
15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 1/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 6. VariantsChapter 6. Variants
Variant types are one of the most useful features of OCaml and also one of the most unusual.

They let you represent data that may take on multiple di�erent forms, where each form is marked

by an explicit tag. As we'll see, when combined with pattern matching, variants give you a

powerful way of representing complex data and of organizing the case-analysis on that

information.

The basic syntax of a variant type declaration is as follows:

type <variant> =
 | <Tag> [of <type> [* <type>]...]
 | <Tag> [of <type> [* <type>]...]
 | ...

Syntax ∗ variants/variant.syntax ∗ all code

Each row essentially represents a case of the variant. Each case has an associated tag and may

optionally have a sequence of �elds, where each �eld has a speci�ed type.

Let's consider a concrete example of how variants can be useful. Almost all terminals support a

set of eight basic colors, and we can represent those colors using a variant. Each color is declared

as a simple tag, with pipes used to separate the di�erent cases. Note that variant tags must be

capitalized:

type basic_color =
 | Black | Red | Green | Yellow | Blue | Magenta | Cyan | White ;;
type basic_color =
 Black
 | Red
 | Green
 | Yellow
 | Blue
 | Magenta
 | Cyan
 | White
Cyan ;;
- : basic_color = Cyan
[Blue; Magenta; Red] ;;
- : basic_color list = [Blue; Magenta; Red]

OCaml Utop ∗ variants/main.topscript ∗ all code

The following function uses pattern matching to convert a basic_color to a corresponding

integer. The exhaustiveness checking on pattern matches means that the compiler will warn us if

we miss a color:

let basic_color_to_int = function
 | Black -> 0 | Red -> 1 | Green -> 2 | Yellow -> 3
 | Blue -> 4 | Magenta -> 5 | Cyan -> 6 | White -> 7 ;;
val basic_color_to_int : basic_color -> int = <fun>
List.map ~f:basic_color_to_int [Blue;Red];;
- : int list = [4; 1]

OCaml Utop ∗ variants/main.topscript , continued (part 1) ∗ all code

Using the preceding function, we can generate escape codes to change the color of a given string

displayed in a terminal:

let color_by_number number text =
 sprintf "\027[38;5;%dm%s\027[0m" number text;;
val color_by_number : int -> string -> string = <fun>
let blue = color_by_number (basic_color_to_int Blue) "Blue";;
val blue : string = "\027[38;5;4mBlue\027[0m"
printf "Hello %s World!\n" blue;;
Hello Blue World!

OCaml Utop ∗ variants/main-2.rawscript ∗ all code

On most terminals, that word "Blue" will be rendered in blue.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/variant.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main-2.rawscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 2/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

In this example, the cases of the variant are simple tags with no associated data. This is

substantively the same as the enumerations found in languages like C and Java. But as we'll see,

variants can do considerably more than represent a simple enumeration. As it happens, an

enumeration isn't enough to e�ectively describe the full set of colors that a modern terminal can

display. Many terminals, including the venerable xterm, support 256 di�erent colors, broken up

into the following groups:

The eight basic colors, in regular and bold versions

A 6 × 6 × 6 RGB color cube

A 24-level grayscale ramp

We'll also represent this more complicated color space as a variant, but this time, the di�erent

tags will have arguments that describe the data available in each case. Note that variants can have

multiple arguments, which are separated by *s:

type weight = Regular | Bold
 type color =
 | Basic of basic_color * weight (* basic colors, regular and bold *)
 | RGB of int * int * int (* 6x6x6 color cube *)
 | Gray of int (* 24 grayscale levels *)
;;
type weight = Regular | Bold
type color =
 Basic of basic_color * weight
 | RGB of int * int * int
 | Gray of int
[RGB (250,70,70); Basic (Green, Regular)];;
- : color list = [RGB (250, 70, 70); Basic (Green, Regular)]

OCaml Utop ∗ variants/main.topscript , continued (part 3) ∗ all code

Once again, we'll use pattern matching to convert a color to a corresponding integer. But in this

case, the pattern matching does more than separate out the di�erent cases; it also allows us to

extract the data associated with each tag:

let color_to_int = function
 | Basic (basic_color,weight) ->
 let base = match weight with Bold -> 8 | Regular -> 0 in
 base + basic_color_to_int basic_color
 | RGB (r,g,b) -> 16 + b + g * 6 + r * 36
 | Gray i -> 232 + i ;;
val color_to_int : color -> int = <fun>

OCaml Utop ∗ variants/main.topscript , continued (part 4) ∗ all code

Now, we can print text using the full set of available colors:

let color_print color s =
 printf "%s\n" (color_by_number (color_to_int color) s);;
val color_print : color -> string -> unit = <fun>
color_print (Basic (Red,Bold)) "A bold red!";;
A bold red!
color_print (Gray 4) "A muted gray...";;
A muted gray...

