
Learn
TensorFlow 2.0

Implement Machine Learning and
Deep Learning Models with Python
—
Pramod Singh
Avinash Manure

Learn TensorFlow 2.0
Implement Machine Learning
and Deep Learning Models

with Python

Pramod Singh
Avinash Manure

Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning

Models with Python

ISBN-13 (pbk): 978-1-4842-5560-5		 ISBN-13 (electronic): 978-1-4842-5558-2
https://doi.org/10.1007/978-1-4842-5558-2

Copyright © 2020 by Pramod Singh, Avinash Manure

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC, and the sole member (owner) is Springer Science+Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the authors in this book is available
to readers on GitHub, via the book’s product page, located at www.apress.com/978-1-4842-5560-5.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Pramod Singh
Bangalore, Karnataka, India

Avinash Manure
Bangalore, India

https://doi.org/10.1007/978-1-4842-5558-2

I dedicate this book to my wife, Neha, my son, Ziaan, and
my parents. Without you, this book wouldn’t have
been possible. You complete my world and are the

source of my strength.

—Pramod Singh

I dedicate this book to my wife, Jaya, for constantly
encouraging me to do the best in whatever I undertake,
and also my mom and dad, for their unconditional love

and support, which have made me what I am today.
Last but not least, my thanks to Pramod, for trusting me

and giving me the opportunity to coauthor this book.

—Avinash Manure

v

About the Authors���ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

Table of Contents

Chapter 1: Introduction to TensorFlow 2.0��1

Tensor + Flow = TensorFlow��2

Components and Basis Vectors��3

Tensor��6

Rank���7

Shape���7

Flow��7

TensorFlow 1.0 vs. TensorFlow 2.0��9

Usability-Related Changes���10

Performance-Related Changes��16

Installation and Basic Operations in TensorFlow 2.0���17

Anaconda��17

Colab��17

Databricks��19

Conclusion���24

vi

Chapter 2: Supervised Learning with TensorFlow�������������������������������25

What Is Supervised Machine Learning?���25

Linear Regression with TensorFlow 2.0���28

Implementation of a Linear Regression Model, Using TensorFlow and Keras�����29

Logistic Regression with TensorFlow 2.0���37

Boosted Trees with TensorFlow 2.0��47

Ensemble Technique���47

Gradient Boosting���49

Conclusion���52

Chapter 3: Neural Networks and Deep Learning with TensorFlow������53

What Are Neural Networks?���53

Neurons��54

Artificial Neural Networks (ANNs)���55

Simple Neural Network Architecture��57

Forward and Backward Propagation��58

Building Neural Networks with TensorFlow 2.0��61

About the Data Set���61

Deep Neural Networks (DNNs)���67

Building DNNs with TensorFlow 2.0���68

Estimators Using the Keras Model���71

Conclusion���74

Chapter 4: Images with TensorFlow��75

Image Processing��76

Convolutional Neural Networks��77

Convolutional Layer��77

Pooling Layer��80

Fully Connected Layer��81

Table of ContentsTable of Contents

vii

ConvNets Using TensorFlow 2.0���82

Advanced Convolutional Neural Network Architectures���������������������������������������89

Transfer Learning���93

Transfer Learning and Machine Learning���95

Variational Autoencoders Using TensorFlow 2.0��97

Autoencoders���97

Applications of Autoencoders���98

Variational Autoencoders��98

Implementation of Variational Autoencoders Using TensorFlow 2.0���������������99

Conclusion���106

Chapter 5: Natural Language Processing with TensorFlow 2.0����������107

NLP Overview���107

Text Preprocessing���109

Tokenization���110

Word Embeddings��112

Text Classification Using TensorFlow���113

Text Processing��115

Deep Learning Model���119

Embeddings��120

TensorFlow Projector���123

Conclusion���129

Chapter 6: TensorFlow Models in Production������������������������������������131

Model Deployment���132

Isolation��133

Collaboration��133

Model Updates��134

Table of ContentsTable of Contents

viii

Model Performance��134

Load Balancer���134

Python-Based Model Deployment��135

Saving and Restoring a Machine Learning Model��135

Deploying a Machine Learning Model As a REST Service����������������������������138

Templates���142

Challenges of Using Flask��145

Building a Keras TensorFlow-Based Model��146

TF ind deployment���151

Conclusion���159

Index��161

Table of ContentsTable of Contents

ix

About the Authors

Pramod Singh is currently employed as a

machine learning expert at Walmart Labs. He

has extensive hands-on experience in machine

learning, deep learning, artificial intelligence

(AI), data engineering, designing algorithms,

and application development. He has spent

more than ten years working on multiple

data projects at different organizations. He’s

the author of three books: Machine Learning

with PySpark, Learn PySpark, and Learn TensorFlow 2.0. He is also a

regular speaker at major tech conferences, such as O’Reilly Strata Data

and AI Conferences. Pramod holds a BTech in electrical engineering from

Mumbai University and an MBA from Symbiosis University. He also holds

data science certification from IIM–Calcutta. Pramod lives in Bangalore,

India, with his wife and three-year-old son. In his spare time, he enjoys

playing guitar, coding, reading, and watching football. 

x

Avinash Manure is a senior data scientist

at Publicis Sapient with more than eight

years of experience using data to solve real-

world business challenges. He is proficient

in deploying complex machine learning and

statistical modeling algorithms/techniques to

identify patterns and extract valuable insights

for key stakeholders and organizational

leadership.

Avinash holds a bachelor’s degree in electronics engineering from

Mumbai University and holds an MBA in marketing from the University

of Pune. He and his wife are currently settled in Bangalore. He enjoys

traveling to new places and reading motivational books.

About the AuthorsAbout the Authors

xi

About the Technical Reviewer

Jojo Moolayil is an AI professional and author

of three books on machine learning, deep

learning, and the Internet of Things (IoT). He

is currently working as a research scientist—AI

at Amazon Web Services, in their Vancouver,

British Columbia, office.

Jojo was born and raised in Pune, India,

and graduated from the University of Pune

with a major in information technology

engineering. His passion for problem solving

and data-driven decision making led him to start a career with Mu

Sigma Inc., the world’s largest pure-play analytics provider. There, he

was responsible for developing machine learning and decision science

solutions to complex problems for major health care and telecom

companies. He later worked with Flutura (an IoT analytics startup) and

General Electric, with a focus on industrial AI, in Bangalore.

In his current role with Amazon, he works on researching and developing

large-scale AI solutions to combat fraud and enrich the customers’ payment

experience in the cloud. Jojo is also actively involved as a tech reviewer and

AI consultant to leading publishers and has reviewed more than a dozen

books on machine learning, deep learning, and business analytics.

You can reach Jojo at the following:

•	 www.jojomoolayil.com/

•	 www.linkedin.com/in/jojo62000

•	 twitter.com/jojo62000

http://www.jojomoolayil.com/
http://www.linkedin.com/in/jojo62000

xiii

Acknowledgments

This is my third book with Apress, and a lot of thought went into writing

it. The main objective was to introduce to the IT community the critical

changes introduced in the new version of TensorFlow. I hope readers will

find it useful, but first, I’d like to thank a few people who helped me along

the journey. First, I must thank the most important person in my life, my

beloved wife, Neha, who selflessly supported me throughout and sacrificed

so much to ensure that I completed this book.

I must also thank my coauthor, Avinash Manure, who expended a great

amount of effort to complete the project on time. In addition, my thanks to

Celestin Suresh John, who believed in me and offered me this opportunity

to write another book for Apress. Aditee Mirashi is one of the best editors

in India. This is my third book with her, and it was quite exciting to

collaborate again. She was, as usual, extremely supportive and always

available to accommodate my requests. To James Markham, who had

the patience to review every line of code and check the appropriateness

of each example, thank you for your feedback and your encouragement.

It really made a difference to me and the book. I also want to thank my

mentors who have constantly encouraged me to chase my dreams. Thank

you Sebastian Keupers, Dr. Vijay Agneeswaran, Sreenivas Venkatraman,

Shoaib Ahmed, and Abhishek Kumar.

Finally, I am infinitely grateful to my son, Ziaan, and my parents, for

the endless love and support, irrespective of circumstances. You all make

my world beautiful.

—Pramod Singh

xiv

This is my first book, and a very special one indeed. As mentioned by

Pramod, the objective of this book is to introduce readers to TensorFlow

2.0 and explain how this platform has evolved over the years to become

one of the most popular and user-friendly source libraries for machine

learning currently available. I would like to thank Pramod for having

confidence in me and giving me the golden opportunity to coauthor this

book. As this is my first book, Pramod has been guiding and helping me to

complete it.

I would like to thank my wife, Jaya, who made sure I had the right

environment at home to concentrate and complete this book on time. I

would also like to thank the publishing team—Aditee Mirashi, Matthew

Moodie, and James Markham—who have helped me immensely in

ensuring that this book reaches the audience in its best state. I would

also like to thank my mentors, who made sure I grew professionally and

personally by always supporting me in my dreams and guiding me toward

them. Thank you Tristan Bishop, Erling Amundson, Deepak Jain, Dr.

Vijay Agneeswaran, and Abhishek Kumar for all the support that you have

extended to me. Last but not least, I would like to acknowledge my parents,

my friends, and colleagues, who have always been there in my tough times

and motivated me to follow my dreams.

—Avinash Manure

AcknowledgmentsAcknowledgments

xv

Introduction

Google has been a pioneer in introducing groundbreaking technology and

products. TensorFlow is no exception, when it comes to efficiency and

scale, yet there have been some adoption challenges that have convinced

Google’s TensorFlow team to implement changes to facilitate ease of use.

Therefore, the idea of writing this book was simply to introduce to readers

these important changes made by the TensorFlow core team. This book

focuses on different aspects of TensorFlow, in terms of machine learning,

and goes deeper into the internals of the recent changes in approach. This

book is a good reference point for those who seek to migrate to TensorFlow

to perform machine learning.

This book is divided into three sections. The first offers an introduction

to data processing using TensorFlow 2.0. The second section discusses

using TensorFlow 2.0 to build machine learning and deep learning models.

It also includes neuro-linguistic programming (NLP) using TensorFlow 2.0.

The third section covers saving and deploying TensorFlow 2.0 models in

production. This book also is useful for data analysts and data engineers,

as it covers the steps of big data processing using TensorFlow 2.0. Readers

who want to transition to the data science and machine learning fields

will also find that this book provides a practical introduction that can lead

to more complicated aspects later. The case studies and examples given

in the book make it really easy to follow and understand the relevant

fundamental concepts. Moreover, there are very few books available

on TensorFlow 2.0, and this book will certainly increase the readers’

xvi

knowledge. The strength of this book lies in its simplicity and the applied

machine learning to meaningful data sets.

We have tried our best to inject our entire experience and knowledge

into this book and feel it is specifically relevant to what businesses are

seeking to solve real challenges. We hope you gain some useful takeaways

from it.

IntroductionIntroduction

1© Pramod Singh, Avinash Manure 2020
P. Singh and A. Manure, Learn TensorFlow 2.0,
https://doi.org/10.1007/978-1-4842-5558-2_1

CHAPTER 1

Introduction
to TensorFlow 2.0
The intent of this book is to introduce readers to the latest version of the

TensorFlow library. Therefore, this first chapter focuses mainly on what has

changed in the TensorFlow library since its first version, TensorFlow 1.0.

We will cover the various changes, in addition to highlighting the specific

parts for which changes are yet to be introduced. This chapter is divided

into three sections: the first discusses the internals of TensorFlow;

the second focuses on the changes that have been implemented in

TensorFlow 2.0 after TensorFlow 1.0; and the final section covers

TensorFlow 2.0 installation methods and basic operations.

You may already be aware that TensorFlow is widely used as a

machine learning implementation library. It was created by Google

as part of the Google Brain project and was later made available as an

open source product, as there were multiple machine learning and

deep learning frameworks that were capturing the attention of users.

With open source availability, more and more people in the artificial

intelligence (AI) and machine learning communities were able to adopt

TensorFlow and build features and products on top of it. It not only

helped users with implementation of standard machine learning and

deep learning algorithms but also allowed them to implement customized

and differentiated versions of algorithms for business applications and

2

various research purposes. In fact, it soon became one of the most popular

libraries in the machine learning and AI communities—so much so that

people have been building a huge number of apps using TensorFlow

under the hood. This is principally owing to the fact that Google itself uses

TensorFlow in most of its products, whether Google Maps, Gmail,

or other apps.

While TensorFlow had its strengths in certain areas, it also had a few

limitations, owing to which developers found it a bit difficult to adopt,

compared to such other libraries as PyTorch, Theano, and OpenCV. As

Google’s TensorFlow team took the feedback of the TensorFlow

community seriously, it went back to the drawing board and started

working on most of the changes required to make TensorFlow even more

effective and easy to work with, soon launching the TensorFlow 2.0 alpha

version this year. TensorFlow 2.0 claims to have removed some of the

previous hurdles, in order to allow developers to use TensorFlow even

more seamlessly. In this chapter, we will go over those changes one by one,

but before covering these, let us spend some time understanding what

exactly TensorFlow is and what makes it one of the best available options

to perform machine learning and deep learning today.

�Tensor + Flow = TensorFlow
Tensors are the building blocks of TensorFlow, as all computations are

done using tensors. So, what exactly is a tensor?

According to the definition provided by Google’s TensorFlow team,

A tensor is a generalization of vectors and matrices to poten-
tially higher dimensions. Internally, TensorFlow represents
tensors as n-dimensional arrays of base datatypes.

But we would like to delve a little deeper into tensors, in order to

provide more than a general overview of what they are. We would like to

compare them with vectors or matrices, so as to highlight the key dynamic

Chapter 1 Introduction to TensorFlow 2.0

3

property that makes tensors so powerful. Let us start with a simple vector.

A vector is commonly understood as something that has a magnitude and

a direction. Simply put, it is an array that contains an ordered list of values.

Without the direction of a vector, a tensor becomes a scalar value that has

only magnitude.

A vector can be used to represent n number of things. It can represent

area and different attributes, among other things. But let’s move beyond

just magnitude and direction and try to understand the real components

of a vector.

�Components and Basis Vectors
Let’s suppose we have a vector Â , as shown in Figure 1-1. This is currently

represented without any coordinate system consideration, but most of us

are already aware of the Cartesian coordinate system (x, y, z axis).

Figure 1-1.  Simple vector

If the vector Â is represented in a three-dimensional space, it will look

something like what is shown in Figure 1-2. This vector Â can also be

represented with the help of basis vectors.

Chapter 1 Introduction to TensorFlow 2.0

4

Basis vectors are associated with the coordinate system and can be used

to represent any vector. These basis vectors have a length of 1 and, hence, are

also known as unit vectors. The direction of these basis vectors is determined

by their respective coordinates. For example, for three-dimensional

representation, we have three basis vectors (x y, zˆ ˆ ˆ,), so x̂ would have the

direction of the x axis coordinate, and the ŷ basis vector would have the

direction of the y axis. Similarly, this would be the case for ẑ.

Once the basis vectors are present, we can use the coordinate system

to find the components that represent the original vector Â. For simplicity,

and to understand the components of the vector well, let’s reduce the

coordinate system from three dimensions to two. So, now the vector Â

looks something like what is shown in Figure 1-3.

Figure 1-2.  Types of variables

Figure 1-3.  2-dimensional view

Chapter 1 Introduction to TensorFlow 2.0

5

To find the first component of the vector Â along the x axis, we

will project it onto the x axis, as shown in Figure 1-4. Now, wherever

the projection meets the x axis is known as the x component, or first

component, of the vector.

Figure 1-4.  Vector Magnitude

If you look carefully, you can easily recognize this x component as the

sum of a few basis vectors along the x axis. In this case, adding three basis

vectors will give the x component of vector Â . Similarly, we can find the y

component of vector Â by projecting it on the y axis and adding up the

basis vectors (2 ŷ) along the y axis to represent it. In simple terms, we can

think of this as how much one has to move in the x axis direction and y axis

direction in order to reach vector Â .

Â = 3 2ˆ ˆx y+

One other thing worth noting is that as the angle between vector Â

and the x axis increases, the x component decreases, but the y component

increases. Vectors are part of a bigger class of objects known as tensors.

If we end up multiplying a vector with another vector, we get a result

that is a scalar quantity, whereas if we multiply a vector with a scalar

value, it just increases or decreases in the same proportion, in terms of

its magnitude, without changing its direction. However, if we multiply

Chapter 1 Introduction to TensorFlow 2.0

6

a vector with a tensor, it will result in a new vector that has a changed

magnitude as well as a new direction.

�Tensor
At the end of the day, a tensor is also a mathematical entity with which to

represent different properties, similar to a scalar, vector, or matrix. It is true

that a tensor is a generalization of a scalar or vector. In short, tensors are

multidimensional arrays that have some dynamic properties. A vector is a

one-dimensional tensor, whereas two-dimensional tensors are matrices

(Figure 1-5).

Figure 1-5.  Tensors

Tensors can be of two types: constant or variable.

Chapter 1 Introduction to TensorFlow 2.0

7

�Rank
Ranking tensors can sometimes be confusing for some people, but in terms

of tensors, rank simply indicates the number of directions required to

describe the properties of an object, meaning the dimensions of the array

contained in the tensor itself. Breaking this down for different objects, a

scalar doesn’t have any direction and, hence, automatically becomes a

rank 0 tensor, whereas a vector, which can be described using only one

direction, becomes a first rank tensor. The next object, which is a matrix,

requires two directions to describe it and becomes a second rank tensor.

�Shape
The shape of a tensor represents the number of values in each dimension.

Scalar—32: The shape of the tensor would be [].

Vector—[3, 4, 5]: The shape of the first rank tensor

would be [3].

Matrix =

1 2 3

4 5 6

7 8 9

: The second rank tensor would

have a shape of [3, 3].

�Flow
Now comes the second part of TensorFlow: flow. This is basically an

underlying graph computation framework that uses tensors for its

execution. A typical graph consists of two entities: nodes and edges, as

shown in Figure 1-6. Nodes are also called vertices.

Chapter 1 Introduction to TensorFlow 2.0

8

The edges are essentially the connections between the nodes/vertices

through which the data flows, and nodes are where actual computation

takes place. Now, in general, the graph can be cyclic or acyclic, but in

TensorFlow, it is always acyclic. It cannot start and end at the same node.

Let’s consider a simple computational graph, as shown in Figure 1-7, and

explore some of its attributes.

Figure 1-6.  Typical graph

Figure 1-7.  Computational graph

Chapter 1 Introduction to TensorFlow 2.0

9

The nodes in the graph indicate some sort of computation, such as

addition, multiplication, division, etc., except for the leaf nodes, which

contain the actual tensors with either constant or variable values to be

operated upon. These tensors flow through the edges or connections

between nodes, and the computation at the next node results in formation

of a new tensor. So, in the sample graph, a new tensor m is created through

a computation at the node using other tensors x and y. The thing to focus

on in this graph is that computations take place only at the next stage

after leaf nodes, as leaf nodes can only be simple tensors, which become

input for next-node computation flowing through edges. We can also

represent the computations at each node through a hierarchical structure.

The nodes at the same level can be executed in parallel, as there is no

interdependency between them. In this case, m and n can be calculated

in parallel at the same time. This attribute of graph helps to execute

computational graphs in a distributed manner, which allows TensorFlow

to be used for large-scale applications.

