ELOQUENT
JAVASCRIPT

THIRD EDITION

A Modern Introduction
to Programming

Marijn Haverbeke

ELOQUENT JAVASCRIPT

3RD EDITION

Marijn Haverbeke

Copyright © 2018 by Marijn Haverbeke

This work is licensed under a Creative Commons attribution-noncommercial
license (http://creativecommons.org/licenses/by-nc/3.0/). All code in the
book may also be considered licensed under an MIT license (http://opensource.
org/licenses/MIT).

The illustrations are contributed by various artists: Cover and chapter illus-
trations by Madalina Tantareanu. Pixel art in Chapters 7 and 16 by Antonio
Perdomo Pastor. Regular expression diagrams in Chapter 9 generated with
regexper.com by Jeff Avallone. Village photograph in Chapter 11 by Fabrice
Creuzot. Game concept for Chapter 15 by Thomas Palef.

The third edition of Eloquent JavaScript was made possible by 325 financial
backers.

You can buy a print version of this book, with an extra bonus chapter included,
printed by No Starch Press at http://a-fwd.com/com=marijhaver-20&asin-
com=1593279507.

http://creativecommons.org/licenses/by-nc/3.0/
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://regexper.com
http://lessmilk.com
https://eloquentjavascript.net/backers3.html
https://eloquentjavascript.net/backers3.html
http://a-fwd.com/com=marijhaver-20&asin-com=1593279507
http://a-fwd.com/com=marijhaver-20&asin-com=1593279507

CONTENTS

Introduction
On programming
Why language matters

Code, and what to dowith it
Overview of this book
Typographic conventions

1 Values, Types, and Operators
Values e
Numbers
SErings
Unary operators
Boolean values
Empty values.
Automatic type conversion
SUMMATY oot

2 Program Structure
Expressions and statements 0L L
Bindings
Binding names
The environment
Functions
The console.log function
Return values
Control flow
Conditional execution L
while and doloops.
Indenting Code
forloops
Breaking Out of a Loop

11

Updating bindings succinctly 34

Dispatching on a value with switch 34
Capitalization 35
Comments 36
SUMMATY oo 37
Exercises 37
Functions 39
Defining a function Lo 39
Bindings and scopes 40
Functions as values 42
Declaration notation 43
Arrow functions 44
The call stack 45
Optional Arguments. 46
Closure e 47
Recursion 49
Growing functions 51
Functions and side effects 54
SUMMATY © . . o v v v v e e e e e e e e 55
Exercises 55
Data Structures: Objects and Arrays 57
The weresquirrel 57
Datasets o8
Properties 59
Methods 60
Objects 61
Mutability o 63
The lycanthrope’slog 64
Computing correlation 66
Array loops 68
The final analysis 68
Further arrayology 70
Strings and their properties L. 72
Rest parameters 74
The Math object 75
Destructuring 76
JSON o 7
SUMMATY oo 78

111

Exercises 79

Higher-Order Functions 82
Abstraction 83
Abstracting repetition L 83
Higher-order functions 85
Script dataset 86
Filtering arrays 87
Transforming with map 88
Summarizing with reduce oL 88
Composability 90
Strings and character codes 91
Recognizing text 93
SUMMATY oo 95
Exercises 95
The Secret Life of Objects 97
Encapsulation 97
Methods 98
Prototypes 99
Classes e 101
Class notation 102
Overriding derived properties 103
Maps 104
Polymorphism 106
Symbols 107
The iterator interface 108
Getters, setters, and statics L. 110
Inheritance 112
The instanceof operator. 113
SUMMATY oo 114
Exercises 115
Project: A Robot 117
Meadowfield 117
The task 119
Persistent data 121
Simulation 122
The mail truck’s route 124
Pathfinding 124

