
15/01/2019 Prologue / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/prologue.html 1/5

Table of Contents

Prologue
Why OCaml?
About This Book
Safari® Books Online
How to Contact Us
Contributors

I. Language Concepts
II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

ProloguePrologue

WHY OCAML?WHY OCAML?

Programming languages matter. They a�ect the reliability, security, and e�ciency of the code you

write, as well as how easy it is to read, refactor, and extend. The languages you know can also

change how you think, in�uencing the way you design software even when you're not using

them.

We wrote this book because we believe in the importance of programming languages, and that

OCaml in particular is an important language to learn. The three of us have been using OCaml in

our academic and professional lives for over 15 years, and in that time we've come to see it as a

secret weapon for building complex software systems. This book aims to make this secret

weapon available to a wider audience, by providing a clear guide to what you need to know to use

OCaml e�ectively in the real world.

What makes OCaml special is that it occupies a sweet spot in the space of programming language

designs. It provides a combination of e�ciency, expressiveness and practicality that is matched

by no other language. That is in large part because OCaml is an elegant combination of a few key

language features that have been developed over the last 40 years. These include:

Garbage collection for automatic memory management, now a feature of almost every

modern, high-level language.

First-class functions that can be passed around like ordinary values, as seen in JavaScript,

Common Lisp, and C#.

Static type-checking to increase performance and reduce the number of runtime errors, as

found in Java and C#.

Parametric polymorphism, which enables the construction of abstractions that work across

di�erent data types, similar to generics in Java and C# and templates in C++.

Good support for immutable programming, i.e., programming without making destructive

updates to data structures. This is present in traditional functional languages like Scheme,

and is also found in distributed, big-data frameworks like Hadoop.

Automatic type inference to avoid having to laboriously de�ne the type of every single

variable in a program and instead have them inferred based on how a value is used. Available

in a limited form in C# with implicitly typed local variables, and in C++11 with its auto

keyword.

Algebraic data types and pattern matching to de�ne and manipulate complex data structures.

Available in Scala and F#.

Some of you will know and love all of these features, and for others they will be largely new, but

most of you will have seen some of them in other languages that you've used. As we'll

demonstrate over the course of this book, there is something transformative about having them

all together and able to interact in a single language. Despite their importance, these ideas have

made only limited inroads into mainstream languages, and when they do arrive there, like �rst-

class functions in C# or parametric polymorphism in Java, it's typically in a limited and awkward

form. The only languages that completely embody these ideas are statically typed, functional

programming languages like OCaml, F#, Haskell, Scala, and Standard ML.

Among this worthy set of languages, OCaml stands apart because it manages to provide a great

deal of power while remaining highly pragmatic. The compiler has a straightforward compilation

strategy that produces performant code without requiring heavy optimization and without the

complexities of dynamic just-in-time (JIT) compilation. This, along with OCaml's strict evaluation

model, makes runtime behavior easy to predict. The garbage collector is incremental, letting you

avoid large garbage collection (GC)-related pauses, and precise, meaning it will collect all

unreferenced data (unlike many reference-counting collectors), and the runtime is simple and

highly portable.

All of this makes OCaml a great choice for programmers who want to step up to a better

programming language, and at the same time get practical work done.

A Brief HistoryA Brief History

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fprologue.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml


15/01/2019 Prologue / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/prologue.html 2/5

Table of Contents

Prologue
Why OCaml?
About This Book
Safari® Books Online
How to Contact Us
Contributors

I. Language Concepts
II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml was written in 1996 by Xavier Leroy, Jérôme Vouillon, Damien Doligez, and Didier Rémy

at INRIA in France. It was inspired by a long line of research into ML starting in the 1960s, and

continues to have deep links to the academic community.

ML was originally the meta language of the LCF (Logic for Computable Functions) proof assistant

released by Robin Milner in 1972 (at Stanford, and later at Cambridge). ML was turned into a

compiler in order to make it easier to use LCF on di�erent machines, and it was gradually turned

into a full-�edged system of its own by the 1980s.

The �rst implementation of Caml appeared in 1987. It was created by Ascánder Suárez and later

continued by Pierre Weis and Michel Mauny. In 1990, Xavier Leroy and Damien Doligez built a

new implementation called Caml Light that was based on a bytecode interpreter with a fast,

sequential garbage collector. Over the next few years useful libraries appeared, such as Michel

Mauny's syntax manipulation tools, and this helped promote the use of Caml in education and

research teams.