�TensorFlow 1.0 vs. TensorFlow 2.0
Although TensorFlow was well adopted by the IT community after it was

made available on an open source basis, there were still a lot of gaps, in

terms of its user-friendliness. Users found it somewhat difficult to write

TensorFlow-based code. Therefore, there was a lot of critical feedback

by the developer and research communities regarding a few aspects of

TensorFlow. As a result, the TensorFlow core development team started

incorporating the suggested changes, to make the product easier to use

and more effective. This section reviews those changes that have been

incorporated into the TensorFlow 2.0 beta version. There are mainly three

broad categories of changes that have been introduced in TensorFlow 2.0.

Chapter 1 Introduction to TensorFlow 2.0

10

	 1.	 Usability-related modifications

	 2.	 Performance-related modifications

	 3.	 Deployment-related modifications

In this chapter, we are going to focus on only the first two categories, as

Chapter 6 covers TensorFlow model deployment.

�Usability-Related Changes
The first category of changes mainly focused on TensorFlow’s ease of use

and more consistent APIs. To go through these changes in detail, we have

further subcategorized them according to three broad types.

	 1.	 Simpler APIs

	 2.	 Improved documentation

	 3.	 More inbuilt data sources

�Simpler APIs

One of the most common criticisms of TensorFlow by users regarded its

APIs, which were not user-friendly, thus a major focus of TensorFlow 2.0

has been on overhauling its APIs. Now, TensorFlow 2.0 provides two levels

of APIs:

	 1.	 High-level APIs

	 2.	 Lower-level APIs

High-Level APIs

The high-level APIs make it easier to use TensorFlow for various

applications, as these APIs are more intuitive in nature. These new high-

level APIs have made debugging relatively easier than in earlier versions.

As TensorFlow 1.0 was graph control–based, users were not able to debug

Chapter 1 Introduction to TensorFlow 2.0

11

their programs easily. TensorFlow 2.0 has now introduced eager execution,

which performs operations and returns output instantly.

Lower-Level APIs

Another available set of APIs are lower level APIs which offer much more

flexibility and configuration capability to the users in order to define and

parameterise the models as per their specific requirements.

Session Execution

Readers who have used earlier versions of TensorFlow must have gone

through the conventional procedure, session execution, to get to an

operational graph, which likely consisted of the following steps:

	 1.	 First, create the tf.Graph object and set it to the

default graph for the current scope.

	 2.	 Declare the computation part in TensorFlow:

c=tf.matmul(m,n).

	 3.	 Define the variable sharing and scope, as required.

	 4.	 Create and configure the tf.Session to build the

graph and connect to the tf.Session.

	 5.	 Initialize all the variables in advance.

	 6.	 Use the tf.Session.run method to start the

computation.

	 7.	 The tf.Session.run then triggers a procedure to

compute the final output.

Chapter 1 Introduction to TensorFlow 2.0

12

Eager Execution

With eager execution, TensorFlow 2.0 adopts a radically different approach

and removes the need to execute most of the preceding steps.

	 1.	 TensorFlow 2.0 doesn’t require the graph definition.

	 2.	 TensorFlow 2.0 doesn’t require the session

execution.

	 3.	 TensorFlow 2.0 doesn’t make it mandatory to

initialize variables.

	 4.	 TensorFlow 2.0 doesn’t require variable sharing via

scopes.

To understand these differences in detail, let’s consider an example

using TensorFlow 1.0 vs. TensorFlow 2.0.

[In]: import tensorflow as tf

[In]: tfs=tf.InteractiveSession()

[In]: c1=tf.constant(10,name='x')

[In]: print(c1)

[Out]: Tensor("x:0", shape=(), dtype=int32)

[In]: tfs.run(c1)

[Out]: 10

Import the new version of TensorFlow.

[In]: ! pip install -q tensorflow==2.0.0-beta1

[In]: import tensorflow as tf

[In]: print(tf.__version__)

[Out]: 2.0.0-beta1

[In]: c_1=tf.constant(10)

[In]: print(c_1)

[Out]: tf.Tensor(10, shape=(), dtype=int32)

Operations

Chapter 1 Introduction to TensorFlow 2.0

13

TensorFlow 1.0

[In]: c2=tf.constant(5.0,name='y')

[In]: c3=tf.constant(7.0,tf.float32,name='z')

[In]: op1=tf.add(c2,c3)

[In]: op2=tf.multiply(c2,c3)

[In]: tfs.run(op2)

[Out]: 35.0

[In]: tfs.run(op1)

[Out]: 12.0

TensorFlow 2.0

[In]:c2= tf.constant(5.0)

[In]:c3= tf.constant(7.0)

[In]: op_1=tf.add(c2,c3)

[In]: print(op_1)

[Out]: tf.Tensor(12.0, shape=(), dtype=float32)

[In]: op_2=tf.multiply(c2,c3)

[In]: print(op_2)

[Out]: tf.Tensor(35.0, shape=(), dtype=float32)

TensorFlow 1.0

g = tf.Graph()

with g.as_default():

 a = tf.constant([[10,10],[11.,1.]])

 x = tf.constant([[1.,0.],[0.,1.]])

 b = tf.Variable(12.)

 y = tf.matmul(a, x) + b

 init_op = tf.global_variables_initializer()

with tf.Session() as sess:

 sess.run(init_op)

 print(sess.run(y))

Chapter 1 Introduction to TensorFlow 2.0

14

TensorFlow 2.0

a = tf.constant([[10,10],[11.,1.]])

x = tf.constant([[1.,0.],[0.,1.]])

b = tf.Variable(12.)

y = tf.matmul(a, x) + b

print(y.numpy())

Note W ith TensorFlow 1.0 graph execution, the program state
(such as variables) is stored in global collections, and their lifetime
is managed by the tf.Session object. By contrast, during eager
execution, the lifetime of state objects is determined by the lifetime of
their corresponding Python object.

tf.function

Another powerful introduction of TensorFlow 2.0 is its tf.function

capability, which converts relevant Python code into a formidable

TensorFlow graph. It combines the flexibility of eager execution and

strength of graph computations. As mentioned, TensorFlow 2.0 doesn’t

require the creation of a tf.session object. Instead, simple Python

functions can be translated into a graph, using the tf.function decorator.

In simple terms, in order to define a graph in TensorFlow 2.0, we must

define a Python function and decorate it with @tf.function.

Keras

tf.keras was originally meant for small-scale models, as it had very

simple APIs, but it was not scalable. TensorFlow also had introduced

estimators that were designed for scaling and distributed training of

machine learning models. Estimators had a huge advantage as they offered

Chapter 1 Introduction to TensorFlow 2.0

15

fault tolerance training in a distributed environment, but its APIs were

not very user-friendly and were often regarded as confusing and a little

hard to consume. With this in mind, TensorFlow 2.0 has introduced the

standardized version of tf.keras, which combines the simplicity of Keras

and power of estimators.

The code for tf.keras in TensorFlow versions 1.13 and 2.0 remain the

same, but what has changed under the hood is the integration of Keras

with new features of TensorFlow 2.0. To elaborate a little bit, if a particular

piece of code was run with tf.keras in version 1.13, it would build a

graph-based model that ran a session under the hood, which we initiated

in the code. In version 2.0, the same model definition would run in eager

mode, without any modification whatsoever.

With eager mode, it becomes easy to debug the code, compared to

earlier graph-based execution. In eager mode, the data set pipelines

behave exactly as those of a NumPy array, but TensorFlow takes care of the

optimization in the best possible manner. Graphs are still very much part

of TensorFlow but operate in the background.

Redundancy

Another useful feedback from the community regarding TensorFlow usage

was that there were too many redundant components, which created

confusion when using them in different places. For example, there were

multiple optimizers and layers that one had to choose from while building

the model. TensorFlow 2.0 has removed all the redundant elements and

now comes with just one set of optimizers, metrics, losses, and layers.

Duplicative classes have also been reduced, making it easier for users to

figure out what to use and when.

Chapter 1 Introduction to TensorFlow 2.0

16

�Improved Documentation and More Inbuilt Data Sources

TensorFlow.org now contains much more exhaustive and detailed

documentation for TensorFlow. This was critical from the user’s

perspective, as earlier versions had limited examples and tutorials for

reference. This new documentation includes a lot of new data sources

(small as well as big) for users to make use of in their programs or for

learning purposes. The new APIs also make it very easy to import any new

data source in TensorFlow. Some of the data sets from different domains

that are made available within TensorFlow are shown in Table 1-1.

Table 1-1.  Data Sets Within TensorFlow 2.0

Sr. No Category Data set

1 Text imdb_reviews, squad

2 Image mnist, imagenet2012 , coco2014, cifar10

3 Video moving_mnist, starcraft_video,

bair_robot_pushing_small

4 Audio Nsynth

5 Structured titanic, iris

�Performance-Related Changes
The TensorFlow development team also claims that new changes have

improved product performance over earlier versions. Based on training

and inference results using different processors (GPUs, TPUs), it seems

TensorFlow has improved its speed two times, on average.

Chapter 1 Introduction to TensorFlow 2.0

http://tensorflow.org

17

�Installation and Basic Operations
in TensorFlow 2.0
There are multiple ways in which we can use TensorFlow (local as well as

cloud). In this section, we go over two ways in which TensorFlow 2.0 can

be used locally as well as in the cloud.

	 1.	 Anaconda

	 2.	 Colab

	 3.	 Databricks

�Anaconda
This is the simplest way of using TensorFlow on a local system. We can pip

install the latest version of TensorFlow, as follows:

[In]: pip install -q tensorflow==2.0.0-beta1

�Colab
The most convenient way to use TensorFlow, provided by Google’s

TensorFlow team, is Colab. Short for Colaboratory, this represents the idea

of collaboration and online laboratories. It is a free Jupyter-based web

environment requiring no setup, as it comes with all the dependencies

prebuilt. It provides an easy and convenient way to let users write

TensorFlow code within their browser, without having to worry about any

sort of installations and dependencies. Let’s go over the steps to see how to

use Google Colab for TensorFlow 2.0.

	 1.	 Go to https://colab.research.google.com. You

will see that the console has multiple options, as

shown in Figure 1-8.

Chapter 1 Introduction to TensorFlow 2.0

https://colab.research.google.com/

18

	 2.	 Select the relevant option from the console, which

contains the following five tabs:

	 a.	 Examples. Shows the default notebooks provided in Colab

	 b.	 Recent. The last few notebooks that the user worked on

	 c.	 Google Drive. The notebooks linked to the user’s Google

Drive account

	 d.	 GitHub. The option to link the notebooks present in the user’s

GitHub account

	 e.	 Upload. The option to upload a new ipynb or github file

	 3.	 Click New Python 3 Notebook, and a new Colab

notebook will appear, as shown in Figure 1-9.

Figure 1-8.  Python Notebook Colaboratory (Colab) console

Chapter 1 Introduction to TensorFlow 2.0

19

	 4.	 Install and import TensorFlow 2.0 (Beta).

[In]:! pip install -q tensorflow==2.0.0-beta1

[In]: import tensorflow as tf

[In]: print(tf.__version__)

[Out]: 2.0.0-beta1

Another great advantage of using Colab is that it allows you to build

your models on GPU in the back end, using Keras, TensorFlow, and

PyTorch. It also provides 12GB RAM, with usage up to 12 hours.

�Databricks
Another way to use TensorFlow is through the Databricks platform. The

method of installing TensorFlow on Databricks is shown following, using

a community edition account, but the same procedure can be adopted for

business account usage as well. The first step is to log in to the Databricks

account and spin up a cluster of desired size (Figures 1-10–1-12).

Figure 1-9.  New notebook

Chapter 1 Introduction to TensorFlow 2.0

20

Figure 1-11.  Clusters

Figure 1-10.  Databricks

Chapter 1 Introduction to TensorFlow 2.0

21

Once the cluster is up and running, we go to the Libraries options of

the cluster, via Actions, as shown in Figure 1-13.

Figure 1-12.  Cluster settings

Figure 1-13.  Cluster library

Within the Libraries tab, if the cluster already has a set of pre-installed

libraries, they will be listed, or, in the case of a new cluster, no packages

will be installed. We then click the Install New button (Figure 1-14).

Chapter 1 Introduction to TensorFlow 2.0

22

This will open a new window with multiple options to import or

install a new library in Databricks (Figure 1-15). We select PyPI, and in

the Package option, we mention the version of TensorFlow required to be

installed, as shown in Figure 1-16.

Figure 1-14.  Installing a new library

Figure 1-15.  PyPI source

Figure 1-16.  TensorFlow package

Chapter 1 Introduction to TensorFlow 2.0

23

It will take some time, and we can then see TensorFlow successfully

installed in Databricks, under Libraries. We can now open a new or

existing notebook using the same cluster (Figures 1-17 and 1-18).

Figure 1-17.  Running cluster

Figure 1-18.  New notebook

The final step is simply to import TensorFlow in the notebook and

validate the version. We can print the TensorFlow version, as shown in

Figure 1-19.

Chapter 1 Introduction to TensorFlow 2.0

24

�Conclusion
In this chapter, we explained the fundamental difference between a vector

and a tensor. We also covered the major differences between previous

and current versions of TensorFlow. Finally, we went over the process

of installing TensorFlow locally as well as in a cloud environment (with

Databricks).

Figure 1-19.  TensorFlow notebook

Chapter 1 Introduction to TensorFlow 2.0

25© Pramod Singh, Avinash Manure 2020
P. Singh and A. Manure, Learn TensorFlow 2.0,
https://doi.org/10.1007/978-1-4842-5558-2_2

CHAPTER 2

Supervised Learning
with TensorFlow
In this chapter, we will be explaining the concept of supervised machine

learning. Next, we take a deep dive into such supervised machine learning

techniques as linear regression, logistic regression, and boosted trees.

Finally, we will demonstrate all the aforementioned techniques, using

TensorFlow 2.0.

�What Is Supervised Machine Learning?
First, let us quickly review the concept of machine learning and then see

what supervised machine learning is, with the help of an example.

As defined by Arthur Samuel in 1959, machine learning is the field

of study that gives computers the ability to learn without being explicitly

programmed. The aim of machine learning is to build programs whose

performance improves automatically with some input parameters, such as

data, performance criteria, etc. The programs become more data-driven,

in terms of making decisions or predictions. We may not be aware of it,

but machine learning has taken over our daily lives, from recommending

products on online portals to self-driving cars that can take us from point

A to point B without our driving them or employing a driver.

26

Machine learning is a part of artificial intelligence (AI) and mainly

comprises three types:

	 1.	 Supervised machine learning

	 2.	 Unsupervised machine learning

	 3.	 Reinforcement learning

Let us explore supervised machine learning via an example and

then implement different techniques using TensorFlow 2.0. Note that

unsupervised machine learning and reinforcement learning are beyond

the scope of this book.

Imagine a three-year-old seeing a kitten for the first time. How would

the child react? The child doesn’t know what he/she is seeing. He or she

might initially experience a feeling of curiosity, fear, or joy. It is only after

his or her parents pet the kitten that the child realizes the animal might not

harm him/her. Later, the child might be comfortable enough to hold the

kitten and play with it. Now, the next time the child sees a kitten, he/she

may instantly recognize it and start playing with it, without the initial fear

or curiosity it felt toward the kitten previously. The child has learned that

the kitten is not harmful, and, instead, he/she can play with it. This is how

supervised learning works in real life.

In the machine world, supervised learning is done by providing a

machine inputs and labels and asking it to learn from them. For example,

using the preceding example, we can provide to the machine pictures

of kittens, with the corresponding label (kitten), and ask it to learn the

intrinsic features of a kitten, so that it can generalize well. Later, if we

provide an image of another kitten without a label, the machine will be

able to predict that the image is that of a kitten.

Supervised learning usually comprises two phases: training and

testing/prediction. In the training phase, a set of the total data, called

a training set, is provided to the machine learning algorithm, made up

of input data (features) as well as output data (labels). The aim of the

Chapter 2 Supervised Learning with TensorFlow

27

training phase is to make sure the algorithm learns as much as possible

from the input data and forms a mapping between input and output, such

that it can be used to make predictions. In the test/prediction phase, the

remaining set of data, called a test set, is provided to the algorithm and

comprises only the input data (features) and not the labels. The aim of the

test/prediction phase is to check how well the model is able to learn and

generalize. If the accuracy of the training and test sets differs too much,

we can infer that the model might have mapped the input and output of

training data too closely, and, therefore, it was not able to generalize the

unseen data (test set) well. This is generally known as overfitting.

A typical supervised machine learning architecture is shown in

Figure 2-1.

Figure 2-1.  Supervised machine learning architecture

Chapter 2 Supervised Learning with TensorFlow

28

Within supervised learning, if we are to predict numeric values, this

is called regression, whereas if we are to predict classes or categorical

variables, we call that classification. For example, if the aim is to predict

the sales (in dollars) a company is going to earn (numeric value), this

comes under regression. If the aim is to determine whether a customer will

buy a product from an online store or to check if an employee is going to

churn or not (categorical yes or no), this is a classification problem.

Classification can be further divided as binary and multi-class.

Binary classification deals with classifying two outcomes, i.e., either yes

or no. Multi-class classification yields multiple outcomes. For example,

a customer is categorized as a hot prospect, warm prospect, or cold

prospect, etc.

�Linear Regression with TensorFlow 2.0
In linear regression, as with any other regression problem, we are trying

to map the inputs and the output, such that we are able to predict the

numeric output. We try to form a simple linear regression equation:

y = mx + b

In this equation, y is the numeric output that we are interested in, and

x is the input variable, i.e., part of the features set. m is the slope of the line,

and b is the intercept. For multi-variate input features (multiple linear

regression), we can generalize the equation, as follows:

y = m1x1 + m2x2 + m3x3 + ……… + mnxn + b

where x1, x2, x3, ………, xn are different input features, m1, m2, m3, ……… mn are the

slopes for different features, and b is the intercept

This equation can also be represented graphically, as shown in

Figure 2-2 (in 2D).

Chapter 2 Supervised Learning with TensorFlow

29

Here, we can clearly see that there is a linear relation between label y

and feature inputs X.

�Implementation of a Linear Regression
Model, Using TensorFlow and Keras
We will implement the linear regression method in TensorFlow 2.0, using

the Boston housing data set and the LinearRegressor estimator available

within the TensorFlow package.

	 1.	 Import the required modules.

[In]: from __future__ import absolute_import, division, print_

function, unicode_literals

[In]: import numpy as np

[In]: import pandas as pd

[In]: import seaborn as sb

[In]: import tensorflow as tf

[In]: from tensorflow import keras as ks

Figure 2-2.  Linear regression graph

Chapter 2 Supervised Learning with TensorFlow

30

[In]: from tensorflow.estimator import LinearRegressor

[In]: from sklearn import datasets

[In]: from sklearn.model_selection import train_test_split

[In]: from sklearn.metrics import mean_squared_error, r2_score

[In]: print(tf.__version__)

[Out]: 2.0.0-rc1

	 2.	 Load and configure the Boston housing data set.

[In]: boston_load = datasets.load_boston()

[In]: feature_columns = boston_load.feature_names

[In]: target_column = boston_load.target

[In]: �boston_data = pd.DataFrame(boston_load.data,

columns=feature_columns).astype(np.float32)

[In]: boston_data['MEDV'] = target_column.astype(np.float32)

[In]: boston_data.head()

[Out]:

	 3.	� Check the relation between the variables, using

pairplot and a correlation graph.

