15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

. A Guided Tour

. Variables and Functions
. Lists and Patterns

. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NS WNKH

. Files, Modules, and Programs

oayin with GitHub t© view

2and add comments

Chapter 6. Variants / Real World OCaml

Chapter 6. Variants

Variant types are one of the most useful features of OCaml and also one of the most unusual.
They let you represent data that may take on multiple different forms, where each form is marked
by an explicit tag. As we'll see, when combined with pattern matching, variants give you a
powerful way of representing complex data and of organizing the case-analysis on that
information.

The basic syntax of a variant type declaration is as follows:

type <variant> =
| <Tag> [of <type> [* <type>]...]
| <Tag> [of <type> [* <type>]...]
|

Syntax * variants/variant.syntax * all code

Each row essentially represents a case of the variant. Each case has an associated tag and may
optionally have a sequence of fields, where each field has a specified type.

Let's consider a concrete example of how variants can be useful. Almost all terminals support a
set of eight basic colors, and we can represent those colors using a variant. Each color is declared
as a simple tag, with pipes used to separate the different cases. Note that variant tags must be
capitalized:

type basic_color =
| Black | Red | Green | Yellow | Blue | Magenta | Cyan | White ;;
type basic_color =
Black
Red
Green
Yellow
Blue
Magenta
Cyan
White
Cyan ;;
- : basic_color = Cyan
[Blue; Magenta; Red] ;;
- ! basic_color list = [Blue; Magenta; Red]

—————— —

OCaml Utop * variants/main.topscript * all code

The following function uses pattern matching to convert a basic_color to a corresponding
integer. The exhaustiveness checking on pattern matches means that the compiler will warn us if
we miss a color:

let basic_color_to_int = function
| Black -> @ | Red -> 1 | Green -> 2 | Yellow -> 3
| Blue -> 4 | Magenta -> 5 | Cyan -> 6 | White -> 7 ;;
val basic_color_to_int : basic_color -> int = <fun>
List.map ~f:basic_color_to_int [Blue;Red];;
- :int list = [4; 1]

OCaml Utop * variants/main.topscript , continued (part 1) * all code

Using the preceding function, we can generate escape codes to change the color of a given string
displayed in a terminal:

let color_by_number number text =
sprintf "\027[38;5;%dm%s\027[@m" number text;;
val color_by _number : int -> string -> string = <fun>
let blue = color_by_number (basic_color_to_int Blue) "Blue";;
val blue : string = "\@27[38;5;4mBlLue\@27[6m"
printf "Hello %s World!\n" blue;;
Hello Blue World!

OCaml Utop * variants/main-2.rawscript * all code

On most terminals, that word "Blue" will be rendered in blue.

https://v1.realworldocaml.org/v1/en/htmli/variants.html

1/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/variant.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main-2.rawscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUA WNKH

oain with GitHub t© view

2and add comments

Chapter 6. Variants / Real World OCaml

In this example, the cases of the variant are simple tags with no associated data. This is
substantively the same as the enumerations found in languages like C and Java. But as we'll see,
variants can do considerably more than represent a simple enumeration. As it happens, an
enumeration isn't enough to effectively describe the full set of colors that a modern terminal can
display. Many terminals, including the venerable xterm, support 256 different colors, broken up
into the following groups:

« The eight basic colors, in regular and bold versions
« A6 x6x6RGB color cube
« A 24-level grayscale ramp

We'll also represent this more complicated color space as a variant, but this time, the different
tags will have arguments that describe the data available in each case. Note that variants can have
multiple arguments, which are separated by *s:

type weight = Regular | Bold

type color =

| Basic of basic_color * weight (* basic colors, regular and bold *)
| RGB of int * int * int (* 6x6x6 color cube *)

| Gray of int (* 24 grayscale levels *)

)

type weight = Regular | Bold

type color =

Basic of basic_color * weight

| RGB of int * int * int
| Gray of int

[RGB (250,70,70); Basic (Green, Regular)];;

- : color list = [RGB (250, 70, 70); Basic (Green, Regular)]

OCaml Utop * variants/main.topscript , continued (part 3) * all code

Once again, we'll use pattern matching to convert a color to a corresponding integer. But in this
case, the pattern matching does more than separate out the different cases; it also allows us to
extract the data associated with each tag:

let color_to_int = function
| Basic (basic_color,weight) ->
let base = match weight with Bold -> 8 | Regular -> 0 in
base + basic_color_to_int basic_color
| RGB (r,g,b) -> 16 + b + g * 6 + r * 36
| Gray 1 -> 232 + 1 ;;
val color_to_int : color -> int = <fun>

OCaml Utop * variants/main.topscript , continued (part 4) all code
Now, we can print text using the full set of available colors:

let color_print color s =
printf "%s\n" (color_by number (color_to_int color) s);;
val color_print : color -> string -> unit = <fun>
color_print (Basic (Red,Bold)) "A bold red!";;
A bold red!
color_print (Gray 4) "A muted gray...";;
A muted gray...