Xavier Leroy continued extending Caml Light with new features, which resulted in the 1995

release of Caml Special Light. This improved the executable e�ciency signi�cantly by adding a

fast native code compiler that made Caml's performance competitive with mainstream languages

such as C++. A module system inspired by Standard ML also provided powerful facilities for

abstraction and made larger-scale programs easier to construct.

The modern OCaml emerged in 1996, when a powerful and elegant object system was

implemented by Didier Rémy and Jérôme Vouillon. This object system was notable for

supporting many common object-oriented idioms in a statically type-safe way, whereas the same

idioms required runtime checks in languages such as C++ or Java. In 2000, Jacques Garrigue

extended OCaml with several new features such as polymorphic methods, variants, and labeled

and optional arguments.

The last decade has seen OCaml attract a signi�cant user base, and language improvements have

been steadily added to support the growing commercial and academic codebases. First-class

modules, Generalized Algebraic Data Types (GADTs), and dynamic linking have improved the

�exibility of the language. There is also fast native code support for x86_64, ARM, PowerPC, and

Sparc, making OCaml a good choice for systems where resource usage, predictability, and

performance all matter.

The Core Standard LibraryThe Core Standard Library

A language on its own isn't enough. You also need a rich set of libraries to base your applications

on. A common source of frustration for those learning OCaml is that the standard library that

ships with the compiler is limited, covering only a small subset of the functionality you would

expect from a general-purpose standard library. That's because the standard library isn't a

general-purpose tool; it was developed for use in bootstrapping the compiler and is purposefully

kept small and simple.

Happily, in the world of open source software, nothing stops alternative libraries from being

written to supplement the compiler-supplied standard library, and this is exactly what the Core

distribution is.

Jane Street, a company that has been using OCaml for more than a decade, developed Core for its

own internal use, but designed it from the start with an eye toward being a general-purpose

standard library. Like the OCaml language itself, Core is engineered with correctness, reliability,

and performance in mind.

Core is distributed with syntax extensions that provide useful new functionality to OCaml, and

there are additional libraries such as the Async network communications library that extend the

reach of Core into building complex distributed systems. All of these libraries are distributed

under a liberal Apache 2 license to permit free use in hobby, academic, and commercial settings.

The OCaml PlatformThe OCaml Platform

Core is a comprehensive and e�ective standard library, but there's much more OCaml software

out there. A large community of programmers has been using OCaml since its �rst release in

1996, and has generated many useful libraries and tools. We'll introduce some of these libraries in

the course of the examples presented in the book.

The installation and management of these third-party libraries is made much easier via a

package management tool known as OPAM. We'll explain more about OPAM as the book unfolds,

but it forms the basis of the Platform, which is a set of tools and libraries that, along with the

OCaml compiler, lets you build real-world applications quickly and e�ectively.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fprologue.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://opam.ocaml.org/


15/01/2019 Prologue / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/prologue.html 3/5

Table of Contents

Prologue
Why OCaml?
About This Book
Safari® Books Online
How to Contact Us
Contributors

I. Language Concepts
II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

We'll also use OPAM for installing the utoputop command-line interface. This is a modern interactive

tool that supports command history, macro expansion, module completion, and other niceties

that make it much more pleasant to work with the language. We'll be using utoputop throughout the

book to let you step through the examples interactively.

ABOUT THIS BOOKABOUT THIS BOOK

Real World OCaml is aimed at programmers who have some experience with conventional

programming languages, but not speci�cally with statically typed functional programming.

Depending on your background, many of the concepts we cover will be new, including traditional

functional-programming techniques like higher-order functions and immutable data types, as

well as aspects of OCaml's powerful type and module systems.

If you already know OCaml, this book may surprise you. Core rede�nes most of the standard

namespace to make better use of the OCaml module system and expose a number of powerful,

reusable data structures by default. Older OCaml code will still interoperate with Core, but you

may need to adapt it for maximal bene�t. All the new code that we write uses Core, and we

believe the Core model is worth learning; it's been successfully used on large, multimillion-line

codebases and removes a big barrier to building sophisticated applications in OCaml.

Code that uses only the traditional compiler standard library will always exist, but there are other

online resources for learning how that works. Real World OCaml focuses on the techniques the

authors have used in their personal experience to construct scalable, robust software systems.

What to ExpectWhat to Expect

Real World OCaml is split into three parts:

Part I covers the language itself, opening with a guided tour designed to provide a quick

sketch of the language. Don't expect to understand everything in the tour; it's meant to give

you a taste of many di�erent aspects of the language, but the ideas covered there will be

explained in more depth in the chapters that follow.

After covering the core language, Part I then moves onto more advanced features like

modules, functors, and objects, which may take some time to digest. Understanding these

concepts is important, though. These ideas will put you in good stead even beyond OCaml

when switching to other modern languages, many of which have drawn inspiration from ML.