[In]: sb.pairplot(boston_data, diag_kind="kde")

[Out]:

Chapter 2 Supervised Learning with TensorFlow

31

[In]: correlation_data = boston_data.corr()

[In]: �correlation_data.style.background_

gradient(cmap='coolwarm', axis=None)

[Out]:

Chapter 2 Supervised Learning with TensorFlow

32

	 4.	 Descriptive statistics—central tendency and

dispersion

[In]: stats = boston_data.describe()

[In]: boston_stats = stats.transpose()

[In]: boston_stats

[Out]:

Chapter 2 Supervised Learning with TensorFlow

33

	 5.	 Select the required columns.

[In]: �X_data = boston_data[[i for i in boston_data.columns if

i not in ['MEDV']]]

[In]: Y_data = boston_data[['MEDV']]

	 6.	 Train the test split.

[In]: �training_features , test_features ,training_labels, test_

labels = train_test_split(X_data , Y_data , test_size=0.2)

[In]: �print('No. of rows in Training Features: ', training_

features.shape[0])

[In]: �print('No. of rows in Test Features: ', test_features.

shape[0])

[In]: �print('No. of columns in Training Features: ', training_

features.shape[1])

[In]: �print('No. of columns in Test Features: ', test_

features.shape[1])

[In]: �print('No. of rows in Training Label: ', training_

labels.shape[0])

[In]: print('No. of rows in Test Label: ', test_labels.shape[0])

[In]: �print('No. of columns in Training Label: ', training_

labels.shape[1])

[In]: print('No. of columns in Test Label: ', test_labels.shape[1])

[Out]:

Chapter 2 Supervised Learning with TensorFlow

34

	 7.	 Normalize the data.

[In]: def norm(x):

 stats = x.describe()

 stats = stats.transpose()

 return (x - stats['mean']) / stats['std']

[In]: normed_train_features = norm(training_features)

[In]: normed_test_features = norm(test_features)

	 8.	 Build the input pipeline for the TensorFlow model.

[In]: �def feed_input(features_dataframe, target_dataframe,

num_of_epochs=10, shuffle=True, batch_size=32):

 def input_feed_function():

 �dataset = tf.data.Dataset.from_tensor_slices

((dict(features_dataframe), target_dataframe))

 if shuffle:

 dataset = dataset.shuffle(2000)

 �dataset = dataset.batch(batch_size).repeat

(num_of_epochs)

 return dataset

 return input_feed_function

[In]: �train_feed_input = feed_input(normed_train_features,

training_labels)

[In]: train_feed_input_testing = feed_input(normed_train_features,

[In]: training_labels, num_of_epochs=1, shuffle=False)

[In]: �test_feed_input = feed_input(normed_test_features,

test_labels, num_of_epochs=1, shuffle=False)

Chapter 2 Supervised Learning with TensorFlow

35

	 9.	 Model training

[In]: �feature_columns_numeric = [tf.feature_column.numeric_

column(m) for m in training_features.columns]

[In]: �linear_model = LinearRegressor(feature_columns=feature_

columns_numeric, optimizer='RMSProp')

[In]: linear_model.train(train_feed_input)

[Out]:

	 10.	 Predictions

[In]: �train_predictions = linear_model.predict(train_feed_

input_testing)

[In]: test_predictions = linear_model.predict(test_feed_input)

[In]: �train_predictions_series = pd.Series([p['predictions'][0]

for p in train_predictions])

[In]: �test_predictions_series = pd.Series([p['predictions'][0]

for p in test_predictions])

[Out]:

Chapter 2 Supervised Learning with TensorFlow

36

[In]: �train_predictions_df = pd.DataFrame(train_predictions_

series, columns=['predictions'])

[In]: �test_predictions_df = pd.DataFrame(test_predictions_

series, columns=['predictions'])

[In]: training_labels.reset_index(drop=True, inplace=True)

[In]: train_predictions_df.reset_index(drop=True, inplace=True)

[In]: test_labels.reset_index(drop=True, inplace=True)

[In]: test_predictions_df.reset_index(drop=True, inplace=True)

[In]: �train_labels_with_predictions_df = pd.concat([training_

labels, train_predictions_df], axis=1)

[In]: �test_labels_with_predictions_df = pd.concat([test_labels,

test_predictions_df], axis=1)

	 11.	 Validation

[In]: def calculate_errors_and_r2(y_true, y_pred):

 mean_squared_err = (mean_squared_error(y_true, y_pred))

 root_mean_squared_err = np.sqrt(mean_squared_err)

 r2 = round(r2_score(y_true, y_pred)*100,0)

 return mean_squared_err, root_mean_squared_err, r2

[In]: �train_mean_squared_error, train_root_mean_squared_error,

train_r2_score_percentage = calculate_errors_and_

r2(training_labels, train_predictions_series)

[In]: �test_mean_squared_error, test_root_mean_squared_error,

test_r2_score_percentage = calculate_errors_and_r2(test_

labels, test_predictions_series)

[In]: �print('Training Data Mean Squared Error = ', train_mean_

squared_error)

[In]: �print('Training Data Root Mean Squared Error = ', train_

root_mean_squared_error)

[In]: print('Training Data R2 = ', train_r2_score_percentage)

Chapter 2 Supervised Learning with TensorFlow

37

[In]: �print('Test Data Mean Squared Error = ', test_mean_

squared_error)

[In]: �print('Test Data Root Mean Squared Error = ', test_root_

mean_squared_error)

[In]: print('Test Data R2 = ', test_r2_score_percentage)

[Out]:

The code for the linear regression implementation using TensorFlow

2.0 can be found here: http://bit.ly/LinRegTF2. You can save a copy of

the code, run it in the Google Colab environment, and try experimenting

with different parameters, to see the results.

�Logistic Regression with TensorFlow 2.0
Logistic regression is one of the most popular classification methods.

Although the name contains regression, and the underlying method is the

same as that for linear regression, it is not a regression method. That is, it is

not used for prediction of continuous (numeric) values. The purpose of the

logistic regression method is to predict the outcome, which is categorical.

As mentioned, logistic regression’s underlying method is the same as

that for linear regression. Suppose we take the multi-class linear equation,

as shown following:

y = m1x1 + m2x2 + m3x3 + ……… + mnxn + b

where x1, x2, x3, ………, xn are different input features, m1, m2, m3, ……… mn are the

slopes for different features, and b is the intercept.

Chapter 2 Supervised Learning with TensorFlow

http://bit.ly/LinRegTF2

38

We will apply a logistic function to the linear equation, as follows:

p(y=1) = 1/(1 + e–(m1x1 + m2x2 + m3x3 + ……… + mnxn + b))

where p(y=1) is the probability value of y=1.

If we plot this function, it will look like an S, hence it is called a sigmoid

function (Figure 2-3).

Figure 2-3.  A sigmoid function representation

We will implement the logistic regression method in TensorFlow

2.0, using the iris data set and the LinearClassifier estimator available

within the TensorFlow package.

Chapter 2 Supervised Learning with TensorFlow

39

	 1.	 Import the required modules.

[In]: �from __future__ import absolute_import, division, print_

function, unicode_literals

[In]: import pandas as pd

[In]: import seaborn as sb

[In]: import tensorflow as tf

[In]: from tensorflow import keras

[In]: from tensorflow.estimator import LinearClassifier

[In]: from sklearn.model_selection import train_test_split

[In]: �from sklearn.metrics import accuracy_score, precision_

score, recall_score

[In]: print(tf.__version__)

[Out]: 2.0.0-rc1

	 2.	 Load and configure the iris data set.

[In]: �col_names = ['SepalLength', 'SepalWidth', 'PetalLength',

'PetalWidth', 'Species']

[In]: target_dimensions = ['Setosa', 'Versicolor', 'Virginica']

[In]: �training_data_path = tf.keras.utils.get_file("iris_

training.csv", "https://storage.googleapis.com/download.

tensorflow.org/data/iris_training.csv")

[In]: �test_data_path = tf.keras.utils.get_file("iris_test.csv",

"https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv")

[In]: �training = pd.read_csv(training_data_path, names=col_

names, header=0)

[In]: training = training[training['Species'] >= 1]

[In]: training['Species'] = training['Species'].replace([1,2], [0,1])

[In]: �test = pd.read_csv(test_data_path, names=col_names,

header=0)

Chapter 2 Supervised Learning with TensorFlow

40

[In]: test = test[test['Species'] >= 1]

[In]: test['Species'] = test['Species'].replace([1,2], [0,1])

[In]: training.reset_index(drop=True, inplace=True)

[In]: test.reset_index(drop=True, inplace=True)

[In]: iris_dataset = pd.concat([training, test], axis=0)

[In]: iris_dataset.describe()

[Out]:

	 3.	 Check the relation between the variables, using

pairplot and a correlation graph.

[In]: sb.pairplot(iris_dataset, diag_kind="kde")

[Out]:

Chapter 2 Supervised Learning with TensorFlow

41

[In]: correlation_data = iris_dataset.corr()

[In]: �correlation_data.style.background_gradient(cmap='coolwarm',

axis=None)

Chapter 2 Supervised Learning with TensorFlow

42

[Out]:

	 4.	 Descriptive statistics—central tendency and

dispersion

[In]: stats = iris_dataset.describe()

[In]: iris_stats = stats.transpose()

[In]: iris_stats

[Out]:

	 5.	 Select the required columns.

[In]: �X_data = iris_dataset[[i for i in iris_dataset.columns if

i not in ['Species']]]

[In]: Y_data = iris_dataset[['Species']]

Chapter 2 Supervised Learning with TensorFlow

43

	 6.	 Train the test split.

[In]: �training_features , test_features ,training_labels, test_

labels = train_test_split(X_data , Y_data , test_size=0.2)

[In]: �print('No. of rows in Training Features: ', training_

features.shape[0])

[In]: �print('No. of rows in Test Features: ', test_features.

shape[0])

[In]: �print('No. of columns in Training Features: ', training_

features.shape[1])

[In]: �print('No. of columns in Test Features: ', test_features.

shape[1])

[In]: �print('No. of rows in Training Label: ', training_labels.

shape[0])

[In]: print('No. of rows in Test Label: ', test_labels.shape[0])

[In]: �print('No. of columns in Training Label: ', training_

labels.shape[1])

[In]: �print('No. of columns in Test Label: ', test_labels.

shape[1])

[Out]:

Chapter 2 Supervised Learning with TensorFlow

44

	 7.	 Normalize the data.

[In]: def norm(x):

 stats = x.describe()

 stats = stats.transpose()

 return (x - stats['mean']) / stats['std']

[In]: normed_train_features = norm(training_features)

[In]: normed_test_features = norm(test_features)

	 8.	 Build the input pipeline for the TensorFlow model.

[In]: �def feed_input(features_dataframe, target_dataframe,

num_of_epochs=10, shuffle=True, batch_size=32):

 def input_feed_function():

 �dataset = tf.data.Dataset.from_tensor_slices

((dict(features_dataframe), target_dataframe))

 if shuffle:

 dataset = dataset.shuffle(2000)

 �dataset = dataset.batch(batch_size).

repeat(num_of_epochs)

 return dataset

 return input_feed_function

[In]: �train_feed_input = feed_input(normed_train_features,

training_labels)

[In]: train_feed_input_testing = feed_input(normed_train_features,

 training_labels, num_of_epochs=1, shuffle=False)

[In]: �test_feed_input = feed_input(normed_test_features,

test_labels, num_of_epochs=1, shuffle=False)

Chapter 2 Supervised Learning with TensorFlow

45

	 9.	 Model training

[In]: �feature_columns_numeric = [tf.feature_column.numeric_

column(m) for m in training_features.columns]

[In]:�logistic_model = LinearClassifier (feature_

columns=feature_columns_numeric)

[In]: logistic_model.train(train_feed_input)

[Out]:

	 10.	 Predictions

[In]: �train_predictions = logistic_model.predict(train_feed_

input_testing)

[In]: test_predictions = logistic_model.predict(test_feed_input)

[In]: �train_predictions_series = pd.Series([p['classes'][0].

decode("utf-8") for p in train_predictions])

[In]: �test_predictions_series = pd.Series([p['classes'][0].

decode("utf-8") for p in test_predictions])

[Out]:

[In]: �train_predictions_df = pd.DataFrame(train_predictions_

series, columns=['predictions'])

Chapter 2 Supervised Learning with TensorFlow

46

[In]: �test_predictions_df = pd.DataFrame(test_predictions_

series, columns=['predictions'])

[In]: training_labels.reset_index(drop=True, inplace=True)

[In]: train_predictions_df.reset_index(drop=True, inplace=True)

[In]: test_labels.reset_index(drop=True, inplace=True)

[In]: test_predictions_df.reset_index(drop=True, inplace=True)

[In]: �train_labels_with_predictions_df = pd.concat([training_

labels, train_predictions_df], axis=1)

[In]: �test_labels_with_predictions_df = pd.concat([test_labels,

test_predictions_df], axis=1)

	 11.	 Validation

[In]: def calculate_binary_class_scores(y_true, y_pred):

 accuracy = accuracy_score(y_true, y_pred.astype('int64'))

 �precision = precision_score(y_true, y_pred.astype('int64'))

 recall = recall_score(y_true, y_pred.astype('int64'))

 return accuracy, precision, recall

[In]: �train_accuracy_score, train_precision_score, train_

recall_score = calculate_binary_class_scores(training_

labels, train_predictions_series)

[In]: �test_accuracy_score, test_precision_score, test_recall_

score = calculate_binary_class_scores(test_labels, test_

predictions_series)

[In]: �print('Training Data Accuracy (%) = ', round(train_

accuracy_score*100,2))

[In]: �print('Training Data Precision (%) = ', round(train_

precision_score*100,2))

[In]: �print('Training Data Recall (%) = ', round(train_recall_

score*100,2))

[In]: print('-'*50)

Chapter 2 Supervised Learning with TensorFlow

47

[In]: �print('Test Data Accuracy (%) = ', round(test_accuracy_

score*100,2))

[In]: �print('Test Data Precision (%) = ', round(test_precision_

score*100,2))

[In]: �print('Test Data Recall (%) = ', round(test_recall_

score*100,2))

[Out]:

The code for the logistic regression implementation using TensorFlow

2.0 can be found at http://bit.ly/LogRegTF2. You can save a copy of the

code and run it in the Google Colab environment. Try experimenting with

different parameters and note the results.

�Boosted Trees with TensorFlow 2.0
Before we implement the boosted trees method in TensorFlow 2.0, we

want to quickly highlight related key terms.

�Ensemble Technique
An ensemble is a collection of predictors. For example, instead of using

a single model (say, logistic regression) for a classification problem, we

can use multiple models (say, logistic regression + decision trees, etc.) to

perform predictions. The outputs from the predictors are combined by

different averaging methods, such as weighted averages, normal averages,

or votes, and a final prediction value is derived. Ensemble methods have

Chapter 2 Supervised Learning with TensorFlow

http://bit.ly/LogRegTF2

48

been proved to be more effective than individual methods and, therefore,

are heavily used to build machine learning models. Ensemble methods

can be implemented by either bagging or boosting.

�Bagging

Bagging is a technique wherein we build independent models/predictors,

using a random subsample/bootstrap of data for each of the models/

predictors. Then an average (weighted, normal, or by voting) of the scores

from the different predictors is taken to get the final score/prediction. The

most famous bagging method is random forest.

A typical bagging technique is depicted in Figure 2-4.

Figure 2-4.  Bagging technique

�Boosting

Boosting is a different ensemble technique, wherein the predictors are not

independently trained but done so in a sequential manner. For example, we

build a logistic regression model on a subsample/bootstrap of the original

training data set. Then we take the output of this model and feed it to a

Chapter 2 Supervised Learning with TensorFlow

49

decision tree, to get the prediction, and so on. The aim of this sequential

training is for the subsequent models to learn from the mistakes of the

previous model. Gradient boosting is an example of a boosting method.

A typical boosting technique is depicted in Figure 2-5.

�Gradient Boosting
The main difference between gradient boosting compared to other

boosting methods is that instead of incrementing the weights of

misclassified outcomes from one previous learner to the next, we optimize

the loss function of the previous learner.

We will be building a boosted trees classifier, using the gradient

boosting method under the hood. We will take the iris data set for

classification. As we have already used the same data set for implementing

logistic regression in the previous section, we will keep the preprocessing

the same (i.e., until the “Build the input pipeline for TensorFlow model”

step from the previous example). We will continue directly with the model

training step, as follows:

Figure 2-5.  Boosting technique

Chapter 2 Supervised Learning with TensorFlow

50

	 1.	 Model training

[In]: from tensorflow.estimator import BoostedTreesClassifier

[In]: �btree_model = BoostedTreesClassifier(feature_

columns=feature_columns_numeric, n_batches_per_layer=1)

[In]: btree_model.train(train_feed_input)

	 2.	 Predictions

[In]: �train_predictions = btree_model.predict(train_feed_input_

testing)

[In]: test_predictions = btree_model.predict(test_feed_input)

[In]: �train_predictions_series = pd.Series([p['classes'][0].

decode("utf-8") for p in train_predictions])

[In]: �test_predictions_series = pd.Series([p['classes'][0].

decode("utf-8") for p in test_predictions])

[Out]:

[In]: �train_predictions_df = pd.DataFrame(train_predictions_

series, columns=['predictions'])

[In]: �test_predictions_df = pd.DataFrame(test_predictions_

series, columns=['predictions'])

[In]: training_labels.reset_index(drop=True, inplace=True)

[In]: train_predictions_df.reset_index(drop=True, inplace=True)

Chapter 2 Supervised Learning with TensorFlow

51

[In]: test_labels.reset_index(drop=True, inplace=True)

[In]: test_predictions_df.reset_index(drop=True, inplace=True)

[In]: �train_labels_with_predictions_df = pd.concat([train_

labels, train_predictions_df], axis=1)

[In]: �test_labels_with_predictions_df = pd.concat([test_labels,

test_predictions_df], axis=1)

	 3.	 Validation

[In]: def calculate_binary_class_scores(y_true, y_pred):

 accuracy = accuracy_score(y_true, y_pred.astype('int64'))

 precision = precision_score(y_true, y_pred.astype('int64'))

 recall = recall_score(y_true, y_pred.astype('int64'))

 return accuracy, precision, recall

[In]: �train_accuracy_score, train_precision_score, train_

recall_score = calculate_binary_class_scores(training_

labels, train_predictions_series)

[In]: �test_accuracy_score, test_precision_score, test_recall_

score = calculate_binary_class_scores(test_labels, test_

predictions_series)

[In]: �print('Training Data Accuracy (%) = ', round(train_

accuracy_score*100,2))

[In]: �print('Training Data Precision (%) = ', round(train_

precision_score*100,2))

[In]: �print('Training Data Recall (%) = ', round(train_recall_

score*100,2))

[In]: print('-'*50)

[In]: �print('Test Data Accuracy (%) = ', round(test_accuracy_

score*100,2))

[In]: �print('Test Data Precision (%) = ', round(test_precision_

score*100,2))

Chapter 2 Supervised Learning with TensorFlow

52

[In]: �print('Test Data Recall (%) = ', round(test_recall_

score*100,2))

[Out]:

The code for the boosted trees implementation using TensorFlow 2.0

can be found at http://bit.ly/GBTF2. You can save a copy of the code

and run it in the Google Colab environment. Try experimenting with

different parameters and note the results.

�Conclusion
You just saw how easy it has become to implement supervised machine

learning algorithms in TensorFlow 2.0. You can build the models just as

you would using the scikit-learn package. The Keras implementation

within TensorFlow also makes it easy to build neural network models,

which will be discussed in Chapter 3.