iv

Exercises 126

Bugs and Errors 128
Language 128
Strict mode 129
Types . . . o 130
Testing e 131
Debugging 132
Error propagation 134
Exceptions 135
Cleaning up after exceptions 136
Selective catching 138
Assertions L 140
SUMMATY oo 141
Exercises 142
Regular Expressions 143
Creating a regular expression 143
Testing for matches 144
Sets of characters 144
Repeating parts of a pattern L. 146
Grouping subexpressions 147
Matches and groups 147
The Dateclass 148
Word and string boundaries 150
Choice patterns L 150
The mechanics of matching 151
Backtrackingo 152
The replace method 154
Greed e 155
Dynamically creating Regkxp objects 157
The search method 157
The lastIndex property 158
Parsing an INI file 160
International characters. 162
SUMMATY oot e 163
Exercises 165
Modules 167
Modules 167

Packages
Improvised modules
Evaluating data ascode
CommonlJS
ECMAScript modules
Building and bundling
Module design
SUMMATY oot
Exercises

11 Asynchronous Programming
Asynchronicity
Crow tech
Callbacks
Promises
Failure
Networks are hard
Collections of promises
Network flooding
Message routing e
Async functionso
Generators
The event loop
Asynchronous bugs
SUMMATY oot
Exercises

12 Project: A Programming Language
Parsing
The evaluator
Special forms
The environment
Functions
Compilation
Cheating
Exercises

13 JavaScript and the Browser
Networks and the Internet
The Web

vi

14

15

HTML . oo 218

HTML and JavaScript 221
In thesandbox 222
Compatibility and the browser wars 222
The Document Object Model 224
Document structure 224
Trees e 225
The standard 226
Moving through the tree 227
Finding elements 228
Changing the document 229
Creatingnodes 230
Attributes 232
Layout 233
Styling 235
Cascading styles 236
Query selectors 237
Positioning and animating L. 238
SUIMIMNATY o v e e e e e e 241
Exercises 241
Handling Events 243
Event handlers 243
Events and DOM nodes 244
Event objects 245
Propagation 245
Default actions 247
Keyevents 247
Pointer events 249
Scroll events 253
Focusevents 254
Load event 255
Events and the event loop 255
Timers e 257
Debouncing 257
SUMMATY o o 259
Exercises 259

vii

16

17

18

Project: A Platform Game

The game
The technology
Levels
Reading alevel
Actors
Encapsulation as a burden
Drawing
Motion and collision.
Actor updates
Tracking keys
Running the game
Exercises

Drawing on Canvas

SVG
The canvas element
Lines and surfaces
Paths
Curves
Drawing a pie chart
Text
Images
Transformation
Storing and clearing transformations
Back to the game
Choosing a graphics interface
Summary
Exercises

HTTP and Forms

The protocol
Browsers and HTTP
Fetch
HTTP sandboxing
Appreciating HTTP
Security and HTTPS
Form fields
Focus
Disabled fields

Vviil

19

20

21

The form as a whole, .
Text fields
Checkboxes and radio buttons
Select fields
File fields
Storing data client-side Lo
SUMMATY © . . v v v v v e e e e e e e e
Exercises

Project: A Pixel Art Editor

Components
The state
DOM building
The canvas e
The application
Drawing tools
Saving and loading
Undo history
Let’'sdraw
Why is this so hard?
Exercises

Node.js
Background
The node command

Installing with NPM
The file system module
The HTTP module,
Streams L
Afileserver
SUMMATY oot
Exercises

Project: Skill-Sharing Website

Design.
Long polling
HTTP interface
The server e
The client

ix

Exercises 387

Exercise Hints 388
Program Structure 388
Functions 389
Data Structures: Objects and Arrays 390
Higher-Order Functions 392
The Secret Life of Objects 393
Project: A Robot 394
Bugs and Errors 395
Regular Expressions oo 395
Modules 396
Asynchronous Programming 398
Project: A Programming Language 399
The Document Object Model 400
Handling Events 400
Project: A Platform Game 402
Drawing on Canvas 402
HTTP and Forms 404
Project: A Pixel Art Editor 406
Node.js o 408
Project: Skill-Sharing Website 409

“We think we are creating the system for our own purposes. We
believe we are making it in our own image... But the computer is
not really like us. It is a projection of a very slim part of ourselves:
that portion devoted to logic, order, rule, and clarity.”
—Ellen Ullman, Close to the Machine: Technophilia and its
Discontents

INTRODUCTION

This is a book about instructing computers. Computers are about as common
as screwdrivers today, but they are quite a bit more complex, and making them
do what you want them to do isn’t always easy.