OCaml Utop * variants/main-5.rawscript * all code

CATCH-ALL CASES AND REFACTORING

OCaml's type system can act as a refactoring tool, warning you of places where your code needs
to be updated to match an interface change. This is particularly valuable in the context of
variants.

Consider what would happen if we were to change the definition of color to the following:

type color =

| Basic of basic_color (* basic colors *)

| Bold of basic_color (* bold basic colors *)

| RGB of int * int * int (* 6x6x6 color cube *)

| Gray of int (* 24 grayscale levels *)
type color =

Basic of basic_color
| Bold of basic_color

https://v1.realworldocaml.org/v1/en/htmli/variants.html 2/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main-5.rawscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

. A Guided Tour

. Variables and Functions
. Lists and Patterns

. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUA WNKH

. Files, Modules, and Programs

Chapter 6. Variants / Real World OCaml

| RGB of int * int * int
| Gray of int

OCaml Utop * variants/catch_all.topscript , continued (part 1) * all code

We've essentially broken out the Basic case into two cases, Basic and Bold, and Basic has
changed from having two arguments to one. color to_int as we wrote it still expects the old
structure of the variant, and if we try to compile that same code again, the compiler will notice
the discrepancy:

let color_to_int = function
| Basic (basic_color,weight) ->
let base = match weight with Bold -> 8 | Regular -> @ in
base + basic_color_to_int basic_color
| RGB (r,g,b) -> 16 +b + g * 6 +r * 36
| Gray i -> 232 + i ;;
Characters 34-60:
Error: This pattern matches values of type 'a * 'b
but a pattern was expected which matches values of type basic_color

OCaml Utop * variants/catch_all.topscript , continued (part 2) * all code

Here, the compiler is complaining that the Basic tag is used with the wrong number of
arguments. If we fix that, however, the compiler flag will flag a second problem, which is that we
haven't handled the new Bo1d tag:

let color_to_int = function
| Basic basic_color -> basic_color_to_int basic_color
| RGB (r,g,b) -> 16 +b + g * 6 +r * 36
| Gray i -> 232 +1i ;;

Characters 19-154:

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Bold _val color_to_int : color -> int = <fun>

OCaml Utop * variants/catch_all.topscript , continued (part 3) * all code
Fixing this now leads us to the correct implementation:

let color_to_int = function
| Basic basic_color -> basic_color_to_int basic_color
| Bold basic_color -> 8 + basic_color_to_int basic_color
| RGB (r,g,b) -> 16 + b + g * 6 + r * 36
| Gray i -> 232 + i ;;
val color_to_1int : color -> int = <fun>

OCaml Utop * variants/catch_all.topscript , continued (part 4) * all code

As we've seen, the type errors identified the things that needed to be fixed to complete the
refactoring of the code. This is fantastically useful, but for it to work well and reliably, you need to
write your code in a way that maximizes the compiler's chances of helping you find the bugs. To
this end, a useful rule of thumb is to avoid catch-all cases in pattern matches.

Here's an example that illustrates how catch-all cases interact with exhaustion checks. Imagine
we wanted a version of color to_int that works on older terminals by rendering the first 16
colors (the eight basic_colors in regular and bold) in the normal way, but renders everything
else as white. We might have written the function as follows:

let oldschool_color_to_int = function
| Basic (basic_color,weight) ->
let base = match weight with Bold -> 8 | Regular -> @ in
base + basic_color_to_int basic_color
| _ -> basic_color_to_int White;;
Characters 44-70:
Error: This pattern matches values of type 'a * 'b
but a pattern was expected which matches values of type basic_color

OCaml Utop * variants/catch_all.topscript , continued (part 5) * all code

But because the catch-all case encompasses all possibilities, the type system will no longer warn
us that we have missed the new Bo1d case when we change the type to include it. We can get this
check back by avoiding the catch-all case, and instead being explicit about the tags that are
ignored.

COMBINING RECORDS AND VARIANTS

https://v1.realworldocaml.org/v1/en/htmli/variants.html

3/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/catch_all.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/catch_all.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/catch_all.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/catch_all.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/catch_all.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O N WNKH

Chapter 6. Variants / Real World OCaml

The term algebraic data types is often used to describe a collection of types that includes variants,
records, and tuples. Algebraic data types act as a peculiarly useful and powerful language for
describing data. At the heart of their utility is the fact that they combine two different kinds of
types: product types, like tuples and records, which combine multiple different types together
and are mathematically similar to Cartesian products; and sum types, like variants, which let you
combine multiple different possibilities into one type, and are mathematically similar to disjoint
unions.