OCaml Utop ∗ variants/main-5.rawscript ∗ all code

CATCH-ALL CASES AND REFACTORINGCATCH-ALL CASES AND REFACTORING

OCaml's type system can act as a refactoring tool, warning you of places where your code needs

to be updated to match an interface change. This is particularly valuable in the context of

variants.

Consider what would happen if we were to change the de�nition of color to the following:

type color =
 | Basic of basic_color (* basic colors *)
 | Bold of basic_color (* bold basic colors *)
 | RGB of int * int * int (* 6x6x6 color cube *)
 | Gray of int (* 24 grayscale levels *)
;;
type color =
 Basic of basic_color
 | Bold of basic_color

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main-5.rawscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 3/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 | RGB of int * int * int
 | Gray of int

OCaml Utop ∗ variants/catch_all.topscript , continued (part 1) ∗ all code

We've essentially broken out the Basic case into two cases, Basic and Bold, and Basic has

changed from having two arguments to one. color_to_int as we wrote it still expects the old

structure of the variant, and if we try to compile that same code again, the compiler will notice

the discrepancy:

let color_to_int = function
 | Basic (basic_color,weight) ->
 let base = match weight with Bold -> 8 | Regular -> 0 in
 base + basic_color_to_int basic_color
 | RGB (r,g,b) -> 16 + b + g * 6 + r * 36
 | Gray i -> 232 + i ;;
Characters 34-60:
Error: This pattern matches values of type 'a * 'b
 but a pattern was expected which matches values of type basic_color

OCaml Utop ∗ variants/catch_all.topscript , continued (part 2) ∗ all code

Here, the compiler is complaining that the Basic tag is used with the wrong number of

arguments. If we �x that, however, the compiler �ag will �ag a second problem, which is that we

haven't handled the new Bold tag:

let color_to_int = function
 | Basic basic_color -> basic_color_to_int basic_color
 | RGB (r,g,b) -> 16 + b + g * 6 + r * 36
 | Gray i -> 232 + i ;;

Characters 19-154:
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Bold _val color_to_int : color -> int = <fun>

OCaml Utop ∗ variants/catch_all.topscript , continued (part 3) ∗ all code

Fixing this now leads us to the correct implementation:

let color_to_int = function
 | Basic basic_color -> basic_color_to_int basic_color
 | Bold basic_color -> 8 + basic_color_to_int basic_color
 | RGB (r,g,b) -> 16 + b + g * 6 + r * 36
 | Gray i -> 232 + i ;;
val color_to_int : color -> int = <fun>

OCaml Utop ∗ variants/catch_all.topscript , continued (part 4) ∗ all code

As we've seen, the type errors identi�ed the things that needed to be �xed to complete the

refactoring of the code. This is fantastically useful, but for it to work well and reliably, you need to

write your code in a way that maximizes the compiler's chances of helping you �nd the bugs. To

this end, a useful rule of thumb is to avoid catch-all cases in pattern matches.

Here's an example that illustrates how catch-all cases interact with exhaustion checks. Imagine

we wanted a version of color_to_int that works on older terminals by rendering the �rst 16

colors (the eight basic_colors in regular and bold) in the normal way, but renders everything

else as white. We might have written the function as follows:

let oldschool_color_to_int = function
 | Basic (basic_color,weight) ->
 let base = match weight with Bold -> 8 | Regular -> 0 in
 base + basic_color_to_int basic_color
 | _ -> basic_color_to_int White;;
Characters 44-70:
Error: This pattern matches values of type 'a * 'b
 but a pattern was expected which matches values of type basic_color

OCaml Utop ∗ variants/catch_all.topscript , continued (part 5) ∗ all code

But because the catch-all case encompasses all possibilities, the type system will no longer warn

us that we have missed the new Bold case when we change the type to include it. We can get this

check back by avoiding the catch-all case, and instead being explicit about the tags that are

ignored.

COMBINING RECORDS AND VARIANTSCOMBINING RECORDS AND VARIANTS

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/catch_all.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/catch_all.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/catch_all.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/catch_all.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/catch_all.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 4/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The term algebraic data types is often used to describe a collection of types that includes variants,

records, and tuples. Algebraic data types act as a peculiarly useful and powerful language for

describing data. At the heart of their utility is the fact that they combine two di�erent kinds of

types: product types, like tuples and records, which combine multiple di�erent types together

and are mathematically similar to Cartesian products; and sum types, like variants, which let you

combine multiple di�erent possibilities into one type, and are mathematically similar to disjoint

unions.