If the task you have for your computer is a common, well-understood one,
such as showing you your email or acting like a calculator, you can open the
appropriate application and get to work. But for unique or open-ended tasks,
there probably is no application.

That is where programming may come in. Programming is the act of con-
structing a program—a set of precise instructions telling a computer what to do.
Because computers are dumb, pedantic beasts, programming is fundamentally
tedious and frustrating.

Fortunately, if you can get over that fact, and maybe even enjoy the rigor
of thinking in terms that dumb machines can deal with, programming can be
rewarding. It allows you to do things in seconds that would take forever by
hand. It is a way to make your computer tool do things that it couldn’t do
before. And it provides a wonderful exercise in abstract thinking.

Most programming is done with programming languages. A programming
language is an artificially constructed language used to instruct computers. It
is interesting that the most effective way we’ve found to communicate with a
computer borrows so heavily from the way we communicate with each other.
Like human languages, computer languages allow words and phrases to be
combined in new ways, making it possible to express ever new concepts.

At one point language-based interfaces, such as the BASIC and DOS prompts
of the 1980s and 1990s, were the main method of interacting with computers.
They have largely been replaced with visual interfaces, which are easier to learn
but offer less freedom. Computer languages are still there, if you know where
to look. One such language, JavaScript, is built into every modern web browser
and is thus available on almost every device.

This book will try to make you familiar enough with this language to do
useful and amusing things with it.

ON PROGRAMMING

Besides explaining JavaScript, I will introduce the basic principles of program-
ming. Programming, it turns out, is hard. The fundamental rules are simple
and clear, but programs built on top of these rules tend to become complex
enough to introduce their own rules and complexity. You're building your own
magze, in a way, and you might just get lost in it.

There will be times when reading this book feels terribly frustrating. If you
are new to programming, there will be a lot of new material to digest. Much of
this material will then be combined in ways that require you to make additional
connections.

It is up to you to make the necessary effort. When you are struggling to follow
the book, do not jump to any conclusions about your own capabilities. You are
fine—you just need to keep at it. Take a break, reread some material, and make
sure you read and understand the example programs and exercises. Learning is
hard work, but everything you learn is yours and will make subsequent learning
easier.

When action grows unprofitable, gather information; when infor-
mation grows unprofitable, sleep.

—Ursula K. Le Guin, The Left Hand of Darkness

A program is many things. It is a piece of text typed by a programmer,
it is the directing force that makes the computer do what it does, it is data
in the computer’s memory, yet it controls the actions performed on this same
memory. Analogies that try to compare programs to objects we are familiar
with tend to fall short. A superficially fitting one is that of a machine—lots of
separate parts tend to be involved, and to make the whole thing tick, we have
to consider the ways in which these parts interconnect and contribute to the
operation of the whole.

A computer is a physical machine that acts as a host for these immaterial
machines. Computers themselves can do only stupidly straightforward things.
The reason they are so useful is that they do these things at an incredibly
high speed. A program can ingeniously combine an enormous number of these
simple actions to do very complicated things.

A program is a building of thought. It is costless to build, it is weightless,
and it grows easily under our typing hands.

But without care, a program’s size and complexity will grow out of control,
confusing even the person who created it. Keeping programs under control is
the main problem of programming. When a program works, it is beautiful. The

art of programming is the skill of controlling complexity. The great program
is subdued—made simple in its complexity.