Algebraic data types gain much of their power from the ability to construct layered combinations
of sums and products. Let's see what we can achieve with this by revisiting the logging server
types that were described in Chapter 5, Records. We'll start by reminding ourselves of the
definition of Log_entry.t:

module Log_entry = struct
type t =
{ session_id: string;
time: Time.t;
important: bool;
message: string;

¥

end

55

module Log_entry :

sig
type t = {

session_id : string;
time : Time.t;
important : bool;
message : string;

1

end

OCaml Utop * variants/logger.topscript , continued (part 1) * all code

This record type combines multiple pieces of data into one value. In particular, a single
Log_entry.t hasasession idandatime andan important flag and a message. More
generally, you can think of record types as conjunctions. Variants, on the other hand, are
disjunctions, letting you represent multiple possibilities, as in the following example:

type client_message = | Logon of Logon.t
| Heartbeat of Heartbeat.t
| Log_entry of Log_entry.t
35
type client_message =
Logon of Logon.t
| Heartbeat of Heartbeat.t
| Log_entry of Log entry.t

OCaml Utop * variants/logger.topscript , continued (part 2) * all code

Aclient messageisaLogon oraHeartbeat oralog entry.If we want to write code that
processes messages generically, rather than code specialized to a fixed message type, we need
something like client message to act as one overarching type for the different possible
messages. We can then match on the client message to determine the type of the particular
message being dealt with.

You can increase the precision of your types by using variants to represent differences between
types, and records to represent shared structure. Consider the following function that takes a list
of client messages and returns all messages generated by a given user. The code in question is
implemented by folding over the list of messages, where the accumulator is a pair of:

« The set of session identifiers for the user that have been seen thus far
« The set of messages so far that are associated with the user

Here's the concrete code:

let messages_for_user user messages =
let (user_messages,_) =
List.fold messages ~init:([],String.Set.empty)
~f:(fun ((messages,user_sessions) as acc) message ->
match message with
| Logon m ->
if m.Logon.user = user then
(message: :messages, Set.add user_sessions m.Logon.session_id)
else acc

https://v1.realworldocaml.org/v1/en/htmli/variants.html

414

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/records.html
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 6. Variants / Real World OCaml

| Heartbeat _ | Log_entry _ ->
let session_id = match message with
| Logon m -> m.Logon.session_id

| Heartbeat m -> m.Heartbeat.session_id
| Log_entry m -> m.Log_entry.session_id

in

if Set.mem user_sessions session_id then
(message: :messages,user_sessions)

else acc

Real World

OCaml)
in

_ : List.rev user_messages
Buy in print and eBook. .
Table of Contents vaifzsisages_fbr_user : string -> client_message list -> client_message list =

Prologue

OCaml Utop * variants/logger.topscript , continued (part 3) * all code
I. Language Concepts

the same way for all of the message types.
. Error Handling

. Imperative Programming
. Functors
10. First-Class Modules

; C G.L“decj Tour) There's one awkward part of the preceding code, which is the logic that determines the session

. Variables and Functions

3. Lists and Patterns ID. The code is somewhat repetitive, contemplating each of the possible message types (including
4. Files, Modules, and Programs the Logon case, which isn't actually possible at that point in the code) and extracting the session
5. Records ID in each case. This per-message-type handling seems unnecessary, since the session ID works
6. Variants

7

8

9

We can improve the code by refactoring our types to explicitly reflect the information that's
shared between the different messages. The first step is to cut down the definitions of each per-

11. Objects message record to contain just the information unique to that record:
12. Classes
I1. Tools and Techniques # module Log_entry = struct

type t = { important: bool;

III. The Runtime System X
message: string;

Index }
end
Logjin wilth GiifHulb 1o view module Heartbeat = struct
and add commments type t = { status_message: string; }
end

module Logon = struct
type t = { user: string;
credentials: string;

}
end ;;
module Log_entry : sig type t = { important : bool; message : string; } end
module Heartbeat : sig type t = { status_message : string; } end
module Logon : sig type t = { user : string; credentials : string; } end

OCaml Utop * variants/logger.topscript , continued (part 4) * all code
We can then define a variant type that combines these types:

type details =
| Logon of Logon.t
| Heartbeat of Heartbeat.t
| Log_entry of Log_entry.t
55
type details =

Logon of Logon.t

| Heartbeat of Heartbeat.t

| Log_entry of Log _entry.t

OCaml Utop * variants/logger.topscript , continued (part 5) * all code
Separately, we need a record that contains the fields that are common across all messages:

module Common = struct
type t = { session_id: string;
time: Time.t;
¥
end ;;
module Common : sig type t = { session_id : string; time : Time.t; } end

OCaml Utop * variants/logger.topscript , continued (part 6) * all code

A full message can then be represented as a pair of a Common . t and a details. Using this, we can
rewrite our preceding example as follows:

let messages_for_user user messages =
let (user_messages,) =
List.fold messages ~init:([],String.Set.empty)
~f:(fun ((messages,user_sessions) as acc) ((common,details) as message) ->

https://v1.realworldocaml.org/v1/en/htmli/variants.html 5/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

. A Guided Tour

. Variables and Functions
. Lists and Patterns

. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O N WNKH

. Files, Modules, and Programs

Chapter 6. Variants / Real World OCaml

let session_id = common.Common.session_id in
match details with
| Logon m ->
if m.Logon.user = user then
(message: :messages, Set.add user_sessions session_id)
else acc
| Heartbeat _ | Log_entry _ ->
if Set.mem user_sessions session_id then
(message: :messages,user_sessions)
else acc

)
in
List.rev user_messages
55
val messages_for_user :
string -> (Common.t * details) list -> (Common.t * details) Llist = <fun>

OCaml Utop * variants/logger.topscript , continued (part 7) * all code

As you can see, the code for extracting the session ID has been replaced with the simple
expression common.Common.session id.