Algebraic data types gain much of their power from the ability to construct layered combinations

of sums and products. Let's see what we can achieve with this by revisiting the logging server

types that were described in Chapter 5, Records. We'll start by reminding ourselves of the

de�nition of Log_entry.t:

module Log_entry = struct
 type t =
 { session_id: string;
 time: Time.t;
 important: bool;
 message: string;
 }
 end
 ;;
module Log_entry :
 sig
 type t = {
 session_id : string;
 time : Time.t;
 important : bool;
 message : string;
 }
 end

OCaml Utop ∗ variants/logger.topscript , continued (part 1) ∗ all code

This record type combines multiple pieces of data into one value. In particular, a single

Log_entry.t has a session_id and a time and an important �ag and a message. More

generally, you can think of record types as conjunctions. Variants, on the other hand, are

disjunctions, letting you represent multiple possibilities, as in the following example:

type client_message = | Logon of Logon.t
 | Heartbeat of Heartbeat.t
 | Log_entry of Log_entry.t
 ;;
type client_message =
 Logon of Logon.t
 | Heartbeat of Heartbeat.t
 | Log_entry of Log_entry.t

OCaml Utop ∗ variants/logger.topscript , continued (part 2) ∗ all code

A client_message is a Logon or a Heartbeat or a Log_entry. If we want to write code that

processes messages generically, rather than code specialized to a �xed message type, we need

something like client_message to act as one overarching type for the di�erent possible

messages. We can then match on the client_message to determine the type of the particular

message being dealt with.

You can increase the precision of your types by using variants to represent di�erences between

types, and records to represent shared structure. Consider the following function that takes a list

of client_messages and returns all messages generated by a given user. The code in question is

implemented by folding over the list of messages, where the accumulator is a pair of:

The set of session identi�ers for the user that have been seen thus far

The set of messages so far that are associated with the user

Here's the concrete code:

let messages_for_user user messages =
 let (user_messages,_) =
 List.fold messages ~init:([],String.Set.empty)
 ~f:(fun ((messages,user_sessions) as acc) message ->
 match message with
 | Logon m ->
 if m.Logon.user = user then
 (message::messages, Set.add user_sessions m.Logon.session_id)
 else acc

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/records.html
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 5/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 | Heartbeat _ | Log_entry _ ->
 let session_id = match message with
 | Logon m -> m.Logon.session_id
 | Heartbeat m -> m.Heartbeat.session_id
 | Log_entry m -> m.Log_entry.session_id
 in
 if Set.mem user_sessions session_id then
 (message::messages,user_sessions)
 else acc
)
 in
 List.rev user_messages
 ;;
val messages_for_user : string -> client_message list -> client_message list =
 <fun>

OCaml Utop ∗ variants/logger.topscript , continued (part 3) ∗ all code

There's one awkward part of the preceding code, which is the logic that determines the session

ID. The code is somewhat repetitive, contemplating each of the possible message types (including

the Logon case, which isn't actually possible at that point in the code) and extracting the session

ID in each case. This per-message-type handling seems unnecessary, since the session ID works

the same way for all of the message types.

We can improve the code by refactoring our types to explicitly re�ect the information that's

shared between the di�erent messages. The �rst step is to cut down the de�nitions of each per-

message record to contain just the information unique to that record:

module Log_entry = struct
 type t = { important: bool;
 message: string;
 }
 end
 module Heartbeat = struct
 type t = { status_message: string; }
 end
 module Logon = struct
 type t = { user: string;
 credentials: string;
 }
 end ;;
module Log_entry : sig type t = { important : bool; message : string; } end
module Heartbeat : sig type t = { status_message : string; } end
module Logon : sig type t = { user : string; credentials : string; } end

OCaml Utop ∗ variants/logger.topscript , continued (part 4) ∗ all code

We can then de�ne a variant type that combines these types:

type details =
 | Logon of Logon.t
 | Heartbeat of Heartbeat.t
 | Log_entry of Log_entry.t
 ;;
type details =
 Logon of Logon.t
 | Heartbeat of Heartbeat.t
 | Log_entry of Log_entry.t

OCaml Utop ∗ variants/logger.topscript , continued (part 5) ∗ all code

Separately, we need a record that contains the �elds that are common across all messages:

module Common = struct
 type t = { session_id: string;
 time: Time.t;
 }
 end ;;
module Common : sig type t = { session_id : string; time : Time.t; } end

OCaml Utop ∗ variants/logger.topscript , continued (part 6) ∗ all code

A full message can then be represented as a pair of a Common.t and a details. Using this, we can

rewrite our preceding example as follows:

let messages_for_user user messages =
 let (user_messages,_) =
 List.fold messages ~init:([],String.Set.empty)
 ~f:(fun ((messages,user_sessions) as acc) ((common,details) as message) ->

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 6/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 let session_id = common.Common.session_id in
 match details with
 | Logon m ->
 if m.Logon.user = user then
 (message::messages, Set.add user_sessions session_id)
 else acc
 | Heartbeat _ | Log_entry _ ->
 if Set.mem user_sessions session_id then
 (message::messages,user_sessions)
 else acc
)
 in
 List.rev user_messages
 ;;
val messages_for_user :
 string -> (Common.t * details) list -> (Common.t * details) list = <fun>

OCaml Utop ∗ variants/logger.topscript , continued (part 7) ∗ all code

As you can see, the code for extracting the session ID has been replaced with the simple

expression common.Common.session_id.