Some programmers believe that this complexity is best managed by using
only a small set of well-understood techniques in their programs. They have
composed strict rules (“best practices”) prescribing the form programs should
have and carefully stay within their safe little zone.

This is not only boring, it is ineffective. New problems often require new
solutions. The field of programming is young and still developing rapidly, and
it is varied enough to have room for wildly different approaches. There are
many terrible mistakes to make in program design, and you should go ahead
and make them so that you understand them. A sense of what a good program
looks like is developed in practice, not learned from a list of rules.

WHY LANGUAGE MATTERS

In the beginning, at the birth of computing, there were no programming lan-
guages. Programs looked something like this:

00110001 00000000 00000000
00110001 00000001 00000001
00110011 00000001 00000010
01010001 00001011 00000010
00100010 00000010 00001000
01000011 00000001 00000000
01000001 00000001 00000001
00010000 00000010 00000000
01100010 00000000 00000000

That is a program to add the numbers from 1 to 10 together and print out
the result: 1 + 2 + ... + 10 = 55. It could run on a simple, hypothetical
machine. To program early computers, it was necessary to set large arrays of
switches in the right position or punch holes in strips of cardboard and feed
them to the computer. You can probably imagine how tedious and error-prone
this procedure was. Even writing simple programs required much cleverness
and discipline. Complex ones were nearly inconceivable.

Of course, manually entering these arcane patterns of bits (the ones and
zeros) did give the programmer a profound sense of being a mighty wizard.
And that has to be worth something in terms of job satisfaction.

Each line of the previous program contains a single instruction. It could be
written in English like this:

1. Store the number 0 in memory location 0.

2. Store the number 1 in memory location 1.

3. Store the value of memory location 1 in memory location 2.
4. Subtract the number 11 from the value in memory location 2.

5. If the value in memory location 2 is the number 0, continue with instruc-
tion 9.

Add the value of memory location 1 to memory location 0.
Add the number 1 to the value of memory location 1.

Continue with instruction 3.

© »®» N @

Output the value of memory location 0.

Although that is already more readable than the soup of bits, it is still rather
obscure. Using names instead of numbers for the instructions and memory
locations helps.

Set “total” to 0.

Set “count” to 1.

[loop]

Set “compare” to “count”.
Subtract 11 from “compare”.
If “compare” is zero, continue at [end].
Add “count” to “total”.

Add 1 to “count”.

Continue at [loopl].

[end]

Output “total”.

Can you see how the program works at this point? The first two lines give
two memory locations their starting values: total will be used to build up the
result of the computation, and count will keep track of the number that we are
currently looking at. The lines using compare are probably the weirdest ones.
The program wants to see whether count is equal to 11 to decide whether it
can stop running. Because our hypothetical machine is rather primitive, it can
only test whether a number is zero and make a decision based on that. So it
uses the memory location labeled compare to compute the value of count - 11
and makes a decision based on that value. The next two lines add the value

of count to the result and increment count by 1 every time the program has
decided that count is not 11 yet.
Here is the same program in JavaScript:

let total = @, count = 1;
while (count <= 10) {
total += count;

count += 1;
}
console.log(total);
// = 55

This version gives us a few more improvements. Most important, there is
no need to specify the way we want the program to jump back and forth
anymore. The while construct takes care of that. It continues executing the
block (wrapped in braces) below it as long as the condition it was given holds.
That condition is count <= 10, which means “count is less than or equal to 10”.
We no longer have to create a temporary value and compare that to zero, which
was just an uninteresting detail. Part of the power of programming languages
is that they can take care of uninteresting details for us.

At the end of the program, after the while construct has finished, the console
.log operation is used to write out the result.

Finally, here is what the program could look like if we happened to have
the convenient operations range and sum available, which respectively create a
collection of numbers within a range and compute the sum of a collection of
numbers:

console.log(sum(range(1, 10)));
// - 55

The moral of this story is that the same program can be expressed in both
long and short, unreadable and readable ways. The first version of the program
was extremely obscure, whereas this last one is almost English: log the sum of
the range of numbers from 1 to 10. (We will see in later chapters how to define
operations like sum and range.)