Chapter 2 Supervised Learning with TensorFlow

http://bit.ly/GBTF2

53© Pramod Singh, Avinash Manure 2020
P. Singh and A. Manure, Learn TensorFlow 2.0,
https://doi.org/10.1007/978-1-4842-5558-2_3

CHAPTER 3

Neural Networks
and Deep Learning
with TensorFlow
This chapter focuses on neural networks and how we can build them to

perform machine learning, by closely mimicking the human brain. We

will start by determining what neural networks are and how similarly they

are structured to the neural network in humans. Then, we will deep dive

into the architecture of neural networks, exploring the different layers

within. We will explain how a simple neural network is built and delve into

the concepts of forward and backward propagation. Later, we will build a

simple neural network, using TensorFlow and Keras. In the final sections

of this chapter, we will discuss deep neural networks, how they differ from

simple neural networks, and how to implement deep neural networks with

TensorFlow and Keras, again with performance comparisons to simple

neural networks.

�What Are Neural Networks?
Neural networks are a type of machine learning algorithm that tries to

mimic the human brain. Computers always have been better at performing

complex computations, compared to humans. They can do the calculations

54

in no time, whereas for humans, it takes a while to perform even the

simplest of operations manually. Then why do we need machines to

mimic the human brain? The reason is that humans have common sense

and imagination. They can be inspired by something to which computers

cannot. If the computational capability of computers is combined with

the common sense and imagination of humans, which can function

continually 365 days a year, what is created? Superhumans? The response

to those questions defines the whole purpose of artificial intelligence (AI).

�Neurons
The human body consists of neurons, which are the basic building blocks

of the nervous system. A neuron consists of a cell body, or soma, a single

axon, and dendrites (Figure 3-1). Neurons are connected to one another

by the dendrites and axon terminals. A signal from one neuron is passed

to the axon terminal and dendrites of another connected neuron, which

receives it and passes it through the soma, axon, and terminal, and so on.

Figure 3-1.  Structure of a neuron (Source: https://bit.ly/2zOekEL)

Neurons are interconnected in such a way that they have different

functions, such as sensory neurons, which respond to such stimuli

as sound, touch, or light; motor neurons, which control the muscle

movements in the body; and interneurons, which are connected neurons

within the same region of the brain or spinal cord.

Chapter 3 Neural Networks and Deep Learning with TensorFlow

https://bit.ly/2zOekEL

55

�Artificial Neural Networks (ANNs)
An artificial neural network tries to mimic the brain at its most basic level,

i.e., that of the neuron. An artificial neuron has a similar structure to that of

a human neuron and comprises the following sections (Figure 3-2):

Input layer: This layer is similar to dendrites and

takes input from other networks/neurons.

Summation layer: This layer functions like the soma

of neurons. It aggregates the input signal received.

Activation layer: This layer is also similar to a soma,

and it takes the aggregated information and fires a

signal only if the aggregated input crosses a certain

threshold value. Otherwise, it does not fire.

Output layer: This layer is similar to axon terminals in

that it might be connected to other neurons/networks

or act as a final output layer (for predictions).

Chapter 3 Neural Networks and Deep Learning with TensorFlow

56

In the preceding figure, X1, X2, X3,………Xn are the inputs fed to the

neural network. W1, W2, W3,…………Wn are the weights associated with the

inputs, and Y is the final prediction.

Many activation functions can be used in the activation layer,

to convert all the linear details produced at the input and make the

summation layer nonlinear. This helps users acquire more details about

the input data that would not be possible if this were a linear function.

Therefore, the activation layer plays an important role in predictions. Some

of the most familiar types of activation functions are sigmoid, ReLU, and

softmax.

Figure 3-2.  Artificial neural network

Chapter 3 Neural Networks and Deep Learning with TensorFlow

57

�Simple Neural Network Architecture
As shown in Figure 3-3, a typical neural network architecture is made up of an

Input layer

Hidden layer

Output layer

Every input is connected to every neuron of the hidden layer and, in

turn, connected to the output layer. If we are solving a regression problem,

the architecture looks like the one shown in Figure 3-3, in which we have

the output Yp, which is continuous if predicted at the output layer. If we are

solving a classification (binary, in this case), we will have the outputs Yclass1

and Yclass2, which are the probability values for each of the binary classes 1

and 2 at the output layer, as shown in Figure 3-4.

Figure 3-3.  Simple neural network architecture—regression

Chapter 3 Neural Networks and Deep Learning with TensorFlow

58

�Forward and Backward Propagation
In a fully connected neural network, when the inputs pass through the

neurons (hidden layer to output layer), and the final value is calculated

at the output layer, we say that the inputs have forward propagated

(Figure 3-5). Consider, for example, a fully connected neural network with

two inputs, X1 and X2, and one hidden layer with three neurons and an

output layer with a single output Yp (numeric value).

Figure 3-4.  Simple neural network architecture—classification

Chapter 3 Neural Networks and Deep Learning with TensorFlow

59

The inputs will be fed to each of the hidden layer neurons, by multiplying

each input value with a weight (W) and summing them with a bias value (b).

So, the equations at the neurons’ hidden layer will be as follows:

H1 = W1*X1 + W4*X2 + b1
H2 = W2*X1 + W5*X2 + b2
H3 = W3*X1 + W6*X2 + b3

The values H1, H2, and H3 will be passed to the output layer, with weights

W7, W8, and W9, respectively. The output layer will produce the final predicted

value of Yp.

Yp = W7*H1 + W8*H2 + W9*H3

Figure 3-5.  Forward propagation

Chapter 3 Neural Networks and Deep Learning with TensorFlow

60

As the input data (X1 and X2) in this network flows in a forward

direction to produce the final outcome, Yp, it is said to be a feed forward

network, or, because the data is propagating in a forward manner, a

forward propagation.

Now, suppose the actual value of the output is known (denoted by Y).

In this case, we can calculate the difference between the actual value and

the predicted value, i.e., L = (Y - Yp)
2, where L is the loss value.

To minimize the loss value, we will try to optimize the weights

accordingly, by taking a derivate of the loss function to the previous

weights, as shown in Figure 3-6.

Figure 3-6.  Backward propagation

Chapter 3 Neural Networks and Deep Learning with TensorFlow

61

For example, if we have to find the rate of change of loss function as

compared to W7, we would take a derivate of the Loss function to that of

W7 (dL/dW7), and so on. As we can see from the preceding diagram, the

process of taking the derivates is moving in a backward direction, that

is, a backward propagation is occurring. There are multiple optimizers

available to perform backward propagation, such as stochastic gradient

descent (SGD), AdaGrad, among others.

�Building Neural Networks with
TensorFlow 2.0
Using the Keras API with TensorFlow, we will be building a simple neural

network with only one hidden layer.

�About the Data Set
Let’s implement a simple neural network, using TensorFlow 2.0. For

this, we will make use of the Fashion-MNIST data set by Zalando (The

MIT License [MIT] Copyright © [2017] Zalando SE, https://tech.

zalando.com), which contains 70,000 images (in grayscale) in 10 different

categories. The images are 28 × 28 pixels of individual articles of clothing,

with values ranging from 0 to 255, as shown in Figure 3-7.

Chapter 3 Neural Networks and Deep Learning with TensorFlow

https://tech.zalando.com
https://tech.zalando.com

62

Figure 3-7.  Sample from the Fashion-MNIST data set
(Source: https://bit.ly/2xqIwCH)

Of the total 70,000 images, 60,000 are used for training, and the

remaining 10,000 images are used for testing. The labels are integer arrays

ranging from 0 to 9. The class names are not part of the data set; therefore,

we must include the following mapping for training/prediction:

Chapter 3 Neural Networks and Deep Learning with TensorFlow

https://bit.ly/2xqIwCH

63

(Source: https://bit.ly/2xqIwCH)

Let’s start by loading the necessary modules, as follows:

[In]: �from __future__ import absolute_import, division, print_

function, unicode_literals

[In]: import numpy as np

[In]: import tensorflow as tf

[In]: from tensorflow import keras as ks

[In]: print(tf.__version__)

[Out]: 2.0.0-rc1

Now, load the Fashion-MNIST data set.

[In]: �(training_images, training_labels), (test_images, test_

labels) = ks.datasets.fashion_mnist.load_data()

Chapter 3 Neural Networks and Deep Learning with TensorFlow

https://bit.ly/2xqIwCH

64

Let’s undertake a little bit of data exploration, as follows:

[In]: �print('Training Images Dataset Shape: {}'.

format(training_images.shape))

[In]: �print('No. of Training Images Dataset Labels: {}'.

format(len(training_labels)))

[In]: �print('Test Images Dataset Shape: {}'.format(test_images.

shape))

[In]: �print('No. of Test Images Dataset Labels: {}'.

format(len(test_labels)))

[Out]: Training Images Dataset Shape: (60000, 28, 28)

[Out]: No. of Training Images Dataset Labels: 60000

[Out]: Test Images Dataset Shape: (10000, 28, 28)

[Out]: No. of Test Images Dataset Labels: 10000

As the pixel values range from 0 to 255, we have to rescale these values

in the range 0 to 1 before pushing them to the model. We can scale these

values (both for training and test data sets) by dividing the values by 255.

[In]: training_images = training_images / 255.0

[In]: test_images = test_images / 255.0

We will be using the Keras implementation to build the different layers

of a neural network. We will keep it simple by having only one hidden layer.

[In]: input_data_shape = (28, 28)

[In]: hidden_activation_function = 'relu'

[In]: output_activation_function = 'softmax'

[In]: nn_model = models.Sequential()

[In]: �nn_model.add(ks.layers.Flatten(input_shape=input_data_

shape, name='Input_layer'))

[In]: �nn_model.add(ks.layers.Dense(32, activation=hidden_

activation_function, name='Hidden_layer'))

Chapter 3 Neural Networks and Deep Learning with TensorFlow

65

[In]: �nn_model.add(ks.layers.Dense(10, activation=output_

activation_function, name='Output_layer'))

[In]: nn_model.summary()

[Out]:

Now, we will use an optimization function with the help of the

compile method. An Adam optimizer with the objective function sparse_

categorical_crossentropy, which optimizes for the accuracy metric, can

be built as follows:

[In]: optimizer = 'adam'

[In]: loss_function = 'sparse_categorical_crossentropy'

[In]: metric = ['accuracy']

[In]: �nn_model.compile(optimizer=optimizer, loss=loss_function,

metrics=metric)

[In]: nn_model.fit(training_images, training_labels, epochs=10)

[Out]:

Chapter 3 Neural Networks and Deep Learning with TensorFlow

66

Following is the model evaluation:

	 1.	 Training evaluation

[In]: �training_loss, training_accuracy = nn_model.

evaluate(training_images, training_labels)

[In]: �print('Training Data Accuracy {}'.

format(round(float(training_accuracy),2)))

[Out]:

	 2.	 Test evaluation

[In]: �test_loss, test_accuracy = nn_model.evaluate(test_images,

test_labels)

[In]: �print('Test Data Accuracy {}'.format(round(float(test_

accuracy),2))) [Out]:

Chapter 3 Neural Networks and Deep Learning with TensorFlow

67

The code for the simple neural network implementation using

TensorFlow 2.0 can be found at http://bit.ly/NNetTF2. You can save

a copy of the code and run it in the Google Colab environment. Try

experimenting with different parameters and note the results.

�Deep Neural Networks (DNNs)
When a simple neural network has more than one hidden layer, it is known

as a deep neural network (DNN). Figure 3-8 shows the architecture of a

typical DNN.

Figure 3-8.  Deep neural network with three hidden layers

It consists of an input layer with two input variables, three hidden

layers with three neurons each, and an output layer (consisting either of

a single output for regression or multiple outputs for classification). The

more hidden layers, the more neurons. Hence, the neural network is able

to learn the nonlinear (non-convex) relation between the inputs and

output. However, having more hidden layers adds to the computation cost,

Chapter 3 Neural Networks and Deep Learning with TensorFlow

http://bit.ly/NNetTF2

68

so one has to think in terms of a trade-off between computation cost and

accuracy.

�Building DNNs with TensorFlow 2.0
We will be using the Keras implementation to build a DNN with three

hidden layers. The steps in the previous implementation of a simple neural

network, up to the scaling part, is same for building the DNN. Therefore,

we will skip those steps and start directly with building the input and

hidden and output layers of the DNN, as follows:

[In]: input_data_shape = (28, 28)

[In]: hidden_activation_function = 'relu'

[In]: output_activation_function = 'softmax'

[In]: dnn_model = models.Sequential()

[In]: �dnn_model.add(ks.layers.Flatten(input_shape=input_data_

shape, name='Input_layer'))

[In]: �dnn_model.add(ks.layers.Dense(256, activation=hidden_

activation_function, name='Hidden_layer_1'))

[In]: �dnn_model.add(ks.layers.Dense(192, activation=hidden_

activation_function, name='Hidden_layer_2'))

[In]: �dnn_model.add(ks.layers.Dense(128, activation=hidden_

activation_function, name='Hidden_layer_3'))

[In]: �dnn_model.add(ks.layers.Dense(10, activation=output_

activation_function, name='Output_layer'))

[In]: dnn_model.summary()

[Out]:

Chapter 3 Neural Networks and Deep Learning with TensorFlow

69

Now, we will use an optimization function with the help of the

compile method. An Adam optimizer with the objective function sparse_

categorical_crossentropy, which optimizes for the accuracy metric, can

be built as follows:

[In]: optimizer = 'adam'

[In]: loss_function = 'sparse_categorical_crossentropy'

metric = ['accuracy']

[In]: �dnn_model.compile(optimizer=optimizer, loss=loss_

function, metrics=metric)

[In]: dnn_model.fit(training_images, training_labels, epochs=20)

[Out]:

Chapter 3 Neural Networks and Deep Learning with TensorFlow

70

Following is the model evaluation:

	 1.	 Training valuation

[In]: �training_loss, training_accuracy = dnn_model.

evaluate(training_images, training_labels)

[In]: �print('Training Data Accuracy {}'.

format(round(float(training_accuracy),2)))

[Out]:

Chapter 3 Neural Networks and Deep Learning with TensorFlow

71

	 2.	 Test evaluation

[In]: �test_loss, test_accuracy = dnn_model.evaluate(test_

images, test_labels)

[In]: �print('Test Data Accuracy {}'.format(round(float(test_

accuracy),2)))

[Out]:

The code for the DNN implementation using TensorFlow 2.0 can be

found at http://bit.ly/DNNTF2. You can save a copy of the code and

run it in the Google Colab environment. Try experimenting with different

parameters and note the results.

As observed, the training accuracy for the simple neural network is

about 90%, whereas it is 94% for the DNNs, and the test accuracy for the

simple neural network is about 87%, whereas it is 89% for DNNs. It goes to

show that we were able to achieve higher accuracy by adding more hidden

layers to the neural network architecture.

�Estimators Using the Keras Model
In Chapter 2, we built various machine learning models, using premade

estimators. However, the TensorFlow API also provides enough flexibility for

us to build custom estimators. In this section, you will see how we can create

a custom estimator, using a Keras model. The implementation follows.

Let’s start by loading the necessary modules.

[In]: �from __future__ import absolute_import, division, print_

function, unicode_literals

[In]: import numpy as np

[In]: import pandas as pd

Chapter 3 Neural Networks and Deep Learning with TensorFlow

http://bit.ly/DNNTF2

72

[In]: import tensorflow as tf

[In]: from tensorflow import keras as ks

[In]: import tensorflow_datasets as tf_ds

[In]: print(tf.__version__)

[Out]: 2.0.0-rc1

Now, create a function to load the iris data set.

[In]: def data_input():

 train_test_split = tf_ds.Split.TRAIN

 �iris_dataset = tf_ds.load('iris', split=train_test_

split, as_supervised=True)

 �iris_dataset = iris_dataset.map(lambda features,

labels: ({'dense_input':features}, labels))

 iris_dataset = iris_dataset.batch(32).repeat()

 return iris_dataset

Build a simple Keras model.

[In]: activation_function = 'relu'

[In]: input_shape = (4,)

[In]: dropout = 0.2

[In]: output_activation_function = 'sigmoid'

[In]: �keras_model = ks.models.Sequential([ks.layers.Dense(16,

activation=activation_function, input_shape=input_

shape), ks.layers.Dropout(dropout), ks.layers.Dense(1,

activation=output_activation_function)])

Now, we will use an optimization function with the help of the

compile method. An Adam optimizer with the loss function categorical_

crossentropy can be built as follows:

[In]: loss_function = 'categorical_crossentropy'

[In]: optimizer = 'adam'

[In]: keras_model.compile(loss=loss_function, optimizer=optimizer)

Chapter 3 Neural Networks and Deep Learning with TensorFlow

73

[In]: keras_model.summary()

[Out]:

Build the estimator, using tf.keras.estimator.model_to_estimator:

[In]: model_path = "/keras_estimator/"

[In]: �estimator_keras_model = ks.estimator.model_to_

estimator(keras_model=keras_model, model_dir=model_path)

Train and evaluate the model.

[In]: estimator_keras_model.train(input_fn=data_input, steps=25)

[In]: �evaluation_result = estimator_keras_model.evaluate(input_

fn=data_input, steps=10)

[In]: print('Final evaluation result: {}'.format(evaluation_result))

[Out]:

Chapter 3 Neural Networks and Deep Learning with TensorFlow

74

The code for the DNN implementation using TensorFlow 2.0 can be

found at http://bit.ly/KerasEstTF2. You can save a copy of the code

and run it in the Google Colab environment. Try experimenting with

different parameters and note the results.

�Conclusion
In this chapter, you have seen how easy it is to build neural networks in

TensorFlow 2.0 and also how to leverage Keras models, to build custom

TensorFlow estimators.

Chapter 3 Neural Networks and Deep Learning with TensorFlow

http://bit.ly/KerasEstTF2

75© Pramod Singh, Avinash Manure 2020
P. Singh and A. Manure, Learn TensorFlow 2.0,
https://doi.org/10.1007/978-1-4842-5558-2_4

CHAPTER 4

Images with
TensorFlow
This chapter focuses on how we can leverage TensorFlow 2.0 for

computer vision. There has been much breakthrough research and

development in the field of computer vision, thanks to deep learning. In

this chapter, we will start with a brief overview of image processing and

move on to one of the most successful algorithms in computer vision, the

convolutional neural networks (CNNs), or ConvNets. We will approach

CNNs with an introduction and explain their basic architecture with a

simple example. Later in this chapter, we will implement a CNN, using

TensorFlow 2.0. We will move on to discuss generative networks, which are

networks developed for generating images with machines. We will cover

autoencoders and variational autoencoders (VAEs), which are a form of

generative network. Next, we will implement VAEs, using TensorFlow

2.0, and generate some new images. In the final section, we will discuss

the concept of transfer learning—how it has been leveraged in computer

vision and the difference between a typical machine learning process and

transfer learning. Finally, we discuss applications and the advantages of

transfer learning.

76

�Image Processing
There has been much groundbreaking research conducted in the field of

computer vision, primarily in the areas of object detection, recognition,

and segmentation, from the 1960s to 2000s. This work was partly divided

into two categories: one focused on techniques to perform image

recognition, which started in the 1960s, and the other, which started after

2000, focused on collecting images data as a benchmark to evaluate the

techniques.

Some notable research related to image recognition techniques

included “Blocks World,” by Larry Roberts, in 1963, which is considered to

be the first Ph.D. dissertation in computer vision. In it, the visual world was

simplified into simple geometric shapes, the goal being to recognize and

reconstruct them.