In addition, this design allows us to essentially downcast to the speci�c message type once we

know what it is and then dispatch code to handle just that message type. In particular, while we

use the type Common.t * details to represent an arbitrary message, we can use Common.t *

Logon.t to represent a logon message. Thus, if we had functions for handling individual message

types, we could write a dispatch function as follows:

let handle_message server_state (common,details) =
 match details with
 | Log_entry m -> handle_log_entry server_state (common,m)
 | Logon m -> handle_logon server_state (common,m)
 | Heartbeat m -> handle_heartbeat server_state (common,m)
 ;;
Characters 95-111:
Error: Unbound value handle_log_entry

OCaml Utop ∗ variants/logger.topscript , continued (part 8) ∗ all code

And it's explicit at the type level that handle_log_entry sees only Log_entry messages,

handle_logon sees only Logon messages, etc.

VARIANTS AND RECURSIVE DATA STRUCTURESVARIANTS AND RECURSIVE DATA STRUCTURES

Another common application of variants is to represent tree-like recursive data structures. We'll

show how this can be done by walking through the design of a simple Boolean expression

language. Such a language can be useful anywhere you need to specify �lters, which are used in

everything from packet analyzers to mail clients.

An expression in this language will be de�ned by the variant expr, with one tag for each kind of

expression we want to support:

type 'a expr =
 | Base of 'a
 | Const of bool
 | And of 'a expr list
 | Or of 'a expr list
 | Not of 'a expr
 ;;
type 'a expr =
 Base of 'a
 | Const of bool
 | And of 'a expr list
 | Or of 'a expr list
 | Not of 'a expr

OCaml Utop ∗ variants/blang.topscript ∗ all code

Note that the de�nition of the type expr is recursive, meaning that a expr may contain other

exprs. Also, expr is parameterized by a polymorphic type 'a which is used for specifying the

type of the value that goes under the Base tag.

The purpose of each tag is pretty straightforward. And, Or, and Not are the basic operators for

building up Boolean expressions, and Const lets you enter the constants true and false.

The Base tag is what allows you to tie the expr to your application, by letting you specify an

element of some base predicate type, whose truth or falsehood is determined by your application.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 7/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

If you were writing a �lter language for an email processor, your base predicates might specify

the tests you would run against an email, as in the following example:

type mail_field = To | From | CC | Date | Subject
 type mail_predicate = { field: mail_field;
 contains: string }
 ;;
type mail_field = To | From | CC | Date | Subject
type mail_predicate = { field : mail_field; contains : string; }

OCaml Utop ∗ variants/blang.topscript , continued (part 1) ∗ all code

Using the preceding code, we can construct a simple expression with mail_predicate as its

base predicate:

let test field contains = Base { field; contains };;
val test : mail_field -> string -> mail_predicate expr = <fun>
And [Or [test To "doligez"; test CC "doligez"];
 test Subject "runtime";
]
 ;;
- : mail_predicate expr =
And
 [Or
 [Base {field = To; contains = "doligez"};
 Base {field = CC; contains = "doligez"}];
 Base {field = Subject; contains = "runtime"}]

OCaml Utop ∗ variants/blang.topscript , continued (part 2) ∗ all code

Being able to construct such expressions isn't enough; we also need to be able to evaluate them.

Here's a function for doing just that:

let rec eval expr base_eval =
 (* a shortcut, so we don't need to repeatedly pass [base_eval]
 explicitly to [eval] *)
 let eval' expr = eval expr base_eval in
 match expr with
 | Base base -> base_eval base
 | Const bool -> bool
 | And exprs -> List.for_all exprs ~f:eval'
 | Or exprs -> List.exists exprs ~f:eval'
 | Not expr -> not (eval' expr)
 ;;
val eval : 'a expr -> ('a -> bool) -> bool = <fun>

OCaml Utop ∗ variants/blang.topscript , continued (part 3) ∗ all code

The structure of the code is pretty straightforward—we're just pattern matching over the

structure of the data, doing the appropriate calculation based on which tag we see. To use this

evaluator on a concrete example, we just need to write the base_eval function, which is capable

of evaluating a base predicate.

Another useful operation on expressions is simpli�cation. The following is a set of simplifying

construction functions that mirror the tags of an expr:

let and_ l =
 if List.mem l (Const false) then Const false
 else
 match List.filter l ~f:((<>) (Const true)) with
 | [] -> Const true
 | [x] -> x
 | l -> And l

 let or_ l =
 if List.mem l (Const true) then Const true
 else
 match List.filter l ~f:((<>) (Const false)) with
 | [] -> Const false
 | [x] -> x
 | l -> Or l

 let not_ = function
 | Const b -> Const (not b)
 | e -> Not e
 ;;
val and_ : 'a expr list -> 'a expr = <fun>
val or_ : 'a expr list -> 'a expr = <fun>
val not_ : 'a expr -> 'a expr = <fun>

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 8/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml Utop ∗ variants/blang.topscript , continued (part 4) ∗ all code