A good programming language helps the programmer by allowing them to
talk about the actions that the computer has to perform on a higher level.
It helps omit details, provides convenient building blocks (such as while and
console.log), allows you to define your own building blocks (such as sum and
range), and makes those blocks easy to compose.

WHAT IS JAVASCRIPT?

JavaScript was introduced in 1995 as a way to add programs to web pages in the
Netscape Navigator browser. The language has since been adopted by all other
major graphical web browsers. It has made modern web applications possible—
applications with which you can interact directly without doing a page reload
for every action. JavaScript is also used in more traditional websites to provide
various forms of interactivity and cleverness.

It is important to note that JavaScript has almost nothing to do with the
programming language named Java. The similar name was inspired by mar-
keting considerations rather than good judgment. When JavaScript was being
introduced, the Java language was being heavily marketed and was gaining
popularity. Someone thought it was a good idea to try to ride along on this
success. Now we are stuck with the name.

After its adoption outside of Netscape, a standard document was written
to describe the way the JavaScript language should work so that the various
pieces of software that claimed to support JavaScript were actually talking
about the same language. This is called the ECMAScript standard, after the
Ecma International organization that did the standardization. In practice, the
terms ECMAScript and JavaScript can be used interchangeably—they are two
names for the same language.

There are those who will say terrible things about JavaScript. Many of these
things are true. When I was required to write something in JavaScript for the
first time, I quickly came to despise it. It would accept almost anything I typed
but interpret it in a way that was completely different from what I meant. This
had a lot to do with the fact that I did not have a clue what I was doing, of
course, but there is a real issue here: JavaScript is ridiculously liberal in what
it allows. The idea behind this design was that it would make programming in
JavaScript easier for beginners. In actuality, it mostly makes finding problems
in your programs harder because the system will not point them out to you.

This flexibility also has its advantages, though. It leaves space for a lot of
techniques that are impossible in more rigid languages, and as you will see
(for example in Chapter 10), it can be used to overcome some of JavaScript’s
shortcomings. After learning the language properly and working with it for a
while, I have learned to actually like JavaScript.

There have been several versions of JavaScript. ECMAScript version 3 was
the widely supported version in the time of JavaScript’s ascent to dominance,
roughly between 2000 and 2010. During this time, work was underway on
an ambitious version 4, which planned a number of radical improvements and
extensions to the language. Changing a living, widely used language in such a

radical way turned out to be politically difficult, and work on the version 4 was
abandoned in 2008, leading to a much less ambitious version 5, which made
only some uncontroversial improvements, coming out in 2009. Then in 2015
version 6 came out, a major update that included some of the ideas planned
for version 4. Since then we’ve had new, small updates every year.

The fact that the language is evolving means that browsers have to constantly
keep up, and if you're using an older browser, it may not support every feature.
The language designers are careful to not make any changes that could break
existing programs, so new browsers can still run old programs. In this book,
I'm using the 2017 version of JavaScript.

Web browsers are not the only platforms on which JavaScript is used. Some
databases, such as MongoDB and CouchDB, use JavaScript as their scripting
and query language. Several platforms for desktop and server programming,
most notably the Node.js project (the subject of Chapter 20), provide an envi-
ronment for programming JavaScript outside of the browser.

CODE, AND WHAT TO DO WITH IT

Code is the text that makes up programs. Most chapters in this book contain
quite a lot of code. I believe reading code and writing code are indispensable
parts of learning to program. Try to not just glance over the examples—read
them attentively and understand them. This may be slow and confusing at
first, but I promise that you’ll quickly get the hang of it. The same goes for
the exercises. Don’t assume you understand them until you’ve actually written
a working solution.