In addition, this design allows us to essentially downcast to the specific message type once we
know what it is and then dispatch code to handle just that message type. In particular, while we
use the type Common.t * details to represent an arbitrary message, we can use Common.t *
Logon. t to represent a logon message. Thus, if we had functions for handling individual message
types, we could write a dispatch function as follows:

let handle_message server_state (common,details) =
match details with
| Log_entry m -> handle_log_entry server_state (common,m)
| Logon m -> handle_logon server_state (common,m)
| Heartbeat m -> handle_heartbeat server_state (common,m)

HY
Characters 95-111:
Error: Unbound value handle_Llog_entry

OCaml Utop * variants/logger.topscript , continued (part 8) * all code

And it's explicit at the type level that handle log entry seesonly Log entry messages,
handle_logon sees only Logon messages, etc.

VARIANTS AND RECURSIVE DATA STRUCTURES

Another common application of variants is to represent tree-like recursive data structures. We'll
show how this can be done by walking through the design of a simple Boolean expression
language. Such a language can be useful anywhere you need to specify filters, which are used in
everything from packet analyzers to mail clients.

An expression in this language will be defined by the variant expr, with one tag for each kind of
expression we want to support:

type 'a expr =
| Base of '
| Const of bool
| And of 'a expr list
|
|

a

Oor of 'a expr list
Not of 'a expr
type 'a expr =
Base of 'a
| Const of bool
| And of 'a expr Llist
| or of 'a expr Llist
| Not of 'a expr

OCaml Utop * variants/blang.topscript * all code

Note that the definition of the type expr is recursive, meaning that a expr may contain other
exprs. Also, expr is parameterized by a polymorphic type 'a which is used for specifying the
type of the value that goes under the Base tag.

The purpose of each tag is pretty straightforward. And, or, and Not are the basic operators for
building up Boolean expressions, and Const lets you enter the constants true and false.

The Base tag is what allows you to tie the expr to your application, by letting you specify an
element of some base predicate type, whose truth or falsehood is determined by your application.

https://v1.realworldocaml.org/v1/en/htmli/variants.html

6/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/logger.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

(Gl

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O N WNKH

Logjim wiith GitiHiub 1o view
zand adid commenis

Chapter 6. Variants / Real World OCaml

If you were writing a filter language for an email processor, your base predicates might specify
the tests you would run against an email, as in the following example:

type mail_field = To | From | CC | Date | Subject
type mail_predicate = { field: mail_field;
contains: string }
type mail_field = To | From | CC | Date | Subject
type mail_predicate = { field : mail_field; contains : string; }

OCaml Utop = variants/blang.topscript , continued (part 1) = all code

Using the preceding code, we can construct a simple expression withmail predicate asits
base predicate:

let test field contains = Base { field; contains };;
val test : mail_field -> string -> mail_predicate expr = <fun>
And [Or [test To "doligez"; test CC "doligez" 1];
test Subject "runtime";
1
55
- : mail_predicate expr =
And
[Or
[Base {field = To; contains = "doligez"};
Base {field = CC; contains = "doligez"}];
Base {field = Subject; contains = "runtime"}]

OCaml Utop = variants/blang.topscript , continued (part 2) = all code

Being able to construct such expressions isn't enough; we also need to be able to evaluate them.
Here's a function for doing just that:

let rec eval expr base_eval =
(* a shortcut, so we don't need to repeatedly pass [base _eval]
explicitly to [eval] *)
let eval' expr = eval expr base_eval in
match expr with

| Base base -> base_eval base

| Const bool -> bool

| And exprs -> List.for_all exprs ~f:eval’
| or exprs -> List.exists exprs ~f:eval'
|

Not expr -> not (eval' expr)
val eval : 'a expr -> ('a -> bool) -> bool = <fun>

OCaml Utop = variants/blang.topscript , continued (part 3) = all code

The structure of the code is pretty straightforward—we're just pattern matching over the
structure of the data, doing the appropriate calculation based on which tag we see. To use this
evaluator on a concrete example, we just need to write the base_eval function, which is capable
of evaluating a base predicate.

Another useful operation on expressions is simplification. The following is a set of simplifying
construction functions that mirror the tags of an expr:

let and_ 1 =
if List.mem 1 (Const false) then Const false
else
match List.filter 1 ~f:((<>) (Const true)) with
| [1 -> Const true
| [x]1 ->x
| 1 ->And 1

let or_ 1 =
if List.mem 1 (Const true) then Const true
else
match List.filter 1 ~f:((<>) (Const false)) with
| [1 -> Const false

| [x] -> x
| 1 ->0r1
let not_ = function

| Const b -> Const (not b)
| e -> Not e

PRl

val and_ : 'a expr list -> 'a expr = <fun>
val or_ : 'a expr list -> 'a expr = <fun>
val not_ : 'a expr -> 'a expr = <fun>

https://v1.realworldocaml.org/v1/en/htmli/variants.html

714

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

i

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 00NV WNKH

oain with GitHub t© view

2and add commeanits

Chapter 6. Variants / Real World OCaml

OCaml Utop * variants/blang.topscript , continued (part 4) * all code
We can now write a simplification routine that is based on the preceding functions.