We can now write a simpli�cation routine that is based on the preceding functions.

let rec simplify = function
 | Base _ | Const _ as x -> x
 | And l -> and_ (List.map ~f:simplify l)
 | Or l -> or_ (List.map ~f:simplify l)
 | Not e -> not_ (simplify e)
 ;;
val simplify : 'a expr -> 'a expr = <fun>

OCaml Utop ∗ variants/blang.topscript , continued (part 5) ∗ all code

We can apply this to a Boolean expression and see how good a job it does at simplifying it:

simplify (Not (And [Or [Base "it's snowing"; Const true];
 Base "it's raining"]));;
- : string expr = Not (Base "it's raining")

OCaml Utop ∗ variants/blang.topscript , continued (part 6) ∗ all code

Here, it correctly converted the Or branch to Const true and then eliminated the And entirely,

since the And then had only one nontrivial component.

There are some simpli�cations it misses, however. In particular, see what happens if we add a

double negation in:

simplify (Not (And [Or [Base "it's snowing"; Const true];
 Not (Not (Base "it's raining"))]));;
- : string expr = Not (Not (Not (Base "it's raining")))

OCaml Utop ∗ variants/blang.topscript , continued (part 7) ∗ all code

It fails to remove the double negation, and it's easy to see why. The not_ function has a catch-all

case, so it ignores everything but the one case it explicitly considers, that of the negation of a

constant. Catch-all cases are generally a bad idea, and if we make the code more explicit, we see

that the missing of the double negation is more obvious:

let not_ = function
 | Const b -> Const (not b)
 | (Base _ | And _ | Or _ | Not _) as e -> Not e
 ;;
val not_ : 'a expr -> 'a expr = <fun>

OCaml Utop ∗ variants/blang.topscript , continued (part 8) ∗ all code

We can of course �x this by simply adding an explicit case for double negation:

let not_ = function
 | Const b -> Const (not b)
 | Not e -> e
 | (Base _ | And _ | Or _) as e -> Not e
 ;;
val not_ : 'a expr -> 'a expr = <fun>

OCaml Utop ∗ variants/blang.topscript , continued (part 9) ∗ all code

The example of a Boolean expression language is more than a toy. There's a module very much in

this spirit in Core called Blang (short for "Boolean language"), and it gets a lot of practical use in a

variety of applications. The simpli�cation algorithm in particular is useful when you want to use

it to specialize the evaluation of expressions for which the evaluation of some of the base

predicates is already known.

More generally, using variants to build recursive data structures is a common technique, and

shows up everywhere from designing little languages to building complex data structures.

POLYMORPHIC VARIANTSPOLYMORPHIC VARIANTS

In addition to the ordinary variants we've seen so far, OCaml also supports so-called polymorphic

variants. As we'll see, polymorphic variants are more �exible and syntactically more lightweight

than ordinary variants, but that extra power comes at a cost.

Syntactically, polymorphic variants are distinguished from ordinary variants by the leading

backtick. And unlike ordinary variants, polymorphic variants can be used without an explicit type

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 9/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

declaration:

let three = `Int 3;;
val three : [> `Int of int] = `Int 3
let four = `Float 4.;;
val four : [> `Float of float] = `Float 4.
let nan = `Not_a_number;;
val nan : [> `Not_a_number] = `Not_a_number
[three; four; nan];;
- : [> `Float of float | `Int of int | `Not_a_number] list =
[`Int 3; `Float 4.; `Not_a_number]

OCaml Utop ∗ variants/main.topscript , continued (part 6) ∗ all code

As you can see, polymorphic variant types are inferred automatically, and when we combine

variants with di�erent tags, the compiler infers a new type that knows about all of those tags.

Note that in the preceding example, the tag name (e.g., `Int) matches the type name (int). This is

a common convention in OCaml.

The type system will complain if it sees incompatible uses of the same tag:

let five = `Int "five";;
val five : [> `Int of string] = `Int "five"
[three; four; five];;
Characters 14-18:
Error: This expression has type [> `Int of string]
 but an expression was expected of type
 [> `Float of float | `Int of int]
 Types for tag `Int are incompatible

OCaml Utop ∗ variants/main.topscript , continued (part 7) ∗ all code

The > at the beginning of the variant types above is critical because it marks the types as being

open to combination with other variant types. We can read the type [> `Int of string |

`Float of float] as describing a variant whose tags include `Int of string and `Float of

float, but may include more tags as well. In other words, you can roughly translate > to mean:

"these tags or more."

OCaml will in some cases infer a variant type with <, to indicate "these tags or less," as in the

following example:

let is_positive = function
 | `Int x -> x > 0
 | `Float x -> x > 0.
 ;;
val is_positive : [< `Float of float | `Int of int] -> bool = <fun>

OCaml Utop ∗ variants/main.topscript , continued (part 8) ∗ all code

The < is there because is_positive has no way of dealing with values that have tags other than

`Float of float or `Int of int.