Part II builds on the basics by working through useful tools and techniques for addressing

common practical applications, from command-line parsing to asynchronous network

programming. Along the way, you'll see how some of the concepts from Part I are glued

together into real libraries and tools that combine di�erent features of the language to good

e�ect.

Part III discusses OCaml's runtime system and compiler toolchain. It is remarkably simple

when compared to some other language implementations (such as Java's or .NET's CLR).

Reading this part will enable you to build very-high-performance systems, or to interface

with C libraries. This is also where we talk about pro�ling and debugging techniques using

tools such as GNU gdbgdb.

Installation InstructionsInstallation Instructions

Real World OCaml uses some tools that we've developed while writing this book. Some of these

resulted in improvements to the OCaml compiler, which means that you will need to ensure that

you have an up-to-date development environment (using the 4.01 version of the compiler). The

installation process is largely automated through the OPAM package manager. Instructions on

how to it set up and what packages to install can be found at this Real World OCaml page.

As of publication time, the Windows operating system is unsupported by Core, and so only Mac

OS X, Linux, FreeBSD, and OpenBSD can be expected to work reliably. Please check the online

installation instructions for updates regarding Windows, or install a Linux virtual machine to

work through the book as it stands.

This book is not intended as a reference manual. We aim to teach you about the language and

about libraries tools and techniques that will help you be a more e�ective OCaml programmer.

But it's no replacement for API documentation or the OCaml manual and man pages. You can �nd

documentation for all of the libraries and tools referenced in the book online.

Code ExamplesCode Examples

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fprologue.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://realworldocaml.org/install
https://realworldocaml.org/doc


15/01/2019 Prologue / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/prologue.html 4/5

Table of Contents

Prologue
Why OCaml?
About This Book
Safari® Books Online
How to Contact Us
Contributors

I. Language Concepts
II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

All of the code examples in this book are available freely online under a public-domain-like

license. You are most welcome to copy and use any of the snippets as you see �t in your own

code, without any attribution or other restrictions on their use.

The code repository is available online at https://github.com/realworldocaml/examples. Every

code snippet in the book has a clickable header that tells you the �lename in that repository to

�nd the source code, shell script, or ancillary data �le that the snippet was sourced from.

If you feel your use of code examples falls outside fair use or the permission given above, feel

free to contact us at <permissions@oreilly.com>.

SAFARI® BOOKS ONLINESAFARI® BOOKS ONLINE

NoteNote

Safari Books Online (www.safaribooksonline.com) is an on-demand digital library

that delivers expert content in both book and video form from the world’s leading

authors in technology and business. Technology professionals, software

developers, web designers, and business and creative professionals use Safari

Books Online as their primary resource for research, problem solving, learning,

and certi�cation training.

Safari Books Online o�ers a range of product mixes and pricing programs for organizations,

government agencies, and individuals. Subscribers have access to thousands of books, training

videos, and prepublication manuscripts in one fully searchable database from publishers like

O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,

Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,

IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones

& Bartlett, Course Technology, and dozens more. For more information about Safari Books

Online, please visit us online.

HOW TO CONTACT USHOW TO CONTACT US

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.

You can access this page at:

http://oreil.ly/realworldOCaml

To comment or ask technical questions about this book, send email to:

<bookquestions@oreilly.com>

For more information about our books, courses, conferences, and news, see our website at

http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

CONTRIBUTORSCONTRIBUTORS

We would especially like to thank the following individuals for improving Real World OCaml:

Leo White contributed greatly to the content and examples in Chapter 11, Objects and

Chapter 12, Classes.

Jeremy Yallop authored and documented the Ctypes library described in Chapter 19, Foreign

Function Interface.

Stephen Weeks is responsible for much of the modular architecture behind Core, and his

extensive notes formed the basis of Chapter 20, Memory Representation of Values and

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fprologue.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://github.com/realworldocaml/examples
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/realworldOCaml
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html


15/01/2019 Prologue / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/prologue.html 5/5

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
Why OCaml?
About This Book
Safari® Books Online
How to Contact Us
Contributors

I. Language Concepts
II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 21, Understanding the Garbage Collector.

Jeremie Dimino, the author of utop, the interactive command-line interface that is used

throughout this book. We're particularly grateful for the changes that he pushed through to

make utop work better in the context of the book.

The many people who collectively submitted over 2400 comments to online drafts of this

book, through whose e�orts countless errors were found and �xed.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fprologue.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/index.html
https://v1.realworldocaml.org/v1/en/html/pt01.html