let rec simplify = function
| Base _ | Const _as x -> x
| And 1 -> and_ (List.map ~f:simplify 1)
| or 1 -> or_ (List.map ~f:simplify 1)
| Not e -> not_ (simplify e)
35
val simplify : 'a expr -> 'a expr = <fun>

OCaml Utop * variants/blang.topscript , continued (part 5) * all code
We can apply this to a Boolean expression and see how good a job it does at simplifying it:

simplify (Not (And [Or [Base "it's snowing"; Const true];
Base "it's raining"]));;
- : string expr = Not (Base "it's raining")

OCaml Utop * variants/blang.topscript , continued (part 6) * all code

Here, it correctly converted the or branch to Const true and then eliminated the and entirely,
since the and then had only one nontrivial component.

There are some simplifications it misses, however. In particular, see what happens if we add a
double negation in:

simplify (Not (And [Or [Base "it's snowing"; Const true];
Not (Not (Base "it's raining"))1));;
- : string expr = Not (Not (Not (Base "it's raining")))

OCaml Utop * variants/blang.topscript , continued (part 7) * all code

It fails to remove the double negation, and it's easy to see why. The not_function has a catch-all
case, so it ignores everything but the one case it explicitly considers, that of the negation of a
constant. Catch-all cases are generally a bad idea, and if we make the code more explicit, we see
that the missing of the double negation is more obvious:

let not_ = function
| Const b -> Const (not b)
| (Base _ | And _ | or _ | Not _) as e -> Not e
55
val not_ : 'a expr -> 'a expr = <fun>

OCaml Utop * variants/blang.topscript , continued (part 8) * all code

We can of course fix this by simply adding an explicit case for double negation:

let not_ = function
| Const b -> Const (not b)
| Not e -> e
| (Base _ | And _ | Or _) as e -> Not e
55
val not_ : 'a expr -> 'a expr = <fun>

OCaml Utop * variants/blang.topscript , continued (part 9) * all code

The example of a Boolean expression language is more than a toy. There's a module very much in
this spirit in Core called B1ang (short for "Boolean language"), and it gets a lot of practical use in a
variety of applications. The simplification algorithm in particular is useful when you want to use
it to specialize the evaluation of expressions for which the evaluation of some of the base
predicates is already known.

More generally, using variants to build recursive data structures is a common technique, and
shows up everywhere from designing little languages to building complex data structures.

POLYMORPHIC VARIANTS

In addition to the ordinary variants we've seen so far, OCaml also supports so-called polymorphic
variants. As we'll see, polymorphic variants are more flexible and syntactically more lightweight
than ordinary variants, but that extra power comes at a cost.

Syntactically, polymorphic variants are distinguished from ordinary variants by the leading
backtick. And unlike ordinary variants, polymorphic variants can be used without an explicit type

https://v1.realworldocaml.org/v1/en/htmli/variants.html 8/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/blang.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

i

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 00O N WNKH

oain with GitHub t© view

2and add commeants

Chapter 6. Variants / Real World OCaml

declaration:

let three = "Int 3;;

val three : [> “Int of int] = “Int 3

let four = "Float 4.;;

val four : [> “Float of float] = “Float 4.

let nan = “Not_a_number;;

val nan : [> “Not_a_number] = “Not_a_number

[three; four; nan];;

- : [> “Float of float | “Int of int | “Not_a_number] Llist =
[Int 3; “Float 4.; “Not_a_number]

OCaml Utop * variants/main.topscript , continued (part 6) = all code

As you can see, polymorphic variant types are inferred automatically, and when we combine
variants with different tags, the compiler infers a new type that knows about all of those tags.
Note that in the preceding example, the tag name (e.g., " Int) matches the type name (int). This is
a common convention in OCaml.

The type system will complain if it sees incompatible uses of the same tag:

let five = "Int "five";;
val five : [> “Int of string] = “Int "five"
[three; four; fivel;;
Characters 14-18:
Error: This expression has type [> “Int of string]
but an expression was expected of type
[> “Float of float | “Int of int]
Types for tag "Int are incompatible

OCaml Utop * variants/main.topscript , continued (part 7) all code

The > at the beginning of the variant types above is critical because it marks the types as being
open to combination with other variant types. We can read the type [> “Int of string |
“Float of float] as describing a variant whose tags include " Int of stringand "Float of
float, but may include more tags as well. In other words, you can roughly translate > to mean:
"these tags or more."

OCaml will in some cases infer a variant type with <, to indicate "these tags or less," as in the
following example:

let is_positive = function
| "Int x ->x >0
| “Float x -> x > o.
55
val is_positive : [< “Float of float | “Int of int] -> bool = <fun>

OCaml Utop * variants/main.topscript , continued (part 8) all code

The < is there because is_positive has no way of dealing with values that have tags other than
“Float of floator "Int of int.