We can think of these < and > markers as indications of upper and lower bounds on the tags

involved. If the same set of tags are both an upper and a lower bound, we end up with an exact

polymorphic variant type, which has neither marker. For example:

let exact = List.filter ~f:is_positive [three;four];;
val exact : [`Float of float | `Int of int] list = [`Int 3; `Float 4.]

OCaml Utop ∗ variants/main.topscript , continued (part 9) ∗ all code

Perhaps surprisingly, we can also create polymorphic variant types that have di�erent upper and

lower bounds. Note that Ok and Error in the following example come from the Result.t type

from Core:

let is_positive = function
 | `Int x -> Ok (x > 0)
 | `Float x -> Ok (x > 0.)
 | `Not_a_number -> Error "not a number";;
val is_positive :
 [< `Float of float | `Int of int | `Not_a_number] ->
 (bool, string) Result.t = <fun>
List.filter [three; four] ~f:(fun x ->
 match is_positive x with Error _ -> false | Ok b -> b);;

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 10/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

- : [< `Float of float | `Int of int | `Not_a_number > `Float `Int] list =
[`Int 3; `Float 4.]

OCaml Utop ∗ variants/main.topscript , continued (part 10) ∗ all code

Here, the inferred type states that the tags can be no more than `Float, `Int, and

`Not_a_number, and must contain at least `Float and `Int. As you can already start to see,

polymorphic variants can lead to fairly complex inferred types.

Example: Terminal Colors ReduxExample: Terminal Colors Redux

To see how to use polymorphic variants in practice, we'll return to terminal colors. Imagine that

we have a new terminal type that adds yet more colors, say, by adding an alpha channel so you

can specify translucent colors. We could model this extended set of colors as follows, using an

ordinary variant:

type extended_color =
 | Basic of basic_color * weight (* basic colors, regular and bold *)
 | RGB of int * int * int (* 6x6x6 color space *)
 | Gray of int (* 24 grayscale levels *)
 | RGBA of int * int * int * int (* 6x6x6x6 color space *)
 ;;
type extended_color =
 Basic of basic_color * weight
 | RGB of int * int * int
 | Gray of int
 | RGBA of int * int * int * int

OCaml Utop ∗ variants/main.topscript , continued (part 11) ∗ all code

We want to write a function extended_color_to_int, that works like color_to_int for all of

the old kinds of colors, with new logic only for handling colors that include an alpha channel.

One might try to write such a function as follows.

let extended_color_to_int = function
 | RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216
 | (Basic _ | RGB _ | Gray _) as color -> color_to_int color
 ;;
Characters 154-159:
Error: This expression has type extended_color
 but an expression was expected of type color

OCaml Utop ∗ variants/main.topscript , continued (part 12) ∗ all code

The code looks reasonable enough, but it leads to a type error because extended_color and

color are in the compiler's view distinct and unrelated types. The compiler doesn't, for example,

recognize any equality between the Basic tag in the two types.

What we want to do is to share tags between two di�erent variant types, and polymorphic

variants let us do this in a natural way. First, let's rewrite basic_color_to_int and

color_to_int using polymorphic variants. The translation here is pretty straightforward:

let basic_color_to_int = function
 | `Black -> 0 | `Red -> 1 | `Green -> 2 | `Yellow -> 3
 | `Blue -> 4 | `Magenta -> 5 | `Cyan -> 6 | `White -> 7

 let color_to_int = function
 | `Basic (basic_color,weight) ->
 let base = match weight with `Bold -> 8 | `Regular -> 0 in
 base + basic_color_to_int basic_color
 | `RGB (r,g,b) -> 16 + b + g * 6 + r * 36
 | `Gray i -> 232 + i
 ;;
val basic_color_to_int :
 [< `Black | `Blue | `Cyan | `Green | `Magenta | `Red | `White | `Yellow] ->
 int = <fun>
val color_to_int :
 [< `Basic of
 [< `Black
 | `Blue
 | `Cyan
 | `Green
 | `Magenta
 | `Red
 | `White
 | `Yellow] *
 [< `Bold | `Regular]
 | `Gray of int

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 11/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 | `RGB of int * int * int] ->
 int = <fun>

OCaml Utop ∗ variants/main.topscript , continued (part 13) ∗ all code

Now we can try writing extended_color_to_int. The key issue with this code is that

extended_color_to_int needs to invoke color_to_int with a narrower type, i.e., one that

includes fewer tags. Written properly, this narrowing can be done via a pattern match. In

particular, in the following code, the type of the variable color includes only the tags `Basic,

`RGB, and `Gray, and not `RGBA:

let extended_color_to_int = function
 | `RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216
 | (`Basic _ | `RGB _ | `Gray _) as color -> color_to_int color
 ;;
val extended_color_to_int :
 [< `Basic of
 [< `Black
 | `Blue
 | `Cyan
 | `Green
 | `Magenta
 | `Red
 | `White
 | `Yellow] *
 [< `Bold | `Regular]
 | `Gray of int
 | `RGB of int * int * int
 | `RGBA of int * int * int * int] ->
 int = <fun>