Work in the area of collecting images data for benchmarking began in

the year 2006, starting with the PASCAL Visual Object Classes challenge,

which had a data set of 20 object categories and was composed of several

thousand to about 10,000 labeled objects per category. Many groups

started using this data set to test their techniques, and, thus, a new

paradigm shift occurred. About the same time, a group of scholars at

Princeton and Stanford Universities began to consider whether we were

ready to recognize most objects or all objects, which led to a project called

ImageNet. This is a collection of 14M+ images spread over 22K categories.

It was the biggest artificial intelligence (AI)-related data set at the time.

The ImageNet Large Scale Visual Recognition Challenge resulted in many

groundbreaking algorithms, one of which was AlexNet (CNN), which beat

all other algorithms, to win the ImageNet challenge in 2012.

Chapter 4 Images with TensorFlow

77

�Convolutional Neural Networks
Convolutional neural networks, abbreviated as CNNs or ConvNets, are

a special class of neural networks that specializes in processing grid-like

topology data, such as images. They consist of three distinct layers:

•	 Convolutional

•	 Pooling

•	 Fully connected

�Convolutional Layer
In a CNN, a convolutional layer is essentially responsible for applying one

or more filters to an input. This is the layer that distinguishes convolutional

neural networks from other neural networks. Each convolutional layer

contains one or more filters, known as convolutional kernels. A filter

is basically a matrix of integers that is used on a subset of the input

image, which is of the same size as the filter. Each pixel from the subset

is multiplied by the corresponding value in the kernel, and then the

result is summed up for a single value. This is repeated until the filter

“slides” across the whole image, thus creating an output feature map. The

magnitude of movement between applications of the filter to the input

image is referred to as the stride, and it is almost always symmetrical in

height and width.

For example, suppose we have a grayscale image of 9 × 9 pixels that has

one channel (a 2D matrix) and a 3 × 3 convolutional kernel. If we choose

a stride of (1,1), i.e., sliding the kernel by 1 pixel horizontally and 1 pixel

vertically over the whole of the image, we get an output feature map of 7 × 7.

Chapter 4 Images with TensorFlow

78

Input grayscale image of letter X (9 × 9 pixels)

Convolutional kernel (3 × 3 pixels)

First dot product of subset of input image with kernel

Second dot product of subset of input image with kernel (stride (1,1))

Chapter 4 Images with TensorFlow

79

Final feature map of 7 × 7 after kernel strides through whole input image

Usually, for the final feature output, an activation function (e.g., ReLU

[rectified linear unit]) is applied. ReLU basically ensures that there is no

negative value in the feature output matrix, by forcing these (negative

values) to zero (Figure 4-1).

Figure 4-1.  ReLU function

Chapter 4 Images with TensorFlow

80

Output of ReLU function

�Pooling Layer
Pooling layers help to reduce the dimensionality of the input features, thus

reducing the total number of parameters and complexity of the model.

One of the most widely used pooling techniques is max pooling. As the

name implies, this technique takes only the maximum from a pool. As an

example, let us perform pooling with a window size 2 and a stride 2 on the

output of the ReLU that we derived previously.

In this case, we take the maximum of (0.77, 0, 0, 1.0), i.e., 1.0 from the

first pool.

Chapter 4 Images with TensorFlow

81

We take the maximum of (0.11, 0.33, 0, 0.33), i.e., 0.33 from the second

pool.

Finally, when we have made all the strides, we get the following output:

�Fully Connected Layer
This layer is the same as any artificial neural network (ANN) system in

which the neurons have complete connection to all the activations from

the previous layers (Figure 4-2).

Chapter 4 Images with TensorFlow

82

�ConvNets Using TensorFlow 2.0
Let us implement a simple convolutional neural network using

TensorFlow 2.0. For this, we will make use of the Fashion-MNIST data set

by Zalando (The MIT License [MIT] Copyright © [2017] Zalando SE,

https://tech.zalando.com), which contains 70,000 images

1.0

0.33

0.55

0.33
0.33
1.0
0.33
0.55
0.55
0.33
1.0
0.11
0.33
0.55
0.11

0.77

Input
Layer

Hidden
Layer

Output
Layer

Class 1

Class N

Figure 4-2.  Input to fully connected layer (flattened output of pooling
layer)

Chapter 4 Images with TensorFlow

https://tech.zalando.com

83

(in grayscale) in 10 different categories. The images are 28 × 28 pixels

of individual articles of clothing, with values ranging from 0 to 255, as

shown in Figure 4-3.

Figure 4-3.  Images from the Fashion-MNIST data set by Zalando
(Source: https://bit.ly/2xqIwCH)

Chapter 4 Images with TensorFlow

https://bit.ly/2xqIwCH

84

Of the total 70,000 images, 60,000 are used for training and the

remaining 10,000 for testing. The labels are integer arrays ranging from

0 to 9. The class names are not a part of the data set. Therefore, we must

include the following mapping for training/prediction:

(Source: https://bit.ly/2xqIwCH)

Let’s start by loading the necessary modules.

[In]: �from __future__ import absolute_import, division,

print_function, unicode_literals

[In]: import numpy as np

[In]: import tensorflow as tf

[In]: from tensorflow import keras as ks

[In]: print(tf.__version__)

[Out]: 2.0.0-rc1

Now, load the Fashion-MNIST data set.

[In]: mnist_fashion = ks.datasets.fashion_mnist

[In]: �(training_images, training_labels), (test_images,

test_labels) = mnist_fashion.load_data()

Chapter 4 Images with TensorFlow

https://bit.ly/2xqIwCH

85

Let’s undertake a little bit of data exploration.

[In]: �print('Training Dataset Shape: {}'.format(training_

images.shape))

[In]: �print('No. of Training Dataset Labels: {}'.

format(len(training_labels)))

[In]: print('Test Dataset Shape: {}'.format(test_images.shape))

[In]: �print('No. of Test Dataset Labels: {}'.format(len(test_

labels)))

[Out]: Training Dataset Shape: (60000, 28, 28)

[Out]: No. of Training Dataset Labels: 60000

[Out]: Test Dataset Shape: (10000, 28, 28)

[Out]: No. of Test Dataset Labels: 10000

As the pixel values range from 0 to 255, we will scale those values in

the range of 0 to 1 before pushing them to the model. We can scale these

values (both for training and test data sets) by dividing the values by 255.

[In]: training_images = training_images / 255.0

[In]: test_images = test_images / 255.0

We can reshape the training and test data set by reshaping the matrices

into a 28 × 28 × 1 array, as follows:

[In]: training_images = training_images.reshape((60000, 28, 28, 1))

[In]: test_images = test_images.reshape((10000, 28, 28, 1))

[In]: �print('Training Dataset Shape: {}'.format(training_

images.shape))

[In]: �print('No. of Training Dataset Labels: {}'.

format(len(training_labels)))

[In]: print('Test Dataset Shape: {}'.format(test_images.shape))

[In]: �print('No. of Test Dataset Labels: {}'.format(len(test_

labels)))

Chapter 4 Images with TensorFlow

86

[Out]: Training Dataset Shape: (60000, 28, 28, 1)

[Out]: No. of Training Dataset Labels: 60000

[Out]: Test Dataset Shape: (10000, 28, 28, 1)

[Out]: No. of Test Dataset Labels: 10000

Now, let’s build the different layers of the model. We will be using the

Keras implementation to build the different layers of a CNN. We will keep

it simple, by having only three layers.

First layer—convolutional layer with ReLU activation

function: This layer takes the 2D array (28 × 28 pixels)

as input. We will take 50 convolutional kernels (filters)

of shape 3 × 3 pixels. The output of which will be

passed to a ReLU activation function before being

passed to the next layer.

[In]: cnn_model = ks.models.Sequential()

[In]: �cnn_model.add(ks.layers.Conv2D(50, (3, 3), activation='relu',

input_shape=(28, 28, 1), name='Conv2D_layer'))

Second layer—pooling layer: This layer takes the 50

26 × 26 2D arrays as input and transforms them into

the same number (50) of arrays, with dimensions half

that of the original (i.e., from 26 × 26 to 13 × 13 pixels).

[In]: �cnn_model.add(ks.layers.MaxPooling2D((2, 2),

name='Maxpooling_2D'))

Third layer—fully connected layer: This layer takes the

50 13 × 13 2D arrays as input and transforms them into

a 1D array of 8450 elements (50 × 13 × 13). These 8450

input elements are passed through a fully connected

neural network that gives the probability scores for

each of the 10 output labels (at the output layer).

Chapter 4 Images with TensorFlow

87

[In]: cnn_model.add(ks.layers.Flatten(name='Flatten'))

[In]: �cnn_model.add(ks.layers.Dense(50, activation='relu',

name='Hidden_layer'))

[In]: �cnn_model.add(ks.layers.Dense(10, activation='softmax',

name='Output_layer'))

We can check the details of different layers built in the CNN model by

using the summary method shown below:

[In]: cnn_model.summary()

[Out]:

Now we will use an optimization function with the help of the

compile method. An Adam optimizer with objective function sparse_

categorical_crossentropy, which optimizes for the accuracy metric, can

be built as follows:

[In]: �cnn_model.compile(optimizer='adam', loss='sparse_

categorical_crossentropy', metrics=['accuracy'])

Chapter 4 Images with TensorFlow

88

Model training:

[In]: cnn_model.fit(training_images, training_labels, epochs=10)

[Out]:

Model evaluation:

	 1.	 Training evaluation

[In]: �training_loss, training_accuracy = cnn_model.

evaluate(training_images, training_labels)

[In]: �print('Training Accuracy {}'.

format(round(float(training_accuracy), 2)))

[Out]:

Chapter 4 Images with TensorFlow

89

	 2.	 Test evaluation

[In]: �test_loss, test_accuracy = cnn_model.

evaluate(test_images, test_labels)

[In]: �print('Test Accuracy {}'.format(round(float

(test_accuracy), 2))) [Out]:

From the preceding evaluation, we see that we were able to achieve

about 97% accuracy in the training data set and about 91% accuracy in the

test data set, with only a simple CNN architecture. This goes to prove that

CNNs are powerful algorithms for image recognition.

The code for the CNN implementation using TensorFlow 2.0 can be

found at http://bit.ly/CNNTF2. You can save a copy of the code and

run it in the Google Colab environment. Try experimenting with different

parameters and note the results.

�Advanced Convolutional Neural Network
Architectures
CNNs have come a long way since they were first introduced in the 1990s.

Let’s look at some of the recent CNN-based architectures that have entered

the limelight.

	 1.	 VGG-16. This convolutional neural network was

introduced by K. Simonyan and A. Zisserman, from

the University of Oxford, in the paper “Very Deep

Convolutional Networks for Large-Scale Image

Chapter 4 Images with TensorFlow

http://bit.ly/CNNTF2

90

Recognition.” The main difference between AlexNet

and VGG-16 is that VGG-16 uses multiple 3 × 3

kernels as filters, instead of the large filters used in

AlexNet (11 filters in the first convolutional layer,

and 5 filters in the second). This led to an accuracy

of 92.7%—among the top five in the ImageNet

challenge—and this model was also submitted

to ILSVRC-2014, at which it was the runner-up.

Figure 4-4 shows a typical VGG-16 architecture.

Figure 4-4.  VGG-16 architecture

Chapter 4 Images with TensorFlow

91

	 2.	 Inception(GoogleNet). This was developed by

Google and was the winner of the ILSVRC-2014

competition wherein it achieved a top-5 error rate of

6.67%. An inception module was used with smaller

convolutions that made possible to reduce the

number of parameters to 4 million only. Figure 4-5

shows the GoogleNet architecture.

Figure 4-5.  GoogleNet architecture

	 3.	 ResNet. This architecture was developed by Kaiming

He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun in

2015. It won the ILSVRC-2015 competition, with a

top-five error rate of 3.57%, which was lower than

the human error top-five rate. Figure 4-6 shows the

ResNet architecture.

Chapter 4 Images with TensorFlow

92

Figure 4-6.  ResNet architecture

Chapter 4 Images with TensorFlow

93

	 4.	 DenseNet. This architecture was developed by

Gao Huang, Zhuang Liu, Laurens van der Maaten,

and Kilian Q. Weinberger in 2016. DenseNet was

reported to achieve better performance with

less complexity, compared to ResNet. A typical

DenseNet architecture is depicted in Figure 4-7.

Figure 4-7.  DenseNet architecture

�Transfer Learning
Imagine that there are two friends, A and B, who recently planned to learn

to drive a car, so that once they finished learning, they could buy a car for

their commute. Suppose A used to take public transportation to commute,

and B used a geared bike. Now, when both start to learn to drive a car,

assuming that both A and B have the same intelligence level, who will

be in a better position to learn more quickly? Yes, you’re right; it will be

B. Because B has been using a bike, he will be applying his knowledge of

controlling the bike, through the combination of clutch, gear, accelerator,

and brakes, to control a car. The only new skill he must learn is to adjust

Chapter 4 Images with TensorFlow

94

his driving for a car, which is much bigger than a bike. For A, driving a

car requires an entirely new skill set, as he has never ridden a bike/car.

Hence, he will require more time and effort to learn to drive a car. This

example illustrates how a typical human behavior acquired through past

experiences of performing a certain task can be applied to a new but

similar or related task. This has helped humans evolve faster and spend

less time and effort on learning new tasks.

The same thing, applied to machine learning, is called transfer

learning. According to the book Deep Learning by Ian Goodfellow, Aaron

Courville, and Yoshua Bengio (MIT Press, 2016), the definition of transfer

learning is a “situation where what has been learned in one setting is

exploited to improve generalization in another setting.”

Let’s derive a mathematical formula in support of the preceding

definition, using the example of learning to drive a car that was mentioned

previously. Let’s first understand what a domain and task are, with respect

to transfer learning.

A domain D comprises a feature space S and a marginal probability

distribution (mpd) P(X), where S = s1,…,sn ∈ S. Given a specific domain,

D = {S , P(S)}, a task consists of a label space Y and an objective predictive

function f(·) (denoted by T = {P, f(·)}), which is not observed but can be

learned from the training data, which consist of pairs {si, pi}, where si ∈
S and pi ∈ P. The function f(·) can be used to predict the corresponding

label, f(s), of a new instance s. Probabilistically, f(s) can be written as

P(p|s). Let’s suppose we denote the activity of riding a bike as DS and call

it as a source domain. Now let’s call the activity of driving a car DT and

call it as target domain. Suppose riding a bike on a busy street is one task

TS of the domain DS, whereas driving a car on a busy street is a task TT of

domain DT.

Mathematically, given a source domain DS and a learning task TS, a

target domain DT and learning task TT, the aim of transfer learning is to

help improve the learning of the (target) predictive function fT(·) in DT,

Chapter 4 Images with TensorFlow

95

leveraging the knowledge in DS and TS, where DS ≠ DT or TS ≠ TT. In simple

terms, transfer learning is the use of knowledge gained by B in riding his

bike on a busy street, applied to driving a car on another busy street.

�Transfer Learning and Machine Learning
In the preceding example, if the target and source domains are the same,

i.e., if driving a car is both the source as well as the target domain (DS = DT),

and the learning tasks are the same or similar, i.e., driving a car in two

different busy streets (TS = TT), the learning problem becomes a traditional

machine learning problem. However, one should note that transfer

learning is an application of a research problem to a machine learning

problem and not an algorithm or technique. Transfer learning is different

from traditional machine learning, as it uses pre-trained models that have

been built with some task TS as an input to be used for another task TT in a

way that will help to jump-start the development process for task TT.

Figure 4-8 depicts a typical machine learning system. We can see that

for a particular task for a given domain, the machine learning model is able

to learn and generalize well. However, if there is a new task from a different

domain, it must build an altogether new model, to be able to generalize for

that task/domain.

Task/Domain A Model A Result A

Task/Domain B Model B Result B

Figure 4-8.  Machine learning methodology

Chapter 4 Images with TensorFlow

96

Figure 4-9 depicts a typical transfer learning methodology. We can see

that for Task/Domain A, the machine learning model is able to learn and

generalize well. Now, here, we extract the “general” knowledge gained

from Task/Domain A and apply it to a similar Task/Domain B.

Task/Domain A Model A Result A

Task/Domain B Model B Result B

Knowledge

Figure 4-9.  Transfer learning methodology

Following are applications of transfer learning:

	 1.	 Deep learning/image recognition: Use of Word2vec

and fastText models for sentiment analysis of Twitter

data on a particular topic

	 2.	 Natural language processing: Use of AlexNet and

Inceptions models for object detection

Chapter 4 Images with TensorFlow

97

Following are advantages of transfer learning:

	 1.	 Reduced training time, by using some of the modules

of an already developed model to a new one

	 2.	 Usefulness in scenarios in which there is not

sufficient data to train a model for desired results

�Variational Autoencoders Using
TensorFlow 2.0
To understand what variational autoencoders are, you must first

understand what autoencoders are, where they are used, and what the

difference is between VAEs and the other forms of autoencoders.

�Autoencoders
Autoencoders are a type of ANN that is used to generate output data in the

same unsupervised manner as for input data. An autoencoder essentially

comprises two main parts: an encoder and a decoder. The encoder

compresses the input data into a lower dimensional representation of it,

and the decoder decompresses the representation into the original input

data. Figure 4-10 shows a simple autoencoder applied on images.

Encoder Decoder
Compressed

Representation
Input
Image

Output
Image

Figure 4-10.  Basic autoencoder

Chapter 4 Images with TensorFlow

98

�Applications of Autoencoders
One limitation of autoencoders is that they can only be used to reconstruct

data that the encoder part of the autoencoders has seen during the

training. They cannot be used to generate new data. This is where

variational autoencoders enter the picture.

Following are two applications of autoencoders:

	 1.	 As a dimensionality reduction technique to

observe/visualize high-dimensional data into lower

dimensions

	 2.	 As a compression technique to save memory and

network cost

�Variational Autoencoders
A VAE is a type of generative model plus general autoencoders that let

us sample from the model, to generate data. Most VAE architecture is

the same as that of a generic autoencoder, except that VAEs force the

compressed representation of the input data to follow a zero mean and a

unit variance Gaussian distribution. A simple VAE architecture is shown in

Figure 4-11.

Encoder
(conv)

Mean vector

Input
Image

Standard Deviation
vector

Sampled
Latent
Vector

Decoder
(deconv)

Output
Image

Figure 4-11.  Basic VAE architecture

Chapter 4 Images with TensorFlow

99

�Implementation of Variational Autoencoders
Using TensorFlow 2.0
Let’s build a VAE model that will help us to generate new handwritten

digits, using the Fashion-MNIST data set. This data set comprises 70,000

images (black-and-white) of handwritten digits, ranging from 0 to 9, out

of which 60,000 are for training, and the remaining 10,000 are for testing.

Each grayscale image is normalized to fit a 28 × 28 pixel bounding box.

	 1.	 Load the required Python modules.

[In]: import time

[In]: import PIL as pil

[In]: import numpy as np

[In]: import tensorflow as tf

[In]: from IPython import display

[In]: import matplotlib.pyplot as mpy

[In]: from tensorflow import keras as ks

[In]: from tensorflow.keras.datasets import mnist

	 2.	 Load the Fashion-MNIST data set with train-test

split, normalization, and binarization.

[In]: (training_data, _), (test_data, _) = mnist.load_data()

[In]: �training_data = training_data.reshape(training_data.

shape[0], 28, 28, 1).astype('float32')

[In]: �test_data = test_data.reshape(test_data.shape[0], 28,

28, 1).astype('float32')

[In]: training_data = training_data/255.0

[In]: test_data = test_data/255.0

[In]: training_data[training_data >= 0.5] = 1.0

[In]: training_data[training_data < 0.5] = 0.0

[In]: test_data[test_data >= 0.5] = 1.0

[In]: test_data[test_data < 0.5] = 0.0

Chapter 4 Images with TensorFlow

100

	 3.	 Batching and shuffling the data set

[In]: �training_batch = tf.data.Dataset.from_tensor_

slices(training_data).shuffle(60000).batch(50)

 �test_batch = tf.data.Dataset.from_tensor_slices(test_

data).shuffle(10000).batch(50)

	 4.	 Use tf.keras.Sequential to build the encoder and

decoder.