I recommend you try your solutions to exercises in an actual JavaScript
interpreter. That way, you’ll get immediate feedback on whether what you are
doing is working, and, I hope, you’ll be tempted to experiment and go beyond
the exercises.

The easiest way to run the example code in the book, and to experiment with
it, is to look it up in the online version of the book at https://eloquentjavascript.net.
There, you can click any code example to edit and run it and to see the output
it produces. To work on the exercises, go to https://eloquentjavascript.net/
code, which provides starting code for each coding exercise and allows you to
look at the solutions.

If you want to run the programs defined in this book outside of the book’s
website, some care will be required. Many examples stand on their own and
should work in any JavaScript environment. But code in later chapters is
often written for a specific environment (the browser or Node.js) and can run

https://eloquentjavascript.net/
https://eloquentjavascript.net/code
https://eloquentjavascript.net/code

only there. In addition, many chapters define bigger programs, and the pieces
of code that appear in them depend on each other or on external files. The
sandbox on the website provides links to Zip files containing all the scripts and
data files necessary to run the code for a given chapter.

OVERVIEW OF THIS BOOK

This book contains roughly three parts. The first 12 chapters discuss the
JavaScript language. The next seven chapters are about web browsers and the
way JavaScript is used to program them. Finally, two chapters are devoted to
Node.js, another environment to program JavaScript in.

Throughout the book, there are five project chapters, which describe larger
example programs to give you a taste of actual programming. In order of
appearance, we will work through building a delivery robot, a programming
language, a platform game, a pixel paint program, and a dynamic website.

The language part of the book starts with four chapters that introduce the
basic structure of the JavaScript language. They introduce control structures
(such as the while word you saw in this introduction), functions (writing your
own building blocks), and data structures. After these, you will be able to write
basic programs. Next, Chapters 5 and 6 introduce techniques to use functions
and objects to write more abstract code and keep complexity under control.

After a first project chapter, the language part of the book continues with
chapters on error handling and bug fixing, regular expressions (an important
tool for working with text), modularity (another defense against complexity),
and asynchronous programming (dealing with events that take time). The
second project chapter concludes the first part of the book.

The second part, Chapters 13 to 19, describes the tools that browser JavaScript
has access to. You'll learn to display things on the screen (Chapters 14 and
17), respond to user input (Chapter 15), and communicate over the network
(Chapter 18). There are again two project chapters in this part.

After that, Chapter 20 describes Node.js, and Chapter 21 builds a small
website using that tool.

TYPOGRAPHIC CONVENTIONS

In this book, text written in a monospaced font will represent elements of
programs—sometimes they are self-sufficient fragments, and sometimes they
just refer to part of a nearby program. Programs (of which you have already
seen a few) are written as follows:

https://eloquentjavascript.net/code

function factorial(n) {
if (n == 09)
return 1;
} else {
return factorial(n - 1) * n;

3
3

Sometimes, to show the output that a program produces, the expected out-
put is written after it, with two slashes and an arrow in front.

console.log(factorial(8));
// > 40320

Good luck!

“Below the surface of the machine, the program moves. Without
effort, it expands and contracts. In great harmony, electrons scatter
and regroup. The forms on the monitor are but ripples on the water.
The essence stays invisibly below.”

—Master Yuan-Ma, The Book of Programming

VALUES, TYPES, AND OPERATORS

Inside the computer’s world, there is only data. You can read data, modify
data, create new data—but that which isn’t data cannot be mentioned. All
this data is stored as long sequences of bits and is thus fundamentally alike.

Bits are any kind of two-valued things, usually described as zeros and ones.
Inside the computer, they take forms such as a high or low electrical charge,
a strong or weak signal, or a shiny or dull spot on the surface of a CD. Any
piece of discrete information can be reduced to a sequence of zeros and ones
and thus represented in bits.

For example, we can express the number 13 in bits. It works the same way
as a decimal number, but instead of 10 different digits, you have only 2, and
the weight of each increases by a factor of 2 f