OCaml Utop ∗ variants/main.topscript , continued (part 14) ∗ all code

The preceding code is more delicately balanced than one might imagine. In particular, if we use a

catch-all case instead of an explicit enumeration of the cases, the type is no longer narrowed, and

so compilation fails:

let extended_color_to_int = function
 | `RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216
 | color -> color_to_int color
 ;;
Characters 125-130:
Error: This expression has type [> `RGBA of int * int * int * int]
 but an expression was expected of type
 [< `Basic of
 [< `Black
 | `Blue
 | `Cyan
 | `Green
 | `Magenta
 | `Red
 | `White
 | `Yellow] *
 [< `Bold | `Regular]
 | `Gray of int
 | `RGB of int * int * int]
 The second variant type does not allow tag(s) `RGBA

OCaml Utop ∗ variants/main.topscript , continued (part 15) ∗ all code

Polymorphic Variants and Catch-all CasesPolymorphic Variants and Catch-all Cases

As we saw with the de�nition of is_positive, a match statement can lead to the

inference of an upper bound on a variant type, limiting the possible tags to those

that can be handled by the match. If we add a catch-all case to our match statement,

we end up with a type with a lower bound:

let is_positive_permissive = function
 | `Int x -> Ok (x > 0)
 | `Float x -> Ok (x > 0.)
 | _ -> Error "Unknown number type"
 ;;
val is_positive_permissive :
 [> `Float of float | `Int of int] -> (bool, string) Result.t = <fun>
is_positive_permissive (`Int 0);;
- : (bool, string) Result.t = Ok false
is_positive_permissive (`Ratio (3,4));;
- : (bool, string) Result.t = Error "Unknown number type"

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 12/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml Utop ∗ variants/main.topscript , continued (part 16) ∗ all code

Catch-all cases are error-prone even with ordinary variants, but they are especially

so with polymorphic variants. That's because you have no way of bounding what

tags your function might have to deal with. Such code is particularly vulnerable to

typos. For instance, if code that uses is_positive_permissive passes in Float

misspelled as Floot, the erroneous code will compile without complaint:

is_positive_permissive (`Floot 3.5);;
- : (bool, string) Result.t = Error "Unknown number type"

OCaml Utop ∗ variants/main.topscript , continued (part 17) ∗ all code

With ordinary variants, such a typo would have been caught as an unknown tag. As

a general matter, one should be wary about mixing catch-all cases and polymorphic

variants.

Let's consider how we might turn our code into a proper library with an implementation in an ml

�le and an interface in a separate mli, as we saw in Chapter 4, Files, Modules, and Programs. Let's

start with the mli:

open Core.Std

type basic_color =
 [`Black | `Blue | `Cyan | `Green
 | `Magenta | `Red | `White | `Yellow]

type color =
 [`Basic of basic_color * [`Bold | `Regular]
 | `Gray of int
 | `RGB of int * int * int]

type extended_color =
 [color
 | `RGBA of int * int * int * int]

val color_to_int : color -> int
val extended_color_to_int : extended_color -> int

OCaml ∗ variants-termcol/terminal_color.mli ∗ all code

Here, extended_color is de�ned as an explicit extension of color. Also, notice that we de�ned

all of these types as exact variants. We can implement this library as follows:

open Core.Std

type basic_color =
 [`Black | `Blue | `Cyan | `Green
 | `Magenta | `Red | `White | `Yellow]

type color =
 [`Basic of basic_color * [`Bold | `Regular]
 | `Gray of int
 | `RGB of int * int * int]

type extended_color =
 [color
 | `RGBA of int * int * int * int]

let basic_color_to_int = function
 | `Black -> 0 | `Red -> 1 | `Green -> 2 | `Yellow -> 3
 | `Blue -> 4 | `Magenta -> 5 | `Cyan -> 6 | `White -> 7

let color_to_int = function
 | `Basic (basic_color,weight) ->
 let base = match weight with `Bold -> 8 | `Regular -> 0 in
 base + basic_color_to_int basic_color
 | `RGB (r,g,b) -> 16 + b + g * 6 + r * 36
 | `Gray i -> 232 + i

let extended_color_to_int = function
 | `RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216
 | `Grey x -> 2000 + x
 | (`Basic _ | `RGB _ | `Gray _) as color -> color_to_int color

OCaml ∗ variants-termcol/terminal_color.ml ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
http://github.com/realworldocaml/examples/blob/master/code/variants-termcol/terminal_color.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants-termcol/terminal_color.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 13/14

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

In the preceding code, we did something funny to the de�nition of extended_color_to_int that

underlines some of the downsides of polymorphic variants. In particular, we added some special-

case handling for the color gray, rather than using color_to_int. Unfortunately, we misspelled

Gray as Grey. This is exactly the kind of error that the compiler would catch with ordinary

variants, but with polymorphic variants, this compiles without issue. All that happened was that

the compiler inferred a wider type for extended_color_to_int, which happens to be

compatible with the narrower type that was listed in the mli.

If we add an explicit type annotation to the code itself (rather than just in the mli), then the

compiler has enough information to warn us:

open Core.Std

type basic_color =
 [`Black | `Blue | `Cyan | `Green
 | `Magenta | `Red | `White | `Yellow]

type color =
 [`Basic of basic_color * [`Bold | `Regular]
 | `Gray of int
 | `RGB of int * int * int]

type extended_color =
 [color
 | `RGBA of int * int * int * int]

let basic_color_to_int = function
 | `Black -> 0 | `Red -> 1 | `Green -> 2 | `Yellow -> 3
 | `Blue -> 4 | `Magenta -> 5 | `Cyan -> 6 | `White -> 7

let color_to_int = function
 | `Basic (basic_color,weight) ->
 let base = match weight with `Bold -> 8 | `Regular -> 0 in
 base + basic_color_to_int basic_color
 | `RGB (r,g,b) -> 16 + b + g * 6 + r * 36
 | `Gray i -> 232 + i

OCaml ∗ variants-termcol-annotated/terminal_color.ml ∗ all code

In particular, the compiler will complain that the `Grey case is unused:

$ corebuild terminal_color.native
File "terminal_color.ml", line 30, characters 4-11:
Error: This pattern matches values of type [? `Grey of 'a]
 but a pattern was expected which matches values of type extended_color
 The second variant type does not allow tag(s) `Grey
Command exited with code 2.

Terminal ∗ variants-termcol-annotated/build.out ∗ all code

Once we have type de�nitions at our disposal, we can revisit the question of how we write the

pattern match that narrows the type. In particular, we can explicitly use the type name as part of

the pattern match, by pre�xing it with a #:

open Core.Std

type basic_color =
 [`Black | `Blue | `Cyan | `Green
 | `Magenta | `Red | `White | `Yellow]

type color =
 [`Basic of basic_color * [`Bold | `Regular]
 | `Gray of int
 | `RGB of int * int * int]

type extended_color =
 [color
 | `RGBA of int * int * int * int]

let basic_color_to_int = function
 | `Black -> 0 | `Red -> 1 | `Green -> 2 | `Yellow -> 3
 | `Blue -> 4 | `Magenta -> 5 | `Cyan -> 6 | `White -> 7

let color_to_int = function
 | `Basic (basic_color,weight) ->
 let base = match weight with `Bold -> 8 | `Regular -> 0 in
 base + basic_color_to_int basic_color
 | `RGB (r,g,b) -> 16 + b + g * 6 + r * 36
 | `Gray i -> 232 + i

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants-termcol-annotated/terminal_color.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants-termcol-annotated/build.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/variants.html 14/14

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml ∗ variants-termcol-fixed/terminal_color.ml ∗ all code

This is useful when you want to narrow down to a type whose de�nition is long, and you don't

want the verbosity of writing the tags down explicitly in the match.

When to Use Polymorphic VariantsWhen to Use Polymorphic Variants

At �rst glance, polymorphic variants look like a strict improvement over ordinary variants. You

can do everything that ordinary variants can do, plus it's more �exible and more concise. What's

not to like?

In reality, regular variants are the more pragmatic choice most of the time. That's because the

�exibility of polymorphic variants comes at a price. Here are some of the downsides:

Complexity

As we've seen, the typing rules for polymorphic variants are a lot more complicated than they are

for regular variants. This means that heavy use of polymorphic variants can leave you scratching

your head trying to �gure out why a given piece of code did or didn't compile. It can also lead to

absurdly long and hard to decode error messages. Indeed, concision at the value level is often

balanced out by more verbosity at the type level.

Error-�nding

Polymorphic variants are type-safe, but the typing discipline that they impose is, by dint of its

�exibility, less likely to catch bugs in your program.

E�ciency

This isn't a huge e�ect, but polymorphic variants are somewhat heavier than regular variants,

and OCaml can't generate code for matching on polymorphic variants that is quite as e�cient as

what it generated for regular variants.

All that said, polymorphic variants are still a useful and powerful feature, but it's worth

understanding their limitations and how to use them sensibly and modestly.

Probably the safest and most common use case for polymorphic variants is where ordinary

variants would be su�cient but are syntactically too heavyweight. For example, you often want to

create a variant type for encoding the inputs or outputs to a function, where it's not worth

declaring a separate type for it. Polymorphic variants are very useful here, and as long as there

are type annotations that constrain these to have explicit, exact types, this tends to work well.

Variants are most problematic exactly where you take full advantage of their power; in particular,

when you take advantage of the ability of polymorphic variant types to overlap in the tags they

support. This ties into OCaml's support for subtyping. As we'll discuss further when we cover

objects in Chapter 11, Objects, subtyping brings in a lot of complexity, and most of the time, that's

complexity you want to avoid.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants-termcol-fixed/terminal_color.ml
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html