We will be building two convolutional neural networks for the encoder

and decoder wrapping, with tf.keras.Sequential.

[In]: kernel_size = 3

[In]: strides_2_2 = (2, 2)

[In]: strides_1_1 = (1, 1)

[In]: activation = 'relu'

[In]: padding = 'SAME'

[In]: class CONV_VAE(ks.Model):

 #Initialization

 def __init__(self, latent_dimension):

 super(CONV_VAE, self).__init__()

 self.latent_vector = latent_vector

 #Build Encoder Model with two Convolutional Layers

 self.encoder_model = ks.Sequential(

 [

 �ks.layers.InputLayer(input_

shape=(28, 28, 1)),

 �ks.layers.Conv2D

(filters=25, kernel_

size=kernel_size,

strides=strides_2_2,

activation=activation),

Chapter 4 Images with TensorFlow

101

 �ks.layers.

Conv2D(filters=50,

kernel_size=kernel_size,

strides=strides_2_2,

activation=activation),

 ks.layers.Flatten(),

 �ks.layers.Dense(latent_

vector + latent_vector),

]

)

 #Build Decoder Model

 self.decoder_model = ks.Sequential(

 [

 ks.layers.InputLayer

 �(input_shape=(latent_

vector,)),

 �ks.layers.

Dense(units=7*7*25,

activation=activation),

 �ks.layers.Reshape(target_

shape=(7, 7, 25)),

 �ks.layers.Conv2DTranspose

(filters=50, kernel_

size=kernel_size,

strides=strides_2_2,

padding=padding,

activation=activation),

Chapter 4 Images with TensorFlow

102

 �ks.layers.Conv2DTranspose

(filters=25, kernel_

size=kernel_size,

strides=strides_2_2,

padding=padding,

activation=activation),

 �ks.layers.

Conv2DTranspose(filters=1,

kernel_size=kernel_size,

strides=strides_1_1,

padding=padding),

]

)

 @tf.function

 �#Sampling Function for taking samples out of encoder

output

 def sampling(self, sam=None):

 if sam is None:

 �sam = tf.random.normal(shape=(50, self.

latent_vector))

 return self.decoder(sam, apply_sigmoid=True)

 #Encoder Function

 def encoder(self, inp):

 �mean, logd = tf.split(self.encoder_model(inp),

num_or_size_splits=2, axis=1)

 return mean, logd

 #Reparameterization Function

 def reparameterization(self, mean, logd):

 sam = tf.random.normal(shape=mean.shape)

 return sam * tf.exp(logd * 0.5) + mean

Chapter 4 Images with TensorFlow

103

 #Decoder Function

 def decoder(self, out, apply_sigmoid=False):

 logout = self.decoder_model(out)

 if apply_sigmoid:

 probabs = tf.sigmoid(logout)

 return probabs

 return logout

	 5.	 Build an optimizer function.

[In]: optimizer_func = tf.keras.optimizers.Adam(0.0001)

 �def log_normal_prob_dist_func(sampling, mean_value, logd,

raxis=1):

 log_2_pi = tf.math.log(2.0 * np.pi)

 �return tf.reduce_sum(-0.5 * ((sampling - mean_

value) ** 2.0 * tf.exp(-logd) + logd + log_2_pi),

axis=raxis)

 @tf.function

 def loss_func(model_object, inp):

 mean_value, logd = model_object.encoder(inp)

 out = model_object.reparameterization(mean_value, logd)

 log_inp = model_object.decoder(out)

 �cross_entropy = tf.nn.sigmoid_cross_entropy_with_

logits(logits=log_inp, labels=inp)

 �logp_inp_out = -tf.reduce_sum(cross_entropy,

axis=[1, 2, 3])

 logp_out = log_normal_prob_dist_func(out, 0.0, 0.0)

 �logq_out_inp = log_normal_prob_dist_func(out, mean_

value, logd)

 �return -tf.reduce_mean(logp_inp_out + logp_out -

logq_out_inp)

Chapter 4 Images with TensorFlow

104

 @tf.function

 def gradient_func(model_object, inp, optimizer_func):

 with tf.GradientTape() as tape:

 loss = loss_func(vae_model, inp)

 �gradients = tape.gradient(loss, model_object.

trainable_variables)

 �optimizer_func.apply_gradients(zip(gradients, model_

object.trainable_variables))

	 6.	 Training

[In]: epochs = 100

[In]: latent_vector = 8

[In]: examples = 8

[In]: rand_vec = tf.random.normal(shape=[examples, latent_vector])

[In]: vae_model = CONV_VAE(latent_vector)

	 7.	 Generate an image with a trained model.

[In]: def generate_and_save_images(vae_model, epochs,

input_data):

 preds = vae_model.sampling(input_data)

 fig = mpy.figure(figsize=(4,4))

 for i in range(preds.shape[0]):

 mpy.subplot(4, 4, i+1)

 mpy.imshow(preds[i, :, :, 0], cmap='gray')

 mpy.axis('off')

 mpy.savefig('img_at_epoch{:04d}.png'.format(epochs))

 mpy.show()

[In]: generate_and_save_images(vae_model, 0, rand_vec)

[In]: for epoch in range(1, epochs + 1):

 start_time = time.time()

Chapter 4 Images with TensorFlow

105

 for x in training_batch:

 gradient_func(vae_model, x, optimizer_func)

 end_time = time.time()

 if epoch % 1 == 0:

 loss = ks.metrics.Mean()

 for y in test_batch:

 loss(loss_func(vae_model, y))

 elbo = -loss.result()

 display.clear_output(wait=False)

 print('Epoch no.: {}, Test batch ELBO: {}, '

 �'elapsed time for current epoch {}'.format(epochs,

elbo, end_time - start_time))

 �generate_and_save_images(vae_model, epochs,

rand_vec)

[Out]:

As we can see from the preceding, we were able to generate new

images of handwritten digits, using the Fashion-MNIST data set for

training.

The code for the VAE implementation using TensorFlow 2.0 can be

found at http://bit.ly/CNNVAETF2. You can save a copy of the code and

run it in the Google Colab environment. Try experimenting with different

parameters and note the results.

Chapter 4 Images with TensorFlow

http://bit.ly/CNNVAETF2

106

�Conclusion
In this chapter, we have explored various well-known architectures for

image processing and generation. Also, we have considered the concept

of transfer learning and how it has helped to speed up machine learning

development and bring more accuracy to models for which training data is

not abundant. Finally, you have seen how we can leverage the TensorFlow

and Keras APIs, to build these architectures.

Chapter 4 Images with TensorFlow

107© Pramod Singh, Avinash Manure 2020
P. Singh and A. Manure, Learn TensorFlow 2.0,
https://doi.org/10.1007/978-1-4842-5558-2_5

CHAPTER 5

Natural Language
Processing with
TensorFlow 2.0
This chapter focuses on some of the aspects of natural language processing

(NLP), using TensorFlow 2.0. NLP is a complex field in itself, and there are

multiple tools and techniques available in the open source community for

users to leverage. This chapter is mainly divided into three parts. The first

offers a brief introduction to NLP and the building blocks of text processing

in TensorFlow 2.0. In the second part, we discuss word embeddings and

how they can be used to detect the semantic meaning of words. In the

final part, we will build a deep neural network, to predict the sentiment of

a user review. We will also plot word embeddings, using the TensorFlow

Projector, and view them in 3D space.

�NLP Overview
NLP is a vast field, and we will touch upon some fundamental shifts that

have occurred over last few decades. NLP research goes back to the 1950s,

when people started to work on problems related to language translation.

It has evolved since then, and we are witnessing some groundbreaking

work in this area of research. If we consider how this evolution has been

108

occurring, we can consult the NLP curve chart that has been mentioned in

the paper “Jumping NLP Curves” (Cambria and White, 2014), as shown in

Figure 5-1.

We start with the syntactic layer, where the focus is to deconstruct the

text into smaller pieces. Techniques such as POS (parts of speech) tagging,

chunking, and lemmatization were carried out to bring the overall text

into a more desirable form. This is what is known as a “bag-of-words”

approach. Slowly and gradually, we have moved into what is known as

the second layer—semantics curve. In this layer, it’s all about extracting

the meaning of the text. It uses different techniques under the hood to

figure out the concept and meaning of the words in the text. It helped to

evolve from simply using text as symbols to actually using them for their

Figure 5-1.  NLP curves

Chapter 5 Natural Language Processing with TensorFlow 2.0

109

meaning and relevance in the overall text. This stage is also known as “bag-

of-concepts” model. The final and third phase of the NLP curve time line

is the pragmatics curve, which goes beyond just the meaning of text but,

rather, deals with contextual information. The ability to decode sarcasm,

understand deep aspects of polarity, and personality recognition is what it

strives for. Researchers are already working in this direction to reach this

stage. It entails lot of components associated with text and computers. In

fact, NLP is what falls at the cross section of linguistics and computers.

Text data makes up a huge percentage of the total data being generated

on a global level. Therefore, it provides an incredible platform that can be

used in many other ways. One of the most impactful use cases in terms

of text data has been to identify the perception of the people related to a

particular brand, based on the reviews they write. It has helped businesses

to recalibrate their strategies to manage their brand value in the market.

Supervised learning problems under the text category can be broadly

identified as

•	 Reviews/text classification

•	 Text summarization (news, blogs, journals)

•	 Spam detection

•	 Audience segmentation on social media platforms

•	 Chatbot

In this chapter, we are going to focus on the text classification type.

�Text Preprocessing
Text data can either be in structured or unstructured form. Most of the time,

we have to apply certain cleaning and transformation techniques in order

to preprocess the text data before we use it. In this section, we are going to

see some of those techniques to deal with text data, using TensorFlow.

Chapter 5 Natural Language Processing with TensorFlow 2.0

110

�Tokenization
The first technique to use on text data is known as tokenization. Tokens

stand for individual words/symbols/numbers present in the text. For

example, if we have a simple text, and we want to apply tokenization on

it, we can simply create a tokenization instance and apply it, as shown

following.

[In]: �sample_text=['This is a chapter on text processing using

tf','Text processing requires careful handling']

[In]: from tensorflow.keras.preprocessing.text import Tokenizer

[In]: tokenizer=Tokenizer()

[In]: tokenizer.fit_on_texts(sample_text)

The tokenizer collects all the distinct words appearing in the text and

assigns a label to each one. It also assigns the labels in such a way that

initial values are assigned to high-frequency tokens. We can validate this if

we check the frequency of the words appearing in the sample. To view the

labels of each token, we can call word_index on the tokenized text.

[In]: word_dict=tokenizer.word_index

[In]: print(word_dict)

[Out]:

{'text': 1, 'processing': 2, 'this': 3, 'is': 4, 'a': 5,

'chapter': 6, 'on': 7, 'using': 8, 'tf': 9, 'requires': 10,

'careful': 11, 'handling': 12}

Tokenizer does the heavy lifting in the background, by taking care of

duplicate/similar words, removing punctuation, and converting letters

to lower case. For example, if tf and tf! appear in the text, tokenization

would consider both to be the same tokens, by removing the “!” in the

background.

Chapter 5 Natural Language Processing with TensorFlow 2.0

111

[In]: �sample_edit_text=['This is a chapter on text processing

using tf','Text processing requires careful handling','tf!']

[In]: tokenizer=Tokenizer()

[In]: tokenizer.fit_on_texts(sample_edit_text)

[In]: word_dict=tokenizer.word_index

[In]: print(word_dict)

[Out]:

 {'text': 1, 'processing': 2, 'tf': 3, 'this': 4, 'is': 5,

'a': 6, 'chapter': 7, 'on': 8, 'using': 9, 'requires': 10,

'careful': 11, 'handling': 12}

So far, we have seen labels assigned to each of these tokens, but at the

end of the day, we are dealing with sentences, which are collections of

words. Therefore, we must combine these individual labels in such a way

as to represent entire sentences numerically. One of the most fundamental

approaches to converting a sequence of words into numerical form is

simply to apply text to sequence functionality on the entire text sentence.

[In]: seq=tokenizer.texts_to_sequences(sample_edit_text)

[In]: print(seq)

[Out]:

[[4, 5, 6, 7, 8, 1, 2, 9, 3], [1, 2, 10, 11, 12], [3]]

As we can see, we get three different arrays, representing individual

sentences in the sample_edit_text. Although we are able to achieve our

goal, there are still some gaps in this representation. One is that each array

is of different length, which can be a potential problem when using these

vectors in any sort of machine learning model training. To handle the

different lengths of arrays, we can make use of something known as padding.

This converts vectors of different lengths into vectors of the same length, by

padding the vectors by a value of 0 at the beginning or end of a vector.

Chapter 5 Natural Language Processing with TensorFlow 2.0

112

[In]: �from tensorflow.keras.preprocessing.sequence import pad_

sequences

[In]: padded_seq=pad_sequences(seq,padding='post')

[In]: print(padded_seq)

[Out]:

[[4 5 6 7 8 1 2 9 3]

 [1 2 10 11 12 0 0 0 0]

 [3 0 0 0 0 0 0 0 0]]

Now, we are left with three vectors, all of equal length.

�Word Embeddings
We already saw the method to represent a set of words in a sentence in

numerical form, using labels and the padding technique. There are some

simpler and much more complicated methods, in addition to representing

text in numerical form. We can basically divide them into two categories:

	 1.	 Frequency-based

	 2.	 Prediction-based

Frequency-based techniques include vectorizer, tf-idf, and hashing

vectorizer, whereas prediction-based techniques involve such methods as

CBOW (continuous bag-of-words) and Skip-Gram model. We will not go

into the details of each of these methods, as there are enough articles and

information related to these approaches available on various platforms.

The idea of this section is to use word embeddings from our input data set

and visualize them, using TensorFlow Projector. But before we jump into

building a model, let’s discuss briefly exactly what embeddings are.

Embeddings are, again, numerical representations of text information,

but they are much more powerful and relevant, compared to other

methods. Embeddings are nothing but the weights of the hidden layer of

a shallow neural network that was trained on a certain set of text. We can

Chapter 5 Natural Language Processing with TensorFlow 2.0

113

decide on the size of these embeddings as per need (50, 100, or more) as

well, but the key thing to remember here is that the embedding value can

differ for the same text, based on different data it’s been trained on. The

core advantage that word embedding offers is that it captures the semantic

meaning of the word, as it uses the idea of distributed representations.

It predicts these embedding values, based on other words similar to that

word. Therefore, there’s an extent of dependence or similarity between a

particular word and other similar words. We are going to see later in the

chapter how similar words tend to have embeddings that are closer to each

other in high-dimensional representation. There are some standard off-

the-shelf methods available for calculating word embeddings, including

the following:

Word2Vec (by Google)

GloVe (by Stanford)

fastText (by Facebook)

�Text Classification Using TensorFlow
In this section, we are going to build a deep neural network to predict the

sentiment of a consumer review (positive or negative). The idea of building

this network is not to focus on its accuracy but, rather, the process of

dealing with text classification in TensorFlow 2.0 and the visualization of

word embeddings. The data set that we are going to use for this task is the

summary of people’s review about the products on the Amazon web site.

Instead of an entire review, we will use summary information. The data set

is available with the code bundle for this book. We start by importing the

required libraries and reading the data set.

[In]: import pandas as pd

[In]: import numpy as np

Chapter 5 Natural Language Processing with TensorFlow 2.0

114

[In]: �df=pd.read_csv('product_reviews_dataset.csv',encoding=

"ISO-8859-1")

[In]: df.columns

[Out]: Index(['Sentiment', 'Summary'], dtype='object')

[In]: df.head(10)

[Out]:

[In]: df.Sentiment.value_counts()

[Out]:

1 486417

0 82037

As we can see, there are only two columns in the data frame

(Sentiment, Summary), and we have positive counts on the higher side,

compared to negative summaries (80K).

Chapter 5 Natural Language Processing with TensorFlow 2.0

115

�Text Processing
Now we apply a couple of text-cleaning techniques, using a helper

function. In this helper function, we use a regular expression to remove

unwanted symbols, characters, and numbers, to set the reviews into a

standard format. We apply this helper function on the Summary column of

the data frame.

[In]: import re

[In]: def clean_reviews(text):

 text=re.sub("[^a-zA-Z]"," ",str(text))

 return re.sub("^\d+\s|\s\d+\s|\s\d+$", " ", text)

[In]: df['Summary']=df.Summary.apply(clean_reviews)

[In]: df.head(10)

[Out]:

Chapter 5 Natural Language Processing with TensorFlow 2.0

116

As we can see, the text looks much cleaner now and ready for

tokenization. Before tokenization, let’s create the input and output

columns from the data frame. As mentioned earlier, the goal of this

exercise is not to achieve a very high accuracy but to understand the

approach itself. Therefore, we are not going to split the data into Train

and Test.

[In]: X=df.Summary

[In]: y=df.Sentiment

[In]: tokenizer=Tokenizer(num_words=10000, oov_token='xxxxxxx')

Here, by applying tokenizer, we are ensuring that we want to

consider a maximum 10,000-word vocabulary. For unseen words, we use a

default token.

[In]: tokenizer.fit_on_texts(X)

[In]: X_dict=tokenizer.word_index

[In]: len(X_dict)

[Out]: 32763

[In]: X_dict.items()

[Out]:

Chapter 5 Natural Language Processing with TensorFlow 2.0

117

So, we have more than 32,000 unique words in the text. We now apply

tokenization on entire sequences.

[In]: X_seq=tokenizer.texts_to_sequences(X)

[In]: X_seq[:10]

[Out]:

As we can see, each summary gets converted into a vector, but of

different lengths. We now apply padding (post), to make vectors of equal

length (100).

[In]: X_padded_seq=pad_sequences(X_seq,padding='post',maxlen=100)

[In]: X_padded_seq[:3]

[Out]:

Chapter 5 Natural Language Processing with TensorFlow 2.0

118

[In]: X_padded_seq.shape

[Out]: (568454, 100)

As a result of padding, we end up with a numerical representation

(vector length of 100) for every summary in the data set. One last thing

before we start building the model is to convert the target variable y from

Panda’s series object to a NumPy array.

[In]: type(y)

[Out]: pandas.core.series.Series

[In]: y = np.array(y)

[In]: y=y.flatten()

[In]: y.shape

[Out]: (568454,)

[In]: type(y)

[Out]: numpy.ndarray

Chapter 5 Natural Language Processing with TensorFlow 2.0

119

�Deep Learning Model
Now we can start building the deep learning model, which is going to be of

sequential type. We are keeping the embedding size as 50, by declaring the

output_dim as 50.

[In]: num_epochs = 10

[In]: �text_model = tf.keras.Sequential([tf.keras.layers.

Embedding(in put_length=100,input_dim=10000,output_dim=50),

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(6, activation='relu'),

 tf.keras.layers.Dense(1, activation='sigmoid')

])

[In]: �ext_model.compile(loss='binary_crossentropy',

optimizer='adam',metrics=['accuracy'])

[In]: text_model.summary()

[Out]:

Model: "sequential_2"

Layer (type) Output Shape Param #

===

embedding_2 (Embedding) (None, 100, 50) 500000

flatten_2 (Flatten) (None, 5000) 0

dense_4 (Dense) (None, 6) 30006

dense_5 (Dense) (None, 1) 7

===

Chapter 5 Natural Language Processing with TensorFlow 2.0

120

Total params: 530,013

Trainable params: 530,013

Non-trainable params: 0

We now train the model on the input data, by calling the fit method.

At each epoch, we witness loss.

[In]: text_model.fit(X_padded_seq,y, epochs=num_epochs)

[Out]:

�Embeddings
Now that the model is trained, we can extract the embeddings from the

model, using the layers function. Each embedding is a vector of size 50,

and we have 10,000 embeddings, since our total words were set to 10,000.

[In]: embeddings = text_model.layers[0]

[In]: embeddings.weights

array([[-1.6631930e-03, -3.1805714e-03, -4.2120423e-03, ...,

 6.7197871e-03, -6.8611807e-05, 5.0362763e-03],

 [2.5697786e-02, -3.3429664e-01, 1.4324448e-01, ...,

 2.6591510e-01, -6.1628467e-01, 4.6738818e-01],

 [-1.2153953e+00, -5.7287562e-01, 1.3141894e+00, ...,

Chapter 5 Natural Language Processing with TensorFlow 2.0

121

 1.6204183e+00, -8.5191649e-01, 9.6747494e-01],

 ...,

 [-4.6929422e-01, -7.9158318e-01, 1.0746287e+00, ...,

 1.3168679e+00, -8.7972450e-01, 7.3542255e-01],

 [-6.2262291e-01, -2.9126891e-01, 2.6975635e-01, ...,

 5.5762780e-01, -4.7142237e-01, 3.8534114e-01],

 [3.8236725e-01, -3.2562292e-01, 5.2412951e-01, ...,

 �8.0270082e-02, -4.5245317e-01, 2.1783772e-01]],

dtype=float32)>]

[In]: weights = embeddings.get_weights()[0]

[In]: print(weights.shape)

[Out]:(10000, 50)

In order to visualize the embeddings in the 3D space, we must reverse

the key value for embeddings and respective words, so as to represent

every word via its embedding. To do this, we create a helper function.

[In]: �index_based_embedding = dict([(value, key) for (key,

value) in X_dict.items()])

[In]: def decode_review(text):

 �return ' '.join([index_based_embedding.get(i, '?') for i in text])

[In]: index_based_embedding[1]

[Out]:'xxxxxxx'

[In]: index_based_embedding[2]

[Out]:'great'

[In]:weights[1]

[Out]:

array([�0.02569779, -0.33429664, 0.14324448, 0.08739081, 0.52831393,

 0.27268887, 0.07457237, 0.12381076, 0.10957576, 0.06356773,

 -0.5458272 , -0.3850583 , -0.61023813, 0.3267659 , -0.1641999 ,

Chapter 5 Natural Language Processing with TensorFlow 2.0

122

 0.35547504, 0.16175786, -0.29544404, -0.29933476, -0.4590062 ,

 0.31590942, 0.43237656, 0.32122514, 0.11494219, 0.05063607,

 -0.08631186, 0.42692658, 0.44402826, -0.4839747 , 0.2801508 ,

 -0.37493172, -0.24629472, 0.11664449, 0.30983022, -0.08926664,

 0.12418804, -0.6622275 , -0.5364327 , -0.03189574, -0.30058974,

 -0.22386044, -0.46651962, 0.3162022 , -0.19460349, 0.10765371,

 0.46291786, -0.15769395, 0.2659151 , -0.61628467, 0.46738818],

 dtype=float32)

In the final part of this exercise, we extract the embeddings value and

put it into a .tsv file, along with another .tsv file that captures the words

of the embedding.

[In]: �vec = io.open('embedding_vectors_new.tsv', 'w',

encoding='utf-8')

[In]: meta = io.open('metadata_new.tsv', 'w', encoding='utf-8')

[In]: for i in range(1, vocab_size):

 word = index_based_embedding[i]

 embedding_vec_values = weights[i]

 meta.write(word + "\n")

 �vec.write('\t'.join([str(x) for x in embedding_vec_

values]) + "\n")

meta.close()

vec.close()

Chapter 5 Natural Language Processing with TensorFlow 2.0

123

�TensorFlow Projector
Now that we have the individual embeddings and metadata for the

data set, we can use TensorFlow Projector to visualize these

embeddings in 3D space. In order to view the embeddings, we must first go

to https://projector.tensorflow.org/, as shown in Figure 5-2.

The next step is to upload the embeddings and metadata .tsv files that

we saved in the last section, using the load option on the page, as shown in

Figure 5-3.

Figure 5-2.  TensorFlow Projector

Chapter 5 Natural Language Processing with TensorFlow 2.0

https://projector.tensorflow.org/

124

Once loaded, the embeddings will become available in the projector,

and we can observe the different clusters being formed, based on the

values of each embedding, as shown in Figure 5-4.

Figure 5-3.  Embeddings data load

Chapter 5 Natural Language Processing with TensorFlow 2.0

125

We can also observe that each embedding has a position in the overall

context. Some are neutral, some are on the positive side, and some on the

negative side of the center, as shown in Figure 5-5. We will now confirm

if positive word embeddings are closer to each other in the visualization,

and vice versa for negative words. Logically, the neutral words should be

separate from both these clusters.

Figure 5-4.  Embeddings visualization

Chapter 5 Natural Language Processing with TensorFlow 2.0

126

For example, if we look at the embedding of the word like, we can

clearly see that similar words, such as likeable, liked, likely, and likes, are

near to the actual like embedding, whereas opposite words, such as dislike

and disliked, are at the other end of the group, as shown in Figure 5-6.

Figure 5-5.  Positive, negative, and neutral embeddings

Chapter 5 Natural Language Processing with TensorFlow 2.0

127

Let’s consider one more example, to validate whether embeddings

have captured the semantic meaning of the words. We take “fanta” as the

root word with which to view the embeddings. We can clearly see that

words such as fantastic, fantabulous, etc., are closer to each other, whereas

a neutral word like fantasy is at the center, as shown in Figure 5-7.

Figure 5-6.  Similar embeddings

Chapter 5 Natural Language Processing with TensorFlow 2.0

128

The final example demonstrates the actual distance separating

embeddings from one another and which are the nearest embeddings. If we

look at the word worse in the embedding projection, we see that the nearest

similar words are dangerous, lousy, poor, blah, and wasted, as shown in

Figure 5-8. These words also cluster at the negative end of the view.

Figure 5-7.  Similar embeddings

Chapter 5 Natural Language Processing with TensorFlow 2.0

129

Figure 5-8.  Nearest embeddings

�Conclusion
This chapter provided a brief introduction to NLPs and the process of

preprocessing text, using TensorFlow 2.0. We built a deep learning model

to classify text sentiment and visualized the individual embeddings, using

TensorFlow Projector.

Chapter 5 Natural Language Processing with TensorFlow 2.0

131© Pramod Singh, Avinash Manure 2020
P. Singh and A. Manure, Learn TensorFlow 2.0,
https://doi.org/10.1007/978-1-4842-5558-2_6

CHAPTER 6

TensorFlow Models
in Production
In this final chapter of the book, you will apply what you’ve learned in

previous chapters and deploy the models built in TensorFlow 2.0 in a

production environment. We believe that there are two principal aspects to

using machine learning. The first is being able to build any sort of machine

learning model and not integrate it with any application (standalone

model). The other, more impactful aspect involves taking the trained

machine learning model and embedding it with an application. The

second approach is where things can become complicated, compared to

the first, as we have to expose the trained model end points, in order for

the applications to consume and use their predictions for activation or any

other purpose. This chapter introduces some of the techniques by which

we can deploy a machine learning model. We are not going to build a

full-blown TensorFlow-based application. Rather, we will go over different

frameworks to save a model, reload it for prediction, and deploy it. In the

first part of the chapter, we review the internals of model deployment

and their challenges. The second part demonstrates how to deploy a

Python-based machine language model, using Flask (web framework).

In the chapter’s final section, we discuss the process of building a

TensorFlow 2.0–based model.

132

�Model Deployment
The sad reality: the most common way Machine Learning gets
deployed today is PowerPoint slides.

“Deploying Machine Learning at Scale,” Algorithmia,
https://info.algorithmia.com/deploying-machine-learning-

at-scale-1, May 29, 2018.

According to a survey, less than 5% of commercial data science projects

make it to production. For readers who have never undertaken any

sort of software or machine learning deployment before, let us explain

a few fundamental features of model deployment. It is more pertinent

to the scalability aspect of an application, which can serve a bigger

number of requests. For example, most anyone can cook at home for

themselves or family members. On the other hand, it takes a different set

of requirements, skills, and resources to successfully cook for a restaurant

or online food service. The former can be done easily enough, whereas the

latter might require a lot of planning, implementation, and testing before

operating smoothly. Model deployment is similar. In scenarios in which a

machine learning model has to be deployed within an application system,

integration and maintenance become critical components. The successful

deployment of a model takes a lot of planning and testing before an

application platform matures to a level of self-sustaining prediction.

There is little doubt or argument regarding the fact that the true value

of machine learning can only be unlocked or gained when it’s deployed

in an application or system. Without deployment, machine learning

offers limited success and impact in today’s business world. Deployment

provides an exciting dimension to machine learning capability. Assuming

that we have a fair understanding of a machine learning model, we can

safely move on to its deployment aspect. To set the right expectations, let

us make a bold statement at the outset. Machine learning is relatively easy

compared to its deployment. The reason is that deployment brings a set

Chapter 6 TensorFlow Models in Production

https://info.algorithmia.com/deploying-machine-learning-at-scale-1
https://info.algorithmia.com/deploying-machine-learning-at-scale-1

133

of other parameters that must be taken into account, in order to build an

end-to-end machine learning–based application, which is not always easy

to carry out. Therefore, let’s go over some of the challenges one might face

while deploying a model into an application or system.

�Isolation
Machine learning models can be built in isolation. In fact, all that we

require to build a machine learning model is reasonably sized training

data. However, deployment of a machine learning model doesn’t work in

isolation. Figure 6-1 (taken from Sculley et al., “Hidden Technical Debt in

Machine Learning Systems,” 2015) depicts the challenges that come with

machine learning model deployment. In reality, a machine learning model

code seems to be a very small component in the overall setup. It is the rest

of the elements that demand consistent engagement and communication

with the machine learning model.

�Collaboration
Most of us are aware that it’s teams who build products or execute projects.

Therefore, it takes a lot of collaboration and engagement to build or deploy

a successful product. It’s no different in the machine learning world, where

Figure 6-1.  Application management

Chapter 6 TensorFlow Models in Production

134

application developers might have to coordinate with data scientists, to

deploy a model in a system. Issues arise, for example, when the model is

built in one language, and DevOps or applications folks are using some

other language.

�Model Updates
Things around us hardly remain the same. However, a few things are

changing so rapidly that technology has not been able to keep pace with

the changing behaviors of users. Similarly, machine learning models must

also be regularly updated, in order to remain relevant and highly efficient.

This is easier to ensure with a standalone model, but it requires a lot of

steps to update a model live in production.

�Model Performance
The whole idea of using machine learning in applications is to be able

to generalize well and help customers make suitable choices. This all

depends on the performance underneath the model. Therefore, the

tracking and monitoring of models in production become a critical part of

the overall application.

�Load Balancer
The final challenge in model deployment is the ability to handle requests

at scale. Every application or platform should be designed in such a way

that it can work seamlessly in high-traffic situations.

Now that we have reviewed the challenges faced in model deployment,

we can go over some of the basic-to-intermediate steps to deploy Python-

based models. Again, the focus of this chapter is to expose some of the

available tools and techniques to deploy machine learning models, instead

of building a full application.

Chapter 6 TensorFlow Models in Production

135

�Python-Based Model Deployment
There are multiple ways in which a machine learning model can be

deployed in production. All depend on the requirement and load that

is expected to be served by the model. In this section, we will go over

a couple of approaches, to see how we can create, save, and restore a

Python-based machine learning model for making predictions. We then

move on to deploying TensorFlow-based models in production, in the last

section.

�Saving and Restoring a Machine Learning Model
At the end of the day, a machine learning model is simply a combination

of a few scores, respective to every input feature used while training

the model, which describes the relationship between given inputs and

output in the best possible way. The ability to save any machine learning

model (irrespective of being built in Python, R, or TensorFlow) allows us

to use it later, at any point in time, for making predictions on new data,

as well as to share it with other users. Saving any model is also known as

serialization. This can also be done in different ways, as Python has its own

way of persisting a model, known as pickle. Pickle can be used to serialize

machine language models, as well as any other transformer. The other

approach has the built-in functionality of sklearn, which allows saving and

restoring of Python-based machine learning models. In this section, we

will focus on using the joblib function to save and persist sklearn models.

Once the model is saved on disk or at any other location, we can reload or

restore it back, for making predictions on new data.

In the example below, we consider the standard data set for building

a linear regression model. The input data has five input columns and one

output column. All the variables are numeric in nature, so little feature

engineering is required. Nevertheless, the idea here is not to focus on

building a perfect model but to build a baseline model, save it, and then

Chapter 6 TensorFlow Models in Production

136

restore it. In the first step, we load the data and create input and output

feature variables (X,y).

[In]: import pandas as pd

[In]: import numpy as np

[In]: from sklearn.linear_model import LinearRegression

[In]: �df=pd.read_csv('Linear_regression_dataset.

csv',header='infer')

[In]: df

[Out]:

[In]: X=df.loc[:,df.columns !='output']

[In]: y=df['output']

The next step is to split the data into train and test sets. Then we build

the linear regression model on the training data and access the coefficient

values for all the input variables.

Chapter 6 TensorFlow Models in Production

137

[In]: from sklearn.model_selection import train_test_split

[In]: �X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.25)

[In]: lr = LinearRegression().fit(X_train, y_train)

[In]: lr.coef_

[Out]: array([[3.40323422e-04, 5.78491342e-05, 2.24450972e-04,

 -6.65195539e-01, 5.01534474e-01]])

The performance of this baseline model seems reasonable, with an

R-squared value of 87% on the training set and 85% on the test set.

[In]: model.score(X_train,y_train)

[Out]: 0.8735114024937244

[In]: model.score(X_test,y_test)

[Out]: 0.8551517840207584

Now that we have the trained model available, we can save it at any

location or disk, using joblib or pickle. We name the exported model

linear_regression_model.pkl.

[In]: import joblib

[In]: joblib.dump(lr,'linear_regression_model.pkl')

Now, we create a random input feature set and predict the output,

using the trained model that we just saved.

[In]: test_data=[600,588,90,0.358,0.333]

[In]: pred_arr=np.array(test_data)

[In]: print(pred_arr)

[Out]: [6.00e+02 5.88e+02 9.00e+01 3.58e-01 3.33e-01]

[In]: preds=pred_arr.reshape(1,-1)

[In]: print(preds)

[Out]: [[6.00e+02 5.88e+02 9.00e+01 3.58e-01 3.33e-01]]

Chapter 6 TensorFlow Models in Production

138

In order to predict the output with the same model, we first must

import or load the saved model, using joblib.load. Once the model is

loaded, we can simply use the predict function, to make the prediction on

a new data point.

[In]: model=open("linear_regression_model.pkl","rb")

[In]: lr_model=joblib.load(model)

[In]: model_prediction=lr_model.predict(preds)

[In]: print(model_prediction)

[Out]: [0.36901871]

This was clearly done from a local disk space and not any cloud

location, but to an extent, this approach would still work in production, as

the pickled file of the model can be saved at a location in the production

environment. For a couple of reasons, this is not the ideal way to deploy

your model in production.

	 1.	 Limited access. Only users who have access to

the production environment can use the machine

learning model, as it is restricted to a particular

environment.

	 2.	 Scalability. Having just a single instance of model

prediction can result in serious challenges, once the

load or demand for the output increases.

�Deploying a Machine Learning Model
As a REST Service
To overcome the limitations mentioned previously, we can deploy the

model as a REST (representational state transfer) service, in order to

expose it to external users. This allows them to use the model output or

prediction without having to access the underlying model. In this section,

we will make use of Flask to deploy the model as a REST service. Flask is

Chapter 6 TensorFlow Models in Production

139

a lightweight web framework, built in Python, to deploy applications on a

server. This book does not cover Flask in detail, but for those readers who

have never used it, the following code snippet offers a brief introduction.

We create a simple .py file and write the subsequent lines of code, in

order to run a simple Flask-based app. We first import Flask and create the

Flask app. Then we decorate our main function, which is a simple Hello World!,

with app.route, which gives the path for accessing the app (a simple /, in this

case). The last step is to run the app, by calling the mains file.

[In]: pip install Flask

[In]: from flask import Flask

[In]: app = Flask(__name__)

[In]: @app.route("/")

[In]: def hello():

 return "Hello World!"

[In]: if __name__ == '__main__':

 app.run(debug=True)

We can now go to localhost:5000 and witness the Flask server running

and showing “Hello World!”

Next, we are going to use the model that we built earlier and deploy

it, using the Flask server. In order to do this, we must create a new folder

(web_app) and save the model.pkl file. We are going to use the same model

that we built in the preceding section. We can either move the model.pkl

file manually to the web_app folder or re-save the model, using the earlier

script in a new location, as shown following:

[In]: joblib.dump(lr,'web_app/linear_regression_model.pkl')

Chapter 6 TensorFlow Models in Production

140

Let’s begin to create the main app.py file, which will spin up the Flask

server to run the app.

[In]: import pandas as pd

[In]: import numpy as np

[In]: import sklearn

[In]: import joblib

[In]: from flask import Flask,render_template,request

[In]: app=Flask(__name__)

[In]: @app.route('/')

[In]: def home():

 return render_template('home.html')

[In]: @app.route('/predict',methods=['GET','POST'])

[In]: def predict():

 if request.method =='POST':

 print(request.form.get('var_1'))

 print(request.form.get('var_2'))

 print(request.form.get('var_3'))

 print(request.form.get('var_4'))

 print(request.form.get('var_5'))

 try:

 var_1=float(request.form['var_1'])

 var_2=float(request.form['var_2'])

 var_3=float(request.form['var_3'])

 var_4=float(request.form['var_4'])

 var_5=float(request.form['var_5'])

 pred_args=[var_1,var_2,var_3,var_4,var_5]

 pred_arr=np.array(pred_args)

 preds=pred_arr.reshape(1,-1)

 model=open("linear_regression_model.pkl","rb")

Chapter 6 TensorFlow Models in Production

141

 lr_model=joblib.load(model)

 model_prediction=lr_model.predict(preds)

 model_prediction=round(float(model_prediction),2)

 except ValueError:

 return "Please Enter valid values"

 �return render_template('predict.html',prediction=model_

prediction)

[In]: if __name__=='__main__':

 app.run(host='0.0.0.0')

Let’s go over the steps, in order to understand the details of the app.

py file. First, we import all the required libraries from Python. Next, we

create our first function, which is the home page that renders the HTML

template to allow users to fill input values. The next function is to publish

the predictions by the model on those input values provided by the user.

We save the input values into five different variables coming from the user

and create a list (pred_args). We then convert that into a numpy array.

We reshape it into the desired form, to be able to make predictions in the

same way. The next step is to load the trained model (linear_regression_

model.pkl) and make the predictions. We save the final output into a

variable (model_prediction). We then publish these results via another

HTML template (predict.html). If we run the main file (app.py) now in

the terminal, we will see the page shown in Figure 6-2, asking the user to

fill the values. The output is shown in Figure 6-3.

Chapter 6 TensorFlow Models in Production

142

�Templates
There are two web pages that we have to design, in order to post requests

to the server and receive in return the response message, which is the

prediction by the machine learning model for that particular request.

Because this book doesn’t focus on HTML, you can simply use these files

as they are, without making any changes to them. But for curious readers,

we are creating a form to request five values in five different variables. We

are using a standard CSS template with very basic fields (Figure 6-4). Users

with prior knowledge of HTML can feel free to redesign the home page per

their requirements (Figure 6-5).

Figure 6-2.  Inputs to the model

Figure 6-3.  Prediction output

Chapter 6 TensorFlow Models in Production

143

Figure 6-4.  User input’s HTML

Chapter 6 TensorFlow Models in Production

144

The next template is to publish the model prediction back to the user

(Figure 6-6). It is less complicated, compared to the first template, as there

is just one value that we have to post back to the user (Figure 6-7).

Figure 6-5.  Input web page

Figure 6-6.  Model’s output HTML

Chapter 6 TensorFlow Models in Production

145

Now that we have seen how to deploy a model, using a web framework,

we can move on to the last section of this chapter, which focuses on

deploying a TensorFlow 2.0 model. There are two parts to this section. In

the first, we will build a standard deep learning network, using tf.keras to

classify images. Once the neural network is trained, we will save it and load

it back, to make predictions on test data. In the second part of this section,

we will go over the process to deploy the model, using the TensorFlow

server platform.

�Challenges of Using Flask
Although Flask is fine for deploying models as a service, it hits a roadblock

when an application has numerous users. For a small-scale application,

Flask can do a good job and manage the load. The alternative to Flask can

be to use containers, such as Docker. For readers who have never used

Docker, it is simply a technique to containerize the application, to run it

irrespective of the platform. It resolves all the application dependency

issues and runs much faster and easier, compared to a manual approach.

Today, the common process to deploy any application in production is to

containerize it, using Docker, and run it as a service on top of Kubernetes

or any other cloud platform. One of challenges is to handle the number of

requests made of the application. Therefore, Docker and Kubernetes can

manage any number of increased requests, by managing via a built-in load

balancer. This reduces the number of containers, if requests are fewer, and

runs another instance of the applications, if load increases. In the next

section, we are going to see how we can build a TensorFlow model and

reload it for prediction in TensorFlow.

Figure 6-7.  Model’s output

Chapter 6 TensorFlow Models in Production

146

�Building a Keras TensorFlow-Based Model
The data set that we are going to use to build this deep neural network is

the standard Fashion-MNIST set we used previously. We start by importing

the required libraries and ensuring that we have the latest version of

TensorFlow.

[In]: import tensorflow as tf

[In]: tf.__version__

[Out]: '2.0.0-rc0'

[In]: from tensorflow import keras

[In]: import matplotlib.pyplot as plt

[In]: import numpy as np

[In]: from keras.preprocessing import image

The next step is to load the data set and divide it into training and

test sets. We have 60,000 images in the training set on which we are going

to train the network. Before training the model, we must execute a couple

of steps.

	 1.	 Label the target classes, so as to recognize the image

better.

	 2.	 Standardizing the size of each image.

[In]: df = keras.datasets.fashion_mnist

[In]: (X_train, y_train), (X_test, y_test) = df.load_data()

[In]: X_train.shape

[Out]: (60000, 28, 28)

[In]: y_train.shape

[Out]: (60000,)

[In]: �labels=['T-shirts','Trouser','Pullover','Dress','Coat','S

andal','Shirt','Sneaker','Bag','Ankle boot']

Chapter 6 TensorFlow Models in Production

147

[In]: X_train=X_train[:50000]

[In]: X_val=X_train[50000:]

[In]: y_train=y_train[:50000]

[In]: y_val=y_train[50000:]

[In]: X_train=X_train/255

[In]: X_val=X_val/255

To see a sample image, we can use the imshow function and pass a

particular image, as shown in a couple of examples following:

[In]: plt.imshow(X_train[100])

[Out]:

[In]: print(labels[y_train[100]])

[Out]: Bag

[In]: plt.imshow(X_train[1055])

[Out]:

Chapter 6 TensorFlow Models in Production

148

[In]: print(labels[y_train[1055]])

[Out]: Sneaker

The next step is to actually define and build the model. We use a

conventional sequential model with three layers, the first containing 200

units, the second 100, and the last containing the prediction layer with 10

units of neurons.

[In]: keras_model = keras.models.Sequential()

[In]: keras_model.add(keras.layers.Flatten(input_shape=[28, 28]))

[In]: keras_model.add(keras.layers.Dense(200, activation="relu"))

[In]: keras_model.add(keras.layers.Dense(100, activation="relu"))

[In]: keras_model.add(keras.layers.Dense(10, activation="softmax"))

[In]: �keras_model.compile(optimizer="sgd",loss=keras.losses.

sparse_categorical_crossentropy,metrics=["accuracy"])

We now train the model on the training set and set the number of

epochs to 10.

[In]: history = keras_model.fit(X_train, y_train,epochs=10)

[Out]:

Chapter 6 TensorFlow Models in Production

149

Once the model is trained, we can test its accuracy on the test data.

It appears to be close to 85%. We can definitely improve the model, by

making changes in the network or using a CNN (convolutional neural

network) that is more suitable for image classification, but the idea of this

exercise is to save a model and call it later for predictions.

[In]: X_test=X_test/255

[In]: test_accuracy=keras_model.evaluate(X_test,y_test)

[Out]: 0.8498

Now, we save the model as a Keras model and load it back, using load_

model for prediction.

[In]: keras_model.save("keras_model.h5")

[In]: loaded_model = keras.models.load_model("keras_model.h5")

In the following example, we load a test image (100), which is a dress,

and then we will use our saved model to make a prediction about this image.

[In]: plt.imshow(X_test[100])

[In]: print(labels[y_test[100]])

[Out]:

Chapter 6 TensorFlow Models in Production

150

We create a new variable (new_image) and reshape it into the desired

form for model prediction. The model correctly classifies the image as

“Dress.”

[In]: new_image= X_test[100]

[In]: new_image = image.img_to_array(new_image)

[In]: new_image = np.expand_dims(new_image, axis=0)

[In]: new_image = new_image.reshape(1,28,28)

[In]: prediction=labels[loaded_model.predict_classes(new_image)[0]]

[In]: print(prediction)

[Out]: Dress

One more example: We can select another image (500) and make a

prediction using the saved model.

[In]: plt.imshow(X_test[500])

[In]: print(labels[y_test[500]])

[Out]:

Chapter 6 TensorFlow Models in Production

151

[In]: new_image= X_test[500]

[In]: new_image = image.img_to_array(new_image)

[In]: new_image = np.expand_dims(new_image, axis=0)

[In]: new_image = new_image.reshape(1,28,28)

[In]: prediction=labels[loaded_model.predict_classes(new_image)[0]]

[In]: print(prediction)

[Out]: Pullover

�TF ind deployment
Another way of productionizing the machine learning model is to use

the Kubeflow platform. Kubeflow is a native tool for managing and

deploying machine learning models on Kubernetes. Because Kubernetes

is beyond the scope of this book, we will not delve too deeply into its

details. However, Kubernetes can be defined as a container orchestration

platform that allows for the running, deployment, and management of

containerized applications (machine learning models, in our case).

Chapter 6 TensorFlow Models in Production

152

In this section, we will replicate the same model that we built

previously and run it in the cloud (via Google Cloud Platform), using

Kubeflow. We will also use the Kubeflow UI, to navigate and run Jupyter

Notebook in the cloud. Because we are going to use Google Cloud Platform

(GCP), we must have a Google account, so that we can avail ourselves

of the free credits provided by Google for the use of GCP components.

Go to https://console.cloud.google.com/ and create a Google user

account, if you do not have one already. You will be required to provide

a few additional details, along with credit card information, as shown in

Figure 6-8.

Figure 6-8.  Google user account

Once we log in to the Google console, there are many options to

explore, but first, we must enable the free credits provided by Google,

in order to access the cloud services for free (up to $300). Next, we must

create a new project or select one of the existing projects, for users already

in possession of a Google account, as shown in Figure 6-9.

Chapter 6 TensorFlow Models in Production

153

To use Kubeflow, the final step is to enable Kubernetes Engine APIs. In

order to enable Kubernetes Engine APIs, we must go to the APIs & Services

dashboard (Figure 6-10) and search for Kubernetes Engine API. Once this

shows up in the library, we must enable it, as shown in Figure 6-11.

Figure 6-9.  Google project

Chapter 6 TensorFlow Models in Production

154

Figure 6-10.  APIs dashboard

Chapter 6 TensorFlow Models in Production

155

The next step is to deploy the Kubernetes cluster on GCP, using

Kubeflow. There are multiple ways of doing this, but we are going to deploy

the cluster by using a UI. Go to https://deploy.kubeflow.cloud/#/ and

provide the required details, as shown in Figure 6-12.

Figure 6-11.  Enabling Kubernetes APIs

Figure 6-12.  Kubeflow deployment

Chapter 6 TensorFlow Models in Production

156

We must enter the project ID (to view the project details under the

Project tab on the GCP console), the deployment name of choice, and

select the option to log in with a username and password, to keep things

simple. Next, we again enter our username and password of choice

(we will need them again to log in to the Kubeflow UI). We can select

the Google Kubernetes Engine zone again, depending on what zone is

available, and choose Kubeflow version 0.62. Clicking Create Deployment

ensures that all required resources will be up and running in about 30

minutes. We can also check if the Kubernetes cluster is up and running by

going back to the Google console dashboard and selecting the Kubernetes

Engine and Clusters option. It might take a few minutes before we can

see a Kubernetes Engine cluster up and running. Now that the Kubeflow

deployment is set up, we can simply click the Kubeflow Service Endpoint

button, and a new UI page will be available. We must use the same

username and password that we provided during the deployment phase,

as shown in Figure 6-13.

Figure 6-13.  Kubeflow login

Once we log in to the Kubeflow UI, we can see the Kubeflow

dashboard, with its multiple options, such as Pipelines, Notebook Servers,

etc., as shown in Figure 6-14.

Chapter 6 TensorFlow Models in Production

157

We must select Notebook Servers, to start a new notebook server. For a

new notebook server, we must provide a few details regarding the desired

configuration, as shown in Figure 6-15.

Figure 6-14.  Kubeflow dashboard

Figure 6-15.  Kubeflow Notebook Servers

Chapter 6 TensorFlow Models in Production

158

Now we must provide a few configuration details to spin up the server,

such as base image (with pre-installed libraries and dependencies), the

size of CPU/GPUs, and total memory (5 CPUs and 5GB memory suffices

for our model). We can select the image with TensorFlow version 2.0,

because we are building the model with that version. We must also add

GCP credentials, in case we want to save the model to GCP’s storage

bucket and use it for serving purposes. After a while, the notebook server

will be up and running, and we can click Connect, to open the Jupyter

Notebook running on the Kubeflow server, as shown in Figure 6-16.

Figure 6-16.  Opening the Jupyter Notebook server from Notebook
Servers

Once Jupyter Notebook is up, we can select the option to create a new

Python 3 notebook or simply go to its terminal and clone the required

repo from Git, to download all the model files to this notebook. In our

case, because we are building the model from scratch, we will create a

new Python 3 notebook and replicate the same model built earlier in the

chapter. It should work exactly as before, the only difference being that we

are now using Kubeflow to build and serve the model. In case any library

is not available, we can simply pip3 install the library and use it in this

notebook.

Once the model is built and we have used the services of Kubeflow,

we must terminate and delete all the resources, in order to avoid any extra

cost. We must go back to the Google console and, under the Kubernetes

clusters list, delete the Kubeflow server.

Chapter 6 TensorFlow Models in Production

159

�Conclusion
In this chapter, we explored the common challenges faced when taking

machine learning models into production and how to overcome them.

We also reviewed the process for saving a machine learning model

(Python- and TensorFlow-based) and deploying it into production, using

different frameworks.

Chapter 6 TensorFlow Models in Production

161© Pramod Singh, Avinash Manure 2020
P. Singh and A. Manure, Learn TensorFlow 2.0,
https://doi.org/10.1007/978-1-4842-5558-2

Index

A
Artificial intelligence (AI), 1, 26,

54, 76
Artificial neural networks

(ANNs), 55, 81, 97

B
Backward propagation, 58–61
Bagging technique, 48
Boosted trees method, 47

ensemble methods, 48
bagging technique, 48
boosting technique, 49, 50

gradient boosting, 49–52
Boosting technique, 49, 50

C
Colaboratory, 17–19
ConvNets, 75, see Convolutional

neural networks (CNNs)
Convolutional neural networks

(CNNs), 75
architectures

DenseNet, 93
GoogleNet, 91

ResNet, 91, 92
VGG-16, 89, 90

convolutional layer
definition, 77
dot product, 78
feature map, 79
grayscale image, 78
ReLU function, 79, 80

fully connected layer, 81, 82
pooling layers, 80, 81
ReLU activation function, 86
TensorFlow 2.0, 82–89

D, E
Databricks

account and spin up, 19
clusters, 20
libraries options, 21
notebook, 23
PyPI source, 22
TensorFlow package, 22

Deep neural network (DNN)
hidden layers, 67
Keras model, 71–74
optimization function, 69
output layers, 68

https://doi.org/10.1007/978-1-4842-5558-2

162

test evaluation, 71
training evaluation, 70

DenseNet architecture, 93

F
Forward propagation, 58–61
Frequency-based techniques, 112

G, H
GoogleNet architecture, 91
Gradient boosting

method, 49–52

I, J, K
Image processing

CNNs, 77 (see Convolutional
neural networks (CNNs))

definition, 76
transfer learning, 93–97
variational autoencoders

applications of, 98
architecture, 98
autoencoders, 97
implementation of, 99–105

L
Linear regression

equation, 28
graph, 29
TensorFlow package

boston housing data set, 30
correlation graph., 30
descriptive statistics, 32
input pipeline, 34
model training, 35
modules, 29
predictions, 35
test split, 33
validation, 36

Logistic regression
correlation graph, 40
definition, 37
descriptive statistics, 42
input pipeline, 44
iris data set, 39
model training, 45
modules, 39
multi-class equation, 37
predictions, 45
sigmoid function, 38
test split, 43
validation, 46

M
Machine learning

python model deployment
flask, 145
input web page, 144
output HTML, 144
REST, 138–142
saving and

restoring, 135–138
user input’s HTML, 143

Deep neural network (DNN) (cont.)

INDEX

163

Model deployment
application management, 133
collaboration, 133
definition, 132
isolation, 133
keras TensorFlow, 146–158
load balancer, 134
machine learning model

flask, 145
REST service, 138–142
saving and restoring, 135–138
templates, 142–145

performance, 134
updates, 134

N, O
Natural language processing

(NLP), 107
bag-of-words approach, 108
categories, 109
curves, 108
overview, 107
TensorFlow projector, 123–129
text classification

deep learning model, 119, 120
embeddings, 120–123
libraries and reading, 113, 114
processing, 115–120

text preprocessing, 109
standard off-the-shelf

methods, 113
tokenization, 110–112
word embeddings, 112, 113

Neural networks, 53
architecture, 57–59
artificial neural network, 55–57
backward propagation, 60, 61
data set, 61–67
definition, 53
DNN, 67
forward propagation, 59–61
neurons, 54
regression, 57

P, Q
Pooling layers, 80, 81
Prediction-based techniques, 112

R
Ranking tensors, 7
Representational state transfer

(REST), 138–142
ResNet architecture, 91, 92

S
Supervised machine learning

architecture, 27
artificial intelligence types, 26
definition, 25
linear regression

equation, 28
graph, 29
keras and TensorFlow

package, 29–37

INDEX

164

logistic regression, 37–47
overfitting, 27
testing/prediction, 26
training phase, 26

T, U
TensorFlow

components, 3–6
definition, 2, 3
1.x vs. 2.x (Beta version), 9

categories of, 9
documentation and data

sources, 15, 16
eager execution, 11–14
high-level APIs, 10
keras, 14
performance related

changes, 16
redundancy, 15
session execution, 11
simpler APIs, 10
tf.function, 14
usability related

changes, 10
operations, 17

Anaconda, 17
Colab, 17–19
databricks, 19–24

projector
data load, 124
embeddings, 123, 126–129
visualization, 125

tensor
computational graph, 8
flow, 7–9
properties, 6
rank, 7
shape, 7

vector
coordinate system

consideration, 3
unit vectors, 4
variable types, 4, 5

Transfer learning
definition, 94
domain, 94
machine learning, 95

advantages, 97
applications of, 96
methodology, 95, 96

V, W, X, Y, Z
Variational autoencoders (VAE)

applications of, 98
architecture, 98
autoencoders, 97
implementation of

batching and shuffling
data, 100

encoder and decoder, 100
optimizer function, 103
Python modules, 99
trained model, 104
training, 104

VGG-16 architecture, 90

Supervised machine learning (cont.)

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to TensorFlow 2.0
	Tensor + Flow = TensorFlow
	Components and Basis Vectors

	Tensor
	Rank
	Shape
	Flow

	TensorFlow 1.0 vs. TensorFlow 2.0
	Usability-Related Changes
	Simpler APIs
	High-Level APIs
	Lower-Level APIs
	Session Execution
	Eager Execution

	tf.function
	Keras
	Redundancy

	Improved Documentation and More Inbuilt Data Sources

	Performance-Related Changes

	Installation and Basic Operations in TensorFlow 2.0
	Anaconda
	Colab
	Databricks

	Conclusion

	Chapter 2: Supervised Learning with TensorFlow
	What Is Supervised Machine Learning?
	Linear Regression with TensorFlow 2.0
	Implementation of a Linear Regression Model, Using TensorFlow and Keras
	Logistic Regression with TensorFlow 2.0
	Boosted Trees with TensorFlow 2.0
	Ensemble Technique
	Bagging
	Boosting

	Gradient Boosting

	Conclusion

	Chapter 3: Neural Networks and Deep Learning with TensorFlow
	What Are Neural Networks?
	Neurons
	Artificial Neural Networks (ANNs)
	Simple Neural Network Architecture

	Forward and Backward Propagation
	Building Neural Networks with TensorFlow 2.0
	About the Data Set

	Deep Neural Networks (DNNs)
	Building DNNs with TensorFlow 2.0
	Estimators Using the Keras Model
	Conclusion

	Chapter 4: Images with TensorFlow
	Image Processing
	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer

	ConvNets Using TensorFlow 2.0
	Advanced Convolutional Neural Network Architectures
	Transfer Learning
	Transfer Learning and Machine Learning

	Variational Autoencoders Using TensorFlow 2.0
	Autoencoders
	Applications of Autoencoders
	Variational Autoencoders
	Implementation of Variational Autoencoders Using TensorFlow 2.0

	Conclusion

	Chapter 5: Natural Language Processing with TensorFlow 2.0
	NLP Overview
	Text Preprocessing
	Tokenization
	Word Embeddings

	Text Classification Using TensorFlow
	Text Processing
	Deep Learning Model
	Embeddings

	TensorFlow Projector
	Conclusion

	Chapter 6: TensorFlow Models in Production
	Model Deployment
	Isolation
	Collaboration
	Model Updates
	Model Performance
	Load Balancer

	Python-Based Model Deployment
	Saving and Restoring a Machine Learning Model
	Deploying a Machine Learning Model As a REST Service
	Templates
	Challenges of Using Flask

	Building a Keras TensorFlow-Based Model
	TF ind deployment
	Conclusion

	Index