We can think of these < and > markers as indications of upper and lower bounds on the tags
involved. If the same set of tags are both an upper and a lower bound, we end up with an exact
polymorphic variant type, which has neither marker. For example:

let exact = List.filter ~f:is_positive [three;four];;
val exact : [“Float of float | “Int of int] list = [“Int 3; “Float 4.]

OCaml Utop * variants/main.topscript , continued (part 9) all code

Perhaps surprisingly, we can also create polymorphic variant types that have different upper and
lower bounds. Note that ok and Error in the following example come from the Result.t type
from Core:

let is_positive = function
| “Int x -> 0k (x > @)
| “Float x -> Ok (x > 0.)
| “Not_a_number -> Error "not a number";;
val is_positive :
[< “Float of float | “Int of int | “Not_a_number] ->
(bool, string) Result.t = <fun>
List.filter [three; four] ~f:(fun x ->
match is_positive x with Error _ -> false | Ok b -> b);;

https://v1.realworldocaml.org/v1/en/htmli/variants.html 9/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

R

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 00N WNKH

Logim with GitiHub o view
and add comments

Chapter 6. Variants / Real World OCaml

- : [< “Float of float | “Int of int | “Not_a_number > “Float ‘Int] list =
["Int 3; “Float 4.]

OCaml Utop * variants/main.topscript , continued (part 10) * all code

Here, the inferred type states that the tags can be no more than *Float, "Int, and
‘Not_a_number, and must contain at least *Float and " Int. As you can already start to see,
polymorphic variants can lead to fairly complex inferred types.

Example: Terminal Colors Redux

To see how to use polymorphic variants in practice, we'll return to terminal colors. Imagine that
we have a new terminal type that adds yet more colors, say, by adding an alpha channel so you
can specify translucent colors. We could model this extended set of colors as follows, using an
ordinary variant:

type extended_color =

| Basic of basic_color * weight (* basic colors, regular and bold *)
| RGB of int * int * int (* 6x6x6 color space *)
| Gray of int (* 24 grayscale levels *)
| RGBA of int * int * int * int (* 6x6x6x6 color space *)

55

type extended_color =

Basic of basic_color * weight

| RGB of int * int * int

| Gray of 1int

| RGBA of int * int * int * 1int

OCaml Utop = variants/main.topscript , continued (part 11) * all code

We want to write a function extended_color_to_int, that works like color_to_int for all of
the old kinds of colors, with new logic only for handling colors that include an alpha channel.
One might try to write such a function as follows.

let extended_color_to_int = function
| RGBA (r,g,b,a) -> 256 + a+b * 6+ g * 36 +r * 216
| (Basic _ | RGB _ | Gray _) as color -> color_to_int color
55
Characters 154-159:
Error: This expression has type extended_color
but an expression was expected of type color

OCaml Utop * variants/main.topscript , continued (part 12) * all code

The code looks reasonable enough, but it leads to a type error because extended color and
color are in the compiler's view distinct and unrelated types. The compiler doesn't, for example,
recognize any equality between the Basic tag in the two types.

‘What we want to do is to share tags between two different variant types, and polymorphic
variants let us do this in a natural way. First, let's rewrite basic_color to_int and
color_ to_int using polymorphic variants. The translation here is pretty straightforward:

let basic_color_to_int = function
| “Black -> @ | “Red ->1 | “Green -> 2 | “Yellow -> 3
| "Blue -> 4 | "Magenta -> 5 | "Cyan =-> 6 | “White -> 7

let color_to_int = function
| “Basic (basic_color,weight) ->
let base = match weight with “Bold -> 8 | “Regular -> 0 in
base + basic_color_to_int basic_color
| "RGB (r,g,b) -> 16 + b + g * 6 + r * 36
| “Gray i -> 232 + i
val basic_color_to_int :
[< “Black | “Blue [“Cyan | “Green | “Magenta | “Red | “White | “Yellow] ->
int = <fun>
val color_to_int :
[< “Basic of
[< “Black
| “Blue
| “Cyan
| “Green
| “Magenta
| “Red
| “white
| “Yellow] *
[< “Bold | “Regular]
| “Gray of int

https://v1.realworldocaml.org/v1/en/htmli/variants.html

10/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

R

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NS WNKH

Logim with GitHub o view
and add comments

Chapter 6. Variants / Real World OCaml

| "RGB of int * int * int] ->
int = <fun>

OCaml Utop * variants/main.topscript , continued (part 13) * all code

Now we can try writing extended color to int. The key issue with this code is that
extended color to_int needstoinvoke color to int with a narrower type, i.e., one that
includes fewer tags. Written properly, this narrowing can be done via a pattern match. In
particular, in the following code, the type of the variable color includes only the tags "Basic,
*RGB, and " Gray, and not " RGBA:

let extended_color_to_int = function
| "RGBA (r,g,b,a) -> 256 + a +b * 6 +g * 36 + r * 216
| ("Basic _ | 'RGB _ | “Gray _) as color -> color_to_int color
35
val extended_color_to_int :
[< “Basic of
[< “Black
| “Blue
| “Cyan
| “Green
| “Magenta
| "Red
| “white
| “Yellow] *
[< “Bold | “Regular]
| “Gray of int
| "RGB of int * int * int
| "RGBA of int * int * int * int] ->
int = <fun>

OCaml Utop * variants/main.topscript , continued (part 14) * all code

The preceding code is more delicately balanced than one might imagine. In particular, if we use a
catch-all case instead of an explicit enumeration of the cases, the type is no longer narrowed, and

so compilation fails:

let extended_color_to_int = function
| "RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216
| color -> color_to_int color
55
Characters 125-130:
Error: This expression has type [> "RGBA of int * int * int * int]
but an expression was expected of type
[< “Basic of
[< "“Black
| “Blue
| “Cyan
| “Green
| “Magenta
| "Red
| “white
| “vellow] *
[< “Bold | “Regular]
| “Gray of int
| "RGB of int * int * dint]
The second variant type does not allow tag(s) “RGBA

OCaml Utop * variants/main.topscript , continued (part 15) * all code

Polymorphic Variants and Catch-all Cases

As we saw with the definition of is positive, amatch statement can lead to the
inference of an upper bound on a variant type, limiting the possible tags to those
that can be handled by the match. If we add a catch-all case to our match statement,
we end up with a type with a lower bound:

let is_positive_permissive = function
| “Int x -> 0k (x > @)
| “Float x -> Ok (x > @.)
| _ -> Error "Unknown number type"
35
val is_positive permissive :
[> “Float of float | “Int of int] -> (bool, string) Result.t = <fun>
is_positive_permissive (" Int 0);;
- ! (bool, string) Result.t = Ok false
is_positive permissive ("Ratio (3,4));;
- : (bool, string) Result.t = Error "Unknown number type"

https://v1.realworldocaml.org/v1/en/htmli/variants.html

11/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

(ol

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0N O UT A WN =

Login with GiitHuib to view
and adid comments

Chapter 6. Variants / Real World OCaml

OCaml Utop * variants/main.topscript , continued (part 16) * all code

Catch-all cases are error-prone even with ordinary variants, but they are especially
so with polymorphic variants. That's because you have no way of bounding what
tags your function might have to deal with. Such code is particularly vulnerable to
typos. For instance, if code that uses is_positive permissive passesinFloat
misspelled as Floot, the erroneous code will compile without complaint:

is_positive_permissive (" Floot 3.5);;
- : (bool, string) Result.t = Error "Unknown number type"

OCaml Utop * variants/main.topscript , continued (part 17) * all code

With ordinary variants, such a typo would have been caught as an unknown tag. As
a general matter, one should be wary about mixing catch-all cases and polymorphic
variants.

Let's consider how we might turn our code into a proper library with an implementation in an m1
file and an interface in a separate m11, as we saw in Chapter 4, Files, Modules, and Programs. Let's

start with the m1i:

open Core.Std

type basic_color =

["Black | “Blue | “Cyan | “Green
| “Magenta | "Red | “White | “Yellow]
type color =
["Basic of basic_color * ["Bold | “Regular]
| “Gray of int

| "RGB of int * int * int]

type extended_color =
[color
| "RGBA of int * int * int * int]

val color_to_int : color -> int
val extended_color_to_int : extended_color -> int

OCaml * variants-termcol/terminal_color.mli * all code

Here, extended color is defined as an explicit extension of color. Also, notice that we defined
all of these types as exact variants. We can implement this library as follows:

open Core.Std

type basic_color =

["Black | “Blue | “Cyan | “Green
| “Magenta | "Red | “White | “Yellow]
type color =
["Basic of basic_color * ["Bold | “Regular]
| “Gray of int

| "RGB of int * int * int]

type extended_color =
[color
| "RGBA of int * int * int * int]

let basic_color_to_int = function
| “Black -> @ | “Red -> 1 | “Green -> 2 | “Yellow -> 3
| "Blue =-> 4 | “Magenta -> 5 | "Cyan -> 6 | “White -> 7

let color_to_int = function
| “Basic (basic_color,weight) ->
let base = match weight with "Bold -> 8 | “Regular -> @ in
base + basic_color_to_int basic_color
| "RGB (r,g,b) -> 16 +b +g *6+r * 36
| “Gray i -> 232 + 1

let extended_color_to_int = function
| "RGBA (r,g,b,a) -> 256 + a +b * 6 + g * 36 + r * 216
| “Grey x -> 2000 + x
| ("Basic _ | 'RGB _ | “Gray _) as color -> color_to_int color

OCaml variants-termcol/terminal_color.ml * all code

https://v1.realworldocaml.org/v1/en/htmli/variants.html

12/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
http://github.com/realworldocaml/examples/blob/master/code/variants-termcol/terminal_color.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants-termcol/terminal_color.ml
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

(Gl

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 00N WNKH

Login wiilh GitiHulb o view
and add commenis

Chapter 6. Variants / Real World OCaml

In the preceding code, we did something funny to the definition of extended color to int that
underlines some of the downsides of polymorphic variants. In particular, we added some special-
case handling for the color gray, rather than using color to int. Unfortunately, we misspelled
Gray as Grey. This is exactly the kind of error that the compiler would catch with ordinary
variants, but with polymorphic variants, this compiles without issue. All that happened was that
the compiler inferred a wider type for extended color to_int, which happens to be
compatible with the narrower type that was listed in the m11.

If we add an explicit type annotation to the code itself (rather than just in the m11), then the
compiler has enough information to warn us:

open Core.Std

type basic_color =

["Black | “Blue | “Cyan | “Green
| “Magenta | "Red | “White | “Yellow]
type color =
["Basic of basic_color * [“Bold | “Regular]
| “Gray of int

| "RGB of int * int * int]

type extended_color =
[color
| "RGBA of int * int * int * int]

let basic_color_to_int = function
| “Black -> @ | "Red -> 1 | “Green -> 2 | “Yellow -> 3
| "Blue -> 4 | "Magenta -> 5 | "Cyan -> 6 | “White -> 7

let color_to_int = function
| “Basic (basic_color,weight) ->
let base = match weight with “Bold -> 8 | “Regular -> @ in
base + basic_color_to_int basic_color
| "RGB (r,g,b) -> 16 + b + g * 6 + r * 36
| “Gray i -> 232 + i

OCaml * variants-termcol-annotated/terminal_color.ml| = all code

In particular, the compiler will complain that the " Grey case is unused:

$ corebuild terminal_color.native

File "terminal_color.mL", Lline 30, characters 4-11:

Error: This pattern matches values of type [? “Grey of 'a]
but a pattern was expected which matches values of type extended color
The second variant type does not allow tag(s) “Grey

Command exited with code 2.

Terminal * variants-termcol-annotated/build.out * all code

Once we have type definitions at our disposal, we can revisit the question of how we write the
pattern match that narrows the type. In particular, we can explicitly use the type name as part of
the pattern match, by prefixing it with a #:

open Core.Std

type basic_color =

["Black | “Blue | “Cyan | “Green
| “Magenta | "Red | “White | “Yellow]
type color =
["Basic of basic_color * ["Bold | “Regular]
| “Gray of int

| "RGB of int * int * int]

type extended_color =
[color
| "RGBA of int * int * int * int]

let basic_color_to_int = function
| “Black -> @ | “Red -> 1 | “Green -> 2 | “Yellow -> 3
| "Blue -> 4 | "Magenta -> 5 | "Cyan -> 6 | “White -> 7

let color_to_int = function
| “Basic (basic_color,weight) ->
let base = match weight with "Bold -> 8 | “Regular -> 0 in
base + basic_color_to_int basic_color
| "RGB (r,g,b) -> 16 +b +g *6 +r * 36

| “Gray i -> 232 + i

https://v1.realworldocaml.org/v1/en/htmli/variants.html

13/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants-termcol-annotated/terminal_color.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/variants-termcol-annotated/build.out
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

4

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O N WNKH

Chapter 6. Variants / Real World OCaml

OCaml * variants-termcol-fixed/terminal_color.ml * all code

This is useful when you want to narrow down to a type whose definition is long, and you don't
want the verbosity of writing the tags down explicitly in the match.

When to Use Polymorphic Variants

At first glance, polymorphic variants look like a strict improvement over ordinary variants. You
can do everything that ordinary variants can do, plus it's more flexible and more concise. What's
not to like?

In reality, regular variants are the more pragmatic choice most of the time. That's because the
flexibility of polymorphic variants comes at a price. Here are some of the downsides:

Complexity

As we've seen, the typing rules for polymorphic variants are a lot more complicated than they are
for regular variants. This means that heavy use of polymorphic variants can leave you scratching
your head trying to figure out why a given piece of code did or didn't compile. It can also lead to
absurdly long and hard to decode error messages. Indeed, concision at the value level is often
balanced out by more verbosity at the type level.

Error-finding
Polymorphic variants are type-safe, but the typing discipline that they impose is, by dint of its
flexibility, less likely to catch bugs in your program.

Efficiency

This isn't a huge effect, but polymorphic variants are somewhat heavier than regular variants,
and OCaml can't generate code for matching on polymorphic variants that is quite as efficient as
what it generated for regular variants.

All that said, polymorphic variants are still a useful and powerful feature, but it's worth
understanding their limitations and how to use them sensibly and modestly.

Probably the safest and most common use case for polymorphic variants is where ordinary
variants would be sufficient but are syntactically too heavyweight. For example, you often want to
create a variant type for encoding the inputs or outputs to a function, where it's not worth
declaring a separate type for it. Polymorphic variants are very useful here, and as long as there
are type annotations that constrain these to have explicit, exact types, this tends to work well.

Variants are most problematic exactly where you take full advantage of their power; in particular,
when you take advantage of the ability of polymorphic variant types to overlap in the tags they
support. This ties into OCaml's support for subtyping. As we'll discuss further when we cover
objects in Chapter 11, Objects, subtyping brings in a lot of complexity, and most of the time, that's
complexity you want to avoid.

< Previous

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

https://v1.realworldocaml.org/v1/en/htmli/variants.html

Next >

14/14

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fvariants.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/variants-termcol-fixed/terminal_color.ml
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html

