245
syntax, 231

origin of term, 148

TAC KBP, 335
Tacotron2, 567
TACRED dataset, 335
TAG, 257
TAGGIT, 170
tagset

Penn Treebank, 151, 151
table of Penn Treebank

tags, 151
Tamil, 207
tanh, 129
tap (phonetic), 530
target, 209
target embedding, 117
Tay, 521
TBox, 323
teacher forcing, 180, 212
technai, 148
telephone-bandwidth, 552
telephone-bandwidth

speech, 536
telic eventualities, 323
template filling, 333, 350
template recognition, 351
template, in IE, 350
template-based generation,

508
temporal adverb, 150
temporal anchor, 347
temporal expression

absolute, 344
metaphor for, 322
recognition, 332
relative, 344

temporal logic, 319
temporal normalization,

346
temporal reasoning, 330
tense logic, 319
term

clustering, 371, 372
in FOL, 312
in IR, 465
weight in IR, 466

term frequency, 107
term weight, 466
term-document matrix, 101
term-term matrix, 103
terminal symbol, 233
terminology

in description logics, 323
test set, 35

development, 35
how to choose, 35

text categorization, 55
bag of words assumption,

57
naive Bayes approach, 56
unknown words, 60

text normalization, 2
Text summarization, 197
text-to-speech, 549
TextTiling, 456
tf-idf, 108
thematic grid, 375
thematic role, 374

and diathesis alternation,
376

examples of, 374
problems, 376

theme, 374
theme, as thematic role, 374
thesaurus, 371
time, representation of, 319
time-aligned transcription,

545
TimeBank, 349
TIMIT, 545
ToBI, 534

boundary tones, 534
tokenization, 2

sentence, 22
word, 16

tokens, word, 12
topic models, 99
toxicity detection, 72
trace, 238, 244
trachea, 527
training oracle, 290
training set, 35

cross-validation, 68
how to choose, 35

transcription
of speech, 548
reference, 562
time-aligned, 545

transduction grammars, 229
Transformations and

Discourse Analysis
Project (TDAP),
170

Transformers, 190

transition probability
role in Viterbi, 160

transitive verbs, 242
translation

divergences, 205
TREC, 490
Tree Adjoining Grammar

(TAG), 257
adjunction in, 257
substitution in, 257

treebank, 244
trigram, 34
truth-conditional semantics,

310
TTS, 549
tune, 533

continuation rise, 534
Turing test

Passed in 1972, 500
Turk, Mechanical, 549
Turkish

agglutinative, 207
part-of-speech tagging,

169
turn correction ratio, 520
turns, 493
TyDi QA, 475
type raising, 253
typed dependency structure,

280
types

word, 12
typology, 205

linguistic, 205

ungrammatical sentences,
235

unit production, 262
unit vector, 105
Universal Dependencies,

282
universal, linguistic, 205
Unix, 3
<UNK>, 40
unknown words

in n-grams, 40
in part-of-speech

tagging, 162
in text categorization, 60

unvoiced sound, 528
user-centered design, 520
utterance, 12

vagueness, 307
value sensitive design, 521
vanishing gradient, 130
vanishing gradients, 187
variable

existentially quantified,
314

universally quantified,
314

variables, 308
variables in FOL, 312
Vauquois triangle, 228
vector, 102, 128
vector length, 105
vector semantics, 96

vector space, 102
vector space model, 101
Vectors semantics, 100
velar sound, 529
velum, 529
verb

copula, 151
modal, 151
phrasal, 150

verb alternations, 376
verb phrase, 234, 241
verb-framed language, 207
Verbs, 150
verifiability, 306
Vietnamese, 207
Viterbi

and beam search, 215
Viterbi algorithm, 23, 159

inference in CRF, 166
VITERBI ALGORITHM, 159
vocal

cords, 528
folds, 528
tract, 528

vocoder, 565
vocoding, 565
voice user interface, 520
voiced sound, 528
voiceless sound, 528
vowel, 528

back, 530, 531
front, 530
height, 530, 531
high, 531
low, 531
mid, 531
reduced, 533
rounded, 530

VSO language, 205

wake word, 569
Wall Street Journal

Wall Street Journal
speech recognition of,

571
warping, 571
wavefile format, 536
WaveNet, 567
Wavenet, 567
weak equivalence of

grammars, 249
Web Ontology Language,

328
WebQuestions, 482
Weight Tying, 180
well-formed substring

table, 278
WFST, 278
wh-non-subject-question,

238
wh-phrase, 237, 238
wh-pronoun, 150
wh-subject-questions, 237
wh-word, 237
WiC, 367
wikification, 478
wildcard, regular

expression, 5
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Winograd Schema, 436
Wizard-of-Oz system, 520
word

boundary, regular
expression notation,
6

closed class, 149
definition of, 11
error rate, 551, 562
fragment, 12
function, 149, 169
open class, 149
punctuation as, 11
tokens, 12
types, 12

word normalization, 20

word segmentation, 16, 18
word sense, 355, 356
word sense disambiguation,

363, see WSD
word sense induction, 369
word shape, 164
word tokenization, 16
word-in-context, 367
word-word matrix, 103
word2vec, 112
wordform, 12

and lemma, 97
versus lemma, 12

WordNet, 360, 360
wordpiece, 218
world knowledge, 305

WSD, 363
AI-oriented efforts, 371
all-words task, 363
bootstrapping, 372
decision tree approach,

372
evaluation of, 364
history, 371
history of, 372
lexical sample task, 363
neural network

approaches, 371
robust approach, 371
supervised machine

learning, 372

unsupervised machine
learning, 369

WSI, 369

X-bar schemata, 257

yes-no questions, 237
Yonkers Racetrack, 49
Yupik, 207

zero anaphor, 419
zero-width, 11
zeros, 40
zeugma, 357
